首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
2.
We describe ISAAC/ESO-VLT observations of the Hαλ6563 Balmer line of 33 field galaxies from the Canada–France Redshift Survey (CFRS) with redshifts selected between 0.5 and 1.1. We detect Hα in emission in 30 galaxies and compare the properties of this sample with the low-redshift sample of CFRS galaxies at   z ∼ 0.2  . We find that the Hα luminosity,   L (Hα)  , is tightly correlated to   M ( B AB)  in the same way for both the low- and high-redshift samples.   L (Hα)  is also correlated to L ([O  ii ]λ3727), and again the relation appears to be similar at low and high redshifts. The ratio L (lsqb;O  ii ])/   L (Hα)  decreases for brighter galaxies by as much as a factor of 2 on average. Derived from the Hα luminosity function, the comoving Hα luminosity density increases by a factor 12 from  〈 z 〉= 0.2  to  〈 z 〉= 1.3  . Our results confirm a strong rise of the star formation rate (SFR) at   z < 1.3  , proportional to  (1 + z )4.1±0.3  (with   H 0= 50 km s−1 Mpc−1, q 0= 0.5  ). We find an average  SFR(2800 Å)/SFR (Hα)  ratio of 3.2 using the Kennicutt SFR transformations. This corresponds to the dust correction that is required to make the near-ultraviolet data consistent with the reddening-corrected Hα data within the self-contained, I -selected CFRS sample.  相似文献   

3.
We study the distribution of projected offsets between the cluster X-ray centroid and the brightest cluster galaxy (BCG) for 65 X-ray-selected clusters from the Local Cluster Substructure Survey, with a median redshift of   z = 0.23  . We find a clear correlation between X-ray/BCG projected offset and the logarithmic slope of the cluster gas density profile at  0.04 r 500(α  ), implying that more dynamically disturbed clusters have weaker cool cores. Furthermore, there is a close correspondence between the activity of the BCG, in terms of detected Hα and radio emission, and the X-ray/BCG offset, with the line-emitting galaxies all residing in clusters with X-ray/BCG offsets of ≤15 kpc. Of the BCGs with  α < −0.85  and an offset <0.02 r 500, 96 per cent (23/24) have optical emission and 88 per cent (21/24) are radio active, while none has optical emission outside these criteria. We also study the cluster gas fraction ( f gas) within r 500 and find a significant correlation with X-ray/BCG projected offset. The mean f gas of the 'small offset' clusters (<0.02 r 500) is  0.106 ± 0.005 (σ= 0.03  ) compared to  0.145 ± 0.009 (σ= 0.04  ) for those with an offset >0.02 r 500, indicating that the total mass may be systematically underestimated in clusters with larger X-ray/BCG offsets. Our results imply a link between cool core strength and cluster dynamical state consistent with the view that cluster mergers can significantly perturb cool cores, and set new constraints on models of the evolution of the intracluster medium.  相似文献   

4.
We present high- and medium-resolution spectroscopic observations of the cataclysmic variable BF Eridani (BF Eri) during its low and bright states. The orbital period of this system was found to be 0.270881(3) d. The secondary star is clearly visible in the spectra through the absorption lines of the neutral metals Mg  i , Fe  i and Ca  i . Its spectral type was found to be K3±0.5. A radial velocity study of the secondary yielded a semi-amplitude of   K 2= 182.5 ± 0.9 km s−1  . The radial velocity semi-amplitude of the white dwarf was found to be   K 1= 74 ± 3 km s−1  from the motion of the wings of the Hα and Hβ emission lines. From these parameters, we have obtained that the secondary in BF Eri is an evolved star with a mass of  0.50–0.59 M  , whose size is about 30 per cent larger than a zero-age main-sequence single star of the same mass. We also show that BF Eri contains a massive white dwarf  ( M 1≥ 1.2 M)  , which allows us to consider the system as a Type Ia supernova progenitor. BF Eri also shows a high γ-velocity  (γ=−94 km s−1)  and substantial proper motion. With our estimation of the distance to the system  ( d ≈ 700 ± 200 pc)  , this corresponds to a space velocity of ∼350 km s−1 with respect to the dynamical local standard of rest. The cumulative effect of repeated nova eruptions with asymmetric envelope ejection might explain the high space velocity of the system. We analyse the outburst behaviour of BF Eri and question the current classification of the system as a dwarf nova. We propose that BF Eri might be an old nova exhibiting 'stunted' outbursts.  相似文献   

5.
Motivated by recent observational studies of the environment of   z ∼ 6  QSOs, we have used the Millennium Run (MR) simulations to construct a very large  (∼4°× 4°)  mock redshift survey of star-forming galaxies at   z ∼ 6  . We use this simulated survey to study the relation between density enhancements in the distribution of i 775-dropouts and Lyα emitters, and their relation to the most massive haloes and protocluster regions at   z ∼ 6  . Our simulation predicts significant variations in surface density across the sky with some voids and filaments extending over scales of 1°, much larger than probed by current surveys. Approximately one-third of all   z ∼ 6  haloes hosting i -dropouts brighter than   z = 26.5  mag  (≈ M *UV, z =6)  become part of   z = 0  galaxy clusters. i -dropouts associated with protocluster regions are found in regions where the surface density is enhanced on scales ranging from a few to several tens of arcminutes on the sky. We analyse two structures of i -dropouts and Lyα emitters observed with the Subaru Telescope and show that these structures must be the seeds of massive clusters in formation. In striking contrast, six   z ∼ 6  QSO fields observed with Hubble Space Telescope show no significant enhancements in their i 775-dropout number counts. With the present data, we cannot rule out the QSOs being hosted by the most massive haloes. However, neither can we confirm this widely used assumption. We conclude by giving detailed recommendations for the interpretation and planning of observations by current and future ground- and space-based instruments that will shed new light on questions related to the large-scale structure at   z ∼ 6  .  相似文献   

6.
We study protoplanetary disc evolution assuming that angular momentum transport is driven by gravitational instability at large radii, and magnetohydrodynamic (MHD) turbulence in the hot inner regions. At radii of the order of 1 au such discs develop a magnetically layered structure, with accretion occurring in an ionized surface layer overlying quiescent gas that is too cool to sustain MHD turbulence. We show that layered discs are subject to a limit cycle instability, in which accretion on to the protostar occurs in ∼104-yr bursts with ̇ ∼10−5 M yr−1, separated by quiescent intervals lasting ∼105 yr where ̇ ≈10−8 M yr−1. Such bursts could lead to repeated episodes of strong mass outflow in young stellar objects. The transition to this episodic mode of accretion occurs at an early epoch ( t ≪1 Myr), and the model therefore predicts that many young pre-main-sequence stars should have low rates of accretion through the inner disc. At ages of a few Myr, the discs are up to an order of magnitude more massive than the minimum-mass solar nebula, with most of the mass locked up in the quiescent layer of the disc at r ∼1 au. The predicted rate of low-mass planetary migration is reduced at the outer edge of the layered disc, which could lead to an enhanced probability of giant planet formation at radii of 1–3 au.  相似文献   

7.
We investigate the large-scale clustering of radio sources in the FIRST 1.4-GHz survey by analysing the distribution function ( counts in cells ). We select a reliable sample from the the FIRST catalogue, paying particular attention to the problem of how to define single radio sources from the multiple components listed. We also consider the incompleteness of the catalogue. We estimate the angular two-point correlation function w (θ), the variance Ψ2 and skewness Ψ3 of the distribution for the various subsamples chosen on different criteria. Both w (θ) and Ψ2 show power-law behaviour with an amplitude corresponding to a spatial correlation length of r 0 ∼ 10  h −1Mpc. We detect significant skewness in the distribution, the first such detection in radio surveys. This skewness is found to be related to the variance through Ψ3 =  S 32)α, with α = 1.9 ± 0.1, consistent with the non-linear gravitational growth of perturbations from primordial Gaussian initial conditions. We show that the amplitude of variance and the skewness are consistent with realistic models of galaxy clustering.  相似文献   

8.
We show that spatial correlations in a stochastic large-scale velocity field in an otherwise smooth intergalactic medium (homogeneous comoving density) superposed on the general Hubble flow may cause a 'line-like' structure in QSO spectra similar to the population of unsaturated Lyα forest lines which usually are attributed to individual clouds with 1011 ≲ N H i  5 × 1013 cm−2. Therefore there is no clear observational distinction between a diffuse intergalactic medium and discrete intergalactic clouds. It follows that the H  i density in the diffuse intergalactic medium might be substantially underestimated if it is determined from the observed intensity distribution near the apparent continuum in high-resolution spectra of QSOs. Our tentative estimate implies a diffuse neutral hydrogen opacity τGP ∼ 0.3 at z  ∼ 3 and a current baryon density ΩIGM ≃ 0.08, assuming a Hubble constant H 0 = 70 km s−1 Mpc−1.  相似文献   

9.
We present a Chandra study of 38 X-ray-luminous clusters of galaxies in the ROSAT Brightest Cluster Sample (BCS) that lie at moderate redshifts  ( z ≈ 0.15–0.4)  . Based primarily on power ratios and temperature maps, we find that the majority of clusters at moderate redshift generally have smooth, relaxed morphologies with some evidence for mild substructure perhaps indicative of recent minor merger activity. Using spatially resolved spectral analyses, we find that cool cores appear still to be common at moderate redshift. At a radius of 50 kpc, we find that at least 55 per cent of the clusters in our sample exhibit signs of mild cooling  ( t cool < 10 Gyr)  , while in the central bin at least 34 per cent demonstrate signs of strong cooling  ( t cool < 2 Gyr)  . These percentages are nearly identical to those found for luminous, low-redshift clusters of galaxies, indicating that there appears to be little evolution in cluster cores since   z ≈ 0.4  and suggesting that heating and cooling mechanisms may already have stabilized by this epoch. Comparing the central cooling times to catalogues of central Hα emission in BCS clusters, we find a strong correspondence between the detection of Hα and central cooling time. We also confirm a strong correlation between the central cooling time and cluster power ratios, indicating that crude morphological measures can be used as a proxy for more rigorous analysis in the face of limited signal-to-noise ratio data. Finally, we find that the central temperatures for our sample typically drop by no more than a factor of ∼3–4 from the peak cluster temperatures, similar to those of many nearby clusters.  相似文献   

10.
We measure X-ray emission from the outskirts of the cluster of galaxies PKS 0745−191 with Suzaku , determining radial profiles of density, temperature, entropy, gas fraction and mass. These measurements extend beyond the virial radius for the first time, providing new information about cluster assembly and the diffuse intracluster medium out to  ∼1.5  r 200( r 200≃ 1.7 Mpc ≃ 15 arcmin  ). The temperature is found to decrease by roughly 70 per cent from 0.3 to  1 r 200  . We also see a flattening of the entropy profile near the virial radius and consider the implications this has for the assumption of hydrostatic equilibrium when deriving mass estimates. We place these observations in the context of simulations and analytical models to develop a better understanding of non-gravitational physics in the outskirts of the cluster.  相似文献   

11.
It has been found that the near-infrared flux variations of Seyfert galaxies satisfy relations of the form   Fi ≈α i j i j Fj   , where Fi , Fj are the fluxes in filters i and j ; and  α i , j , β i , j   are constants. These relations have been used to estimate the constant contributions of the non-variable underlying galaxies. The paper attempts a formal treatment of the estimation procedure, allowing for the possible presence of a third component, namely non-variable hot dust. In an analysis of a sample of 38 Seyfert galaxies, inclusion of the hot dust component improves the model fit in approximately half the cases. All derived dust temperatures are below 300 K, in the range 540–860 K or above 1300 K. A noteworthy feature is the estimation of confidence intervals for the component contributions: this is achieved by bootstrapping. It is also pointed out that the model implies that such data could be fruitfully analysed in terms of principal components.  相似文献   

12.
Using cosmological hydrodynamic simulations, we measure the mean transmitted flux in the Lyα forest for quasar sightlines that pass near a foreground quasar. We find that the trend of absorption with pixel quasar separation distance can be fitted using a simple power-law form including the usual correlation function parameters r 0 and γ, so that     . From the simulations, we find the relation between r 0 and quasar host mass, and formulate this as a way to estimate quasar host dark matter halo masses, quantifying uncertainties due to cosmological and IGM parameters, and redshift errors. With this method, we examine data for ∼9000 quasars from the Sloan Digital Sky Survey (SDSS) Data Release 5, assuming that the effect of ionizing radiation from quasars (the so-called transverse proximity effect) is unimportant (no evidence for it is seen in the data). We find that the best-fitting host halo mass for SDSS quasars with mean redshift z = 3 and absolute G -band magnitude −27.5 is  log  M /M= 12.68+0.81−0.67  . We also use the Lyman-Break Galaxy (LBG) and Lyα forest data of Adelberger et al. in a similar fashion to constrain the halo mass of LBGs to be  log10  M /M= 11.41+0.54−0.59  , a factor of ∼20 lower than the bright quasars. In addition, we study the redshift distortions of the Lyα forest around quasars, using the simulations. We use the quadrupole to monopole ratio of the quasar Lyα forest correlation function as a measure of the squashing effect. We find its dependence on halo mass difficult to measure, but find that it may be useful for constraining cosmic geometry.  相似文献   

13.
We have conducted a submillimetre mapping survey of faint, gravitationally lensed sources, where we have targeted 12 galaxy clusters and additionally the New Technology Telescope (NTT) Deep Field. The total area surveyed is 71.5 arcmin2 in the image plane; correcting for gravitational lensing, the total area surveyed is 40 arcmin2 in the source plane for a typical source redshift z ≈ 2.5. In the deepest maps, an image plane depth of 1σ rms ∼0.8 mJy is reached. This survey is the largest survey to date to reach such depths. In total 59 sources were detected, including three multiply imaged sources. The gravitational lensing makes it possible to detect sources with flux density below the blank field confusion limit. The lensing-corrected fluxes range from 0.11 to 19 mJy. After correcting for multiplicity, there are 10 sources with fluxes <2 mJy of which seven have submJy fluxes, doubling the number of such sources known. Number counts are determined below the confusion limit. At 1 mJy, the integrated number count is  ∼104 deg−2  , and at 0.5 mJy it is  ∼2 × 104 deg−2  . Based on the number counts, at a source plan flux limit of 0.1 mJy, essentially all of the 850-μm background emission has been resolved. The dominant contribution (>50 per cent) to the integrated background arises from sources with fluxes S 850 between 0.4 and 2.5 mJy, while the bright sources S 850 > 6 mJy contribute only 10 per cent.  相似文献   

14.
We use proper motions and parallaxes from the new reduction of Hipparcos data and Geneva–Copenhagen radial velocities for a complete sample of  ∼15 000  main-sequence and subgiant stars, and new Padova isochrones to constrain the kinematics and star formation history of the solar neighbourhood. We rederive the solar motion and the structure of the local velocity ellipsoids. When the principal velocity dispersions are assumed to increase with time as   t β  , the index β is larger for  σ W W ≈ 0.45  ) than for  σ U U ≈ 0.31)  . For the three-dimensional velocity dispersion, we obtain  β= 0.35  . We exclude saturation of disc heating after  ∼3 Gyr  as proposed by Quillen & Garnett. Saturation after  ≳4 Gyr  combined with an abrupt increase in velocity dispersion for the oldest stars cannot be excluded. For all our models, the star formation rate (SFR) is declining, being a factor of 2–7 lower now than it was at the beginning. Models in which the SFR declines exponentially favour very high disc ages between 11.5 and 13 Gyr and exclude ages below  ∼10.5 Gyr  as they yield worse fits to the number density and velocity dispersion of red stars. Models in which the SFR is the sum of two declining exponentials representing the thin and thick discs favour ages between 10.5 and 12 Gyr with a lower limit of  ∼10.0 Gyr  . Although in our models the SFR peaked surprisingly early, the mean formation time of solar-neighbourhood stars is later than in ab initio models of galaxy formation, probably on account of weaknesses in such models.  相似文献   

15.
High-resolution spectroscopic observations around the Hα line and BVRI photometry of the eclipsing short-period RS CVn star UV Leo are presented. The simultaneous light-curve solution and radial velocity-curve solution led to the following values of the global parameters of the binary: temperatures   T 1= 6000 ± 100 K  and   T 2= 5970 ± 20 K  ; masses   M 1= 0.976 ± 0.067 M  and   M 2= 0.931 ± 0.052 M  ; separation   a = 3.716 ± 0.048 R  ; orbital inclination     ; radii   R 1= 1.115 ± 0.052 R  and   R 2= 1.078 ± 0.051 R  ; equatorial velocities   V 1= 98.8 ± 2.3 km s−1  and   V 2= 89.6 ± 2.7 km s−1  . These results lead to the conclusion that the two components of UV Leo are slightly oversized for their masses and lie within the main-sequence band on the mass–radius diagram, close to the isochrone 9 × 1010 yr.  相似文献   

16.
We discuss the constraints that future photometric and spectroscopic redshift surveys can put on dark energy through the baryon oscillations of the power spectrum. We model the dark energy either with a perfect fluid or a scalar field and take into account the information contained in the linear growth function. We show that the growth function helps to break the degeneracy in the dark energy parameters and reduce the errors on   w 0, w 1  roughly by 30 per cent, making more appealing multicolour surveys based on photometric redshifts. We find that a 200-deg2 spectroscopic survey reaching   z ≈ 3  can constrain   w 0, w 1  to within  Δ w 0= 0.21, Δ w 1= 0.26  , to  Δ w 0= 0.39, Δ w 1= 0.54  using photometric redshifts with an absolute uncertainty of 0.02, and to  Δ w 0= 0.43, Δ w 1= 0.66  with an uncertainty of 0.04. In the scalar field case, we show that the slope n of the inverse power-law potential for dark energy can be constrained to  Δ n = 0.26  (spectroscopic redshifts) or  Δ n = 0.40  (photometric redshifts), i.e. better than with future ground-based supernovae surveys or cosmic microwave background data.  相似文献   

17.
We have measured the radial velocity variation of the white dwarf secondary in the binary system containing the millisecond pulsar PSR J 1012 + 5307. Combined with the orbital parameters of the radio pulsar, we infer a mass ratio q (≡ M 1/ M 2) = 10.5 ± 0.5. Our optical spectroscopy has also allowed us to determine the mass of the white dwarf companion by fitting the spectrum to a grid of DA model atmospheres: we estimate M 2 = 0.16 ± 0.02 M⊙, and hence the mass of the neutron star is 1.64 ± 0.22 M⊙, where the error is dominated by that of M 2. The orbital inclination is 52 ± 4°. For an initial neutron star mass of ∼ 1.4 M⊙, only a few tenths of a solar mass at most has been successfully accreted over the lifetime of the progenitor low-mass X-ray binary. If the initial mass of the secondary was ∼ 1 M⊙, our result suggests that the mass transfer may have been non-conservative.  相似文献   

18.
A deep   K s   -band photometric catalogue of galaxies at the core of the rich, nearby Norma cluster (ACO3627) is presented. The survey covers about  45 × 45 arcmin2  (slightly less than 1/3 Abell radius), which corresponds to  ∼0.8  h −270 Mpc2  at the adopted distance  ( v CMB/ H 0)  of  70  h −170 Mpc  of this cluster. The survey is estimated to be complete to a magnitude of     . This extends into the dwarf regime, 6 mag below     . The catalogue contains 390 objects, 235 of which are classified as likely or definite galaxies and 155 as candidate galaxies. The   K s   -band luminosity function (LF) is constructed from the photometric sample, using a spectroscopic subsample to correct for fore and background contamination. We fit a Schechter function with a characteristic magnitude of     and faint-end slope of  α=−1.26 ± 0.10  to the data. The shape of the LF is similar to those found in previous determinations of the cluster LF, in both optical and near-infrared. The Schechter parameters agree well with those of recent field LFs, suggesting that the shape of both the bright-end and the faint-end slopes are relatively insensitive to environment.  相似文献   

19.
This paper presents a global analysis of the 2MASS (Two Micron All Sky Survey) data as observed in seven fields at different galactic latitudes in our Galaxy. The data allow the preliminary determination of the scale parameters, which lead to strong constraints on the radial and vertical structure of the galactic thin and thick disc. The interpretation of star counts and colour distributions of stars in the near-infrared with the synthetic stellar population model gives strong evidence that the galactic thin disc density scalelength ( h R ) is rather short (2.8±0.3 kpc). The galactic thick disc population is revisited in the light of new data. We find the thick disc to have a local density of 3.5±2.0 per cent of the thin disc, exponential scaleheight ( h z ) of 860±200 pc and exponential scalelength ( h R ) of 3.7±0.50.8 kpc.  相似文献   

20.
We make use of 3456 d of observations of the low-ℓ p-mode oscillations of the Sun in order to study the evolution over time of the measurement precision of the radial eigenfrequencies. These data were collected by the ground-based Birmingham Solar-Oscillations Network (BiSON) between 1991 January and 2000 June. When the power spectrum of the complete time series is fitted, the analysis yields frequency uncertainties that are close to those expected from the returned coherence times of the modes. The slightly elevated levels compared with the prediction appear to be consistent with a degradation of the signal-to-noise ratio in the spectrum that is the result of the influence of the window function of the observations (duty cycle 71 per cent). The fractional frequency precision reaches levels of a several parts in 106 for many of the modes. The corresponding errors reported from observations made by the GOLF instrument on board the ESA/NASA SOHO satellite, when extrapolated to the length of the BiSON data set, are shown to be (on average) about ∼25 per cent smaller than their BiSON counterparts owing to the uninterrupted nature of the data from which they were derived.
An analysis of the BiSON data in contiguous segments of different lengths, T , demonstrates that the frequency uncertainties scale as T −1/2. This is to be expected in the regime where the coherence (life) times of the modes, τ n ℓ, are smaller than the observing time T (the 'oversampled' regime). We show that mode detections are only now beginning to encroach on the 'undersampled' regime (where   T < τ n ℓ)  .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号