共查询到20条相似文献,搜索用时 109 毫秒
1.
Timing of metamorphism,melting and exhumation of the Leo Pargil dome,northwest India 总被引:3,自引:0,他引:3
J. M. LANGILLE M. J. JESSUP J. M. COTTLE G. LEDERER T. AHMAD 《Journal of Metamorphic Geology》2012,30(8):769-791
The Leo Pargil dome, northwest India, is a 30 km‐wide, northeast‐trending structure that is cored by gneiss and mantled by amphibolite facies metamorphic rocks that are intruded by a leucogranite injection complex. Oppositely dipping, normal‐sense shear zones that accommodated orogen‐parallel extension within a convergent orogen bound the dome. The broadly distributed Leo Pargil shear zone defines the southwest flank of the dome and separates the dome from the metasedimentary and sedimentary rocks in the hanging wall to the west and south. Thermobarometry and in‐situ U–Th–Pb monazite geochronology were conducted on metamorphic rocks from within the dome and in the hanging wall. These data were combined with U–Th–Pb monazite geochronology of leucogranites from the injection complex to evaluate the relationship between metamorphism, crustal melting, and the onset of exhumation. Rocks within the dome and in the hanging wall contain garnet, kyanite, and staurolite porphyroblasts that record prograde Barrovian metamorphism during crustal thickening that reached ~530–630 °C and ~7–8 kbar, ending by c. 30 Ma. Cordierite and sillimanite overgrowths on Barrovian assemblages within the dome record dominantly top‐down‐to‐the‐west shearing during near‐isothermal decompression of the footwall rocks to ~4 kbar by 23 Ma during an exhumation rate of 1.3 mm year?1. Monazite growth accompanied Barrovian metamorphism and decompression. The leucogranite injection complex within the dome initiated at 23 Ma and continued to 18 Ma. These data show that orogen‐parallel extension in this part of the Himalaya occurred earlier than previously documented (>16 Ma). Contemporaneous onset of near‐isothermal decompression, top‐down‐to‐the‐west shearing, and injection of the decompression‐driven leucogranite complex suggests that early crustal melting may have created a weakened crust that was proceeded by localization of strain and shear zone development. Exhumation along the shear zone accommodated decompression by 23 Ma in a kinematic setting that favoured orogen‐parallel extension. 相似文献
2.
Regional high-pressure metamorphism during intracratonic deformation: the Petermann Orogeny, central Australia 总被引:2,自引:0,他引:2
The Petermann Orogeny is a late Neoproterozoic to Cambrian ( c . 560–520 Ma) intracratonic event that affected the Musgrave Block and south-western Amadeus Basin in central Australia. In the Mann Ranges, within the central Musgrave Block, Mesoproterozoic granulite facies gneisses, granites and mafic dykes have been substantially reworked by deep crustal non-coaxial strain of late Neoproterozoic to early Cambrian age. Dolerite dykes have recrystallized to garnet granulite facies assemblages, associated with the development of a mylonitic fabric at P =12–13 kbar and T =700–750 °C. Migmatization is restricted to discrete shear zones, which represent conduits for hydrous fluids during metamorphism. Peak metamorphism was followed by decompression to c . 7 kbar, reflecting exhumation of the terrane along the south-dipping Woodroffe Thrust. In scattered outcrops north of the Mann Ranges, peak metamorphism occurred at P =9–10 kbar and T = c . 700 °C. The Woodroffe Thrust separates these deep crustal mylonites from granites that were metamorphosed during the Petermann Orogeny at P = c . 6–7 kbar and T = c . 650 °C. The similarity in peak temperatures at different crustal levels implies an unusual thermal regime during this event. The existence of a relatively elevated geotherm corresponding with Th- and K-enriched granites that were in the mid-crust during the Petermann Orogeny suggests that radiogenic heat production may have substantially contributed to the thermal regime during metamorphism. This potentially has implications for the mechanisms by which intra-plate strain was localized during this event. 相似文献
3.
An extended episode of early Mesoproterozoic metamorphic fluid flow in the Reynolds Range,central Australia* 总被引:1,自引:0,他引:1
ABSTRACT The products of metamorphic fluid flow are preserved in zones within the marbles and metamorphosed semipelites of the Upper Calcsilicate Unit in the granulite portion of the Late Palaeoproterozoic Reynolds Range Group, northern Arunta Block, central Australia. The zones of retrogression, characterized by minerals such as wollastonite, grossular and clinohumite, local resetting of oxygen isotopic compositions and local major element metasomatism, were channelways for water-rich fluids derived from granulite facies metapelites. U–Th–Pb isotopic ages measured by the SHRIMP ion microprobe on zircon and monazite from a granulite facies semipelite, an early semiconcordant aluminous quartz-rich fluid-flow segregation and a late discordant quartz-rich segregation record some of the extended thermal history of the area. Zircon cores from the semipelite show its likely protolith to be an igneous rock 1812 ± 11 Ma old, itself derived from a source containing zircon as old as 2.2 Ga. Low-Th/U overgrowths on the zircon grew during granulite facies metamorphism at 1594 ± 6 Ma. Monazite cooled to its blocking temperature at 1576 ± 8 Ma. Zircon cores from the semiconcordant segregation are dominantly >2.3 Ga old, indicating that the source of the fluids was not the particular metamorphosed semipelite studied. Two generations of low-Th/U overgrowths on the zircon give indistinguishable ages for the older and younger of 1589 ± 8 and 1582 ± 8 Ma, respectively. The monazite age is the same, 1576 ± 12 Ma. Zircon from the late discordant segregation gave 1568 ± 4 Ma. Fluid flow occurred for at least 18 ± 3 (σ) Ma and ended 26 ± 3 (σ) Ma after the peak of metamorphism, suggesting a very slow cooling rate of ~3°C Ma–1. The last regional high-grade metamorphism in the Reynolds Range occurred at ~1.6 Ga, not ~1.78 Ga as previously thought. The high-grade event at ~1.78 Ga is a separate event that affected only the basement to the Reynolds Range Group. 相似文献
4.
Fluid migration and vein formation during deformation and greenschist facies metamorphism at Ormiston Gorge, central Australia 总被引:4,自引:0,他引:4
I. CARTWRIGHT W. L. POWER N. H. S. OLIVER R. K. VALENTA G. S. MCLATCHIE 《Journal of Metamorphic Geology》1994,12(4):373-386
During the Alice Springs Orogeny, deformation at Ormiston Gorge, central Australia, occurred under lower- to middle-greenschist facies conditions. Dolomites of the Bitter Springs Formation and quartzites. metagreywackes, and metapelites of the Heavitree Quartzite contain abundant early-, syn-, and post-tectonic veins. However, though vein densities locally approach 15%, the distribution of veins and the oxygen isotope geochemistry of wallrocks and veins suggest that fluid movement was on a local scale. The Heavitree Quartzite contains quartz veins that, even along the main thrust plane, have similar δ18O values (13.5–16.9%o) to those of their wallrocks (13.6–16.9%o), with Δ18O(vein-wallrock) values of -0.6 to 0.4%o. In contrast, the Bitter Springs Formation contains predominantly dolomite veins that have δ18O values of 23.4 to 27.7%o. These differences are observed even at the boundary between the Heavitree and Bitter Springs rocks, implying that significant fluid exchange between these rocks has not occurred, or that fluid flow was channelled through areas outside those sampled for this study. By contrast with the Heavitree Quartzite, δ18O values of wallrocks in individual samples of the Bitter Springs Formation are significantly higher (23.3–29.1%o) than those of the veins, with δ18O(vein-wallrock) values up to -4%o (average of -2.1%o). These systematic differences in δ18O values most likely result from oxygen isotope fractionation caused by fluid immiscibility or disequilibrium dissolution. Smaller differences in δ13C values between some dolomite veins and wallrocks [δ13C(vein-wallrock) up to -1.9%o, average of -0.5%o] are also explained by these processes. This study indicates that large volumes of veins may be produced by repeated fracturing and fluid migration within particular rock units, without involving large volumes of externally derived fluids. 相似文献
5.
SHRIMP U–Pb dating and laser ablation ICP‐MS trace element analyses of zircon from four eclogite samples from the north‐western Dabie Mountains, central China, provide evidence for two eclogite facies metamorphic events. Three samples from the Huwan shear zone yield indistinguishable late Carboniferous metamorphic ages of 312 ± 5, 307 ± 4 and 311 ± 17 Ma, with a mean age of 309 ± 3 Ma. One sample from the Hong'an Group, 1 km south of the shear zone yields a late Triassic age of 232 ± 10 Ma, similar to the age of ultra‐high pressure (UHP) metamorphism in the east Qinling–Dabie orogenic belt. REE and other trace element compositions of the zircon from two of the Huwan samples indicate metamorphic zircon growth in the presence of garnet but not plagioclase, namely in the eclogite facies, an interpretation supported by the presence of garnet, omphacite and phengite inclusions. Zircon also grew during later retrogression. Zircon cores from the Huwan shear zone have Ordovician to Devonian (440–350 Ma) ages, flat to steep heavy‐REE patterns, negative Eu anomalies, and in some cases plagioclase inclusions, indicative of derivation from North China Block igneous and low pressure metamorphic source rocks. Cores from Hong'an Group zircon are Neoproterozoic (780–610 Ma), consistent with derivation from the South China Block. In the western Dabie Mountains, the first stage of the collision between the North and South China Blocks took place in the Carboniferous along a suture north of the Huwan shear zone. The major Triassic continent–continent collision occurred along a suture at the southern boundary of the shear zone. The first collision produced local eclogite facies metamorphism in the Huwan shear zone. The second produced widespread eclogite facies metamorphism throughout the Dabie Mountains–Sulu terrane and a lower grade overprint in the shear zone. 相似文献
6.
Takumi Yoshida Tomoki Taguchi Hayato Ueda Kenji Horie M. Satish‐Kumar 《Journal of Metamorphic Geology》2021,39(1):77-100
We report two new eclogite localities (at Kanayamadani and Shinadani) in the high‐P (HP) metamorphic rocks of the Omi area in the western most region of Niigata Prefecture, Japan, which form part of the Hida Gaien Belt, and determine metamorphic conditions and pressure–temperature (P–T) paths. The metamorphic evolution of the eclogites is characterized by a tight hairpin‐shaped P–T path from prograde epidote–blueschist facies to peak eclogite facies and then retrograde blueschist facies. The prograde metamorphic stage is characterized by various amphibole (winchite, barroisite, glaucophane) inclusions in garnet, whereas the peak eclogite facies assemblage is characterized by omphacite, garnet, phengite and rutile. Peak P–T conditions of the eclogites were estimated to be ~600°C and up to 2.0 GPa by conventional cation‐exchange thermobarometry, Ti‐in‐zircon thermometry and quartz inclusion Raman barometry respectively. However, the Raman spectra of carbonaceous material thermometry of metapelites associated with the eclogites gave lower peak temperatures, possibly due to metamorphism at different conditions before being brought together during exhumation. The blueschist facies overprint following the peak of metamorphism is recognized by the abundance of glaucophane in the matrix. Zircon grains in blueschist facies metasedimentary samples from two localities adjacent to the eclogites have distinct oscillatory‐zoned cores and overgrowth rims. Laser ablation inductively coupled plasma mass spectrometry U–Pb ages of the detrital cores yield a wide range between 3,200 and 400 Ma, with a peak at 600–400 Ma. In the early Palaeozoic, proto‐Japan was located along the continental margin of the South China craton, providing the source of the older population of detrital zircon grains (3,200–600 Ma) deposited in the trench‐fill sediments. In addition, subduction‐related magmatism c. 500–400 Ma is recorded in the crust below proto‐Japan, which might have been the source for the younger detrital zircon grains. The peak metamorphic age was constrained by SHRIMP dating of the overgrowth rims, yielding Tournaisian ages of 347 ± 4 Ma, suggesting subduction in the early Carboniferous. Our results provide clear constraints on the initiation of subduction, accretion and the development of an arc‐trench system along the active continental margin of the South China craton and help to unravel the Palaeozoic tectonic history of proto‐Japan. 相似文献
7.
Antonin T. Laurent Stephanie Duchene Bernard Bingen Valerie Bosse Anne‐Magali Seydoux‐Guillaume 《Journal of Metamorphic Geology》2018,36(8):1009-1037
In Rogaland, South Norway, a polycyclic granulite facies metamorphic domain surrounds the late‐Sveconorwegian anorthosite–mangerite–charnockite (AMC) plutonic complex. Integrated petrology, phase equilibria modelling, monazite microchemistry, Y‐in‐monazite thermometry, and monazite U–Th–Pb geochronology in eight samples, distributed across the apparent metamorphic field gradient, imply a sequence of two successive phases of ultrahigh temperature (UHT) metamorphism in the time window between 1,050 and 910 Ma. A first long‐lived metamorphic cycle (M1) between 1,045 ± 8 and 992 ± 11 Ma is recorded by monazite in all samples. This cycle is interpreted to represent prograde clockwise P–T path involving melt production in fertile protoliths and culminating in UHT conditions of ~6 kbar and 920°C. Y‐in‐monazite thermometry, in a residual garnet‐absent sapphirine–orthopyroxene granulite, provides critical evidence for average temperature of 931 and 917°C between 1,029 ± 9 and 1,006 ± 8 Ma. Metamorphism peaked after c. 20 Ma of crustal melting and melt extraction, probably supported by a protracted asthenospheric heat source following lithospheric mantle delamination. Between 990 and 940 Ma, slow conductive cooling to 750–800°C is characterized by monazite reactivity as opposed to silicate metastability. A second incursion (M2) to UHT conditions of ~3.5–5 kbar and 900–950°C, is recorded by Y‐rich monazite at 930 ± 6 Ma in an orthopyroxene–cordierite–hercynite gneiss and by an osumilite gneiss. This M2 metamorphism, typified by osumilite paragenesis, is related to the intrusion of the AMC plutonic complex at 931 ± 2 Ma. Thermal preconditioning of the crust during the first UHT metamorphism may explain the width of the aureole of contact metamorphism c. 75 Ma later, and also the rarity of osumilite‐bearing assemblages in general. 相似文献
8.
The Palaeoproterozoic Usagaran Orogen of Tanzania contains the Earth's oldest reported examples of subduction-related eclogite facies rocks. Detailed field mapping of gneisses exposed in the high-grade, eclogite-bearing part of the orogen (the Isimani Suite) indicates a complex deformation and thermal history. Deformation in the Isimani Suite can be broadly subdivided into five events. The first of these (D1), associated with formation of eclogite facies metamorphism, is strongly overprinted by a pervasive deformation (D2) at amphibolite facies conditions, which resulted in the accumulation of high strains throughout all of the exposed Isimani rocks. The geometry of foliations and lineations developed during D2 deformation are variable and have different shear directions that enable five D2 domains to be identified. Analysis of these domains indicates a geometrical and kinematic pattern that is interpreted to have formed by strain and kinematic partitioning during sinistral transpression. U–Pb SHRIMP zircon ages from a post-D2 granite and previously published geochronological data from the Usagaran eclogites indicate this deformation took place between 2000 ± 1 Ma and 1877 ± 7 Ma (at 1σ error). Subsequent greenschist facies deformation, localised as shear zones on boundaries separating D2 domains, have both contractional and extensional geometries that indicate post-1877 Ma reactivation of the Isimani Suite. This reactivation may have taken place during Palaeoproterozoic exhumation of the Usagaran Orogen or may be the result of deformation associated with the Neoproterozoic East African Orogen.U–Th–Pb SHRIMP zircon ages from an Isimani gneiss sample and xenocrysts in a “post-tectonic” granite yield 2.7 Ga ages and are similar to published Nd model ages from both the Tanzanian Craton and gneiss exposed east of the Usagaran belt in the East African Orogen. These age data indicate that the Isimani Suite of the Usagaran Orogen reflects reworking of Archaean continental crust. The extensive distribution of 2.7 Ga crust in both the footwall and hangingwall of the Usagaran Orogen can only be explained by the collision of two continents if the continents fortuitously had the same protolith ages. We propose that a more likely scenario is that the protoliths of the mafic eclogites were erupted in a marginal basin setting as either oceanic crust, or as limited extrusions along the rifted margin of the Tanzanian Craton. The Usagaran Orogen may therefore reflect the mid-Palaeoproterozoic reassembly of a continental ribbon partially or completely rifted off the craton and separated from it by a marginal basin. 相似文献
9.
Renato Moraes Reinhardt A. Fuck Mrcio Martins Pimentel Simone M.C.L. Gioia Maria H.B.M. de Hollanda Richard Armstrong 《Journal of South American Earth Sciences》2006,20(4):287-301
The Barro Alto Complex and Juscelândia volcanosedimentary sequence are exposed in the central part of the Neoproterozoic Brasília belt of central Brazil. The former is a large (approximately 150 km long), boomerang-shaped, mafic-ultramafic, layered complex formed by two different intrusions metamorphosed under granulite facies. These rocks are tectonically overlain by rocks of the Juscelândia volcanosedimentary sequence, represented mainly by biotite-gneiss and amphibolite, or amphibolite facies metamorphic equivalents of rhyolite and basalt, respectively. New SIMS U–Pb zircon data and Sm–Nd isochron data presented herein help clarify the igneous and metamorphic evolution of the Juscelândia volcanosedimentary sequence, as well as its relationship with the Barro Alto Complex. Zircon grains from two biotite gneisses were analyzed by SIMS (SHRIMP) and indicate Mesoproterozoic dates, approximately 1.28 Ga, interpreted as the time of bimodal volcanism in a tectonic setting transitional between a continental rift and an ocean basin. Metamorphism is constrained by Sm–Nd garnet-whole-rock isochrons for garnet amphibolite and pelitic schists of the Juscelândia sequence, as well as for clinopyroxene-garnet amphibolite and garnet granulite of the Barro Alto Complex, which give ages between 0.74 and 0.76 Ga, in agreement with SIMS dates for metamorphic zircon rims. These new data are significant, because they establish that a single metamorphic event affected both the Barro Alto Complex and the Juscelândia sequence. Based on these new data, we present a modified tectonic model for the Brasília belt. 相似文献
10.
J. Kotková M. Whitehouse U. Schaltegger F.‐X. D'Abzac 《Journal of Metamorphic Geology》2016,34(7):719-739
Garnet–clinopyroxene ultra‐high‐pressure (UHP) rocks from the northern Bohemian Massif contain zircon with micro‐diamond inclusions. Trace element concentrations, oxygen and hafnium isotopic composition and U–Pb age of distinct textural domains in zircon characterize their growth conditions and temporal evolution. Diamond‐bearing zircon mantle domains with relicts of oscillatory zoning have uniform Th/U ratios (~0.1–0.2), high‐Ti contents (110–190 ppm, corresponding to temperatures of at least 1100 °C), and some (two of 17 mantle analyses) preserve steep heavy rare earth element (HREE) patterns with YbN/GdN = 10–11, with a weak negative Eu anomaly. These signatures are consistent with crystallization from a melt under UHP/ultra‐high‐temperature (UHT) conditions. Some of the bright‐cathodoluminscence (CL) rims preserve Th/U and Ti values characteristic of the zircon mantles, but others show elevated Th/U ratios of ~0.3–0.4 and lower Ti contents (20–40 ppm; only 13 ppm in a rare low‐CL outer rim). As they feature flat HREE patterns and negative Eu anomalies and commonly make embayments and truncate the mantle zoning, we suggest that they have formed through recrystallization in the solid state during exhumation of the rock, when both garnet and plagioclase were stable. The three zircon domains, that is, cores, mantles and rims, yield U–Pb concordia ages of 340.9 ± 1.5, 340.3 ± 1.5 and 341.2 ± 3.4 Ma respectively. When linked to the previously reconstructed P–T path of the rock, the error limits of the zircon mantle and rim ages constrain the exhumation of the rocks from depth of ~140 km (UHP) to ~80 km (HP) to a minimum rate of 1.5 cm yr?1. The zircon cores are heterogeneous in terms of Th/U ratio (below 0.1 but also above 0.2) and REE characteristics, and their εHf values scatter between ?15.7 and +4.8 with similar values for individual domains within a single zircon grain suggesting a very localized control on hafnium isotope composition on a grain scale. The non‐equilibrated εHf values as well as a large range of the Hf‐depleted mantle model ages possibly reflect the presence of a heterogeneous population of old zircon. Consequently, the uniform and young 238U/206Pb ages may represent (near‐)complete resetting of the U–Pb geochronometer during the UHP–UHT event at c. 340 Ma through dissolution–reprecipitation process. In contrast to Hf, the oxygen isotope composition of zircon is homogeneous, ranging between 7.8‰ and 9.6‰ VSMOW, reflecting a source containing upper crustal material and homogenization at UHP–UHT conditions. Our study documents that continental crust was subducted to mantle depths at c. 340 Ma during the Variscan orogeny and was subsequently very rapidly exhumed, implying that the sequence of events was faster than can be resolved by the secondary ion mass spectrometry technique. 相似文献
11.
K.A. Ali M.K. Azer H.A. Gahlan S.A. Wilde M.D. Samuel R.J. Stern 《Gondwana Research》2010,18(4):583-595
Ophiolites are key components of the Neoproterozoic Arabian–Nubian Shield (ANS). Understanding when they formed and were emplaced is crucial for understanding the evolution of the ANS because their ages tell when seafloor spreading and terrane accretion occurred. The Yanbu–Onib–Sol Hamed–Gerf–Allaqi–Heiani (YOSHGAH) suture and ophiolite belt can be traced 600 km across the Nubian and Arabian shields. We report five new SHRIMP U–Pb zircon ages from igneous rocks along the Allaqi segment of the YOSHGAH suture in southernmost Egypt and use these data in conjunction with other age constraints to evaluate YOSHGAH suture evolution. Ophiolitic layered gabbro gave a concordia age of 730 ± 6 Ma, and a metadacite from overlying arc-type metavolcanic rocks yielded a weighted mean 206Pb/238U age of 733 ± 7 Ma, indicating ophiolite formation at 730 Ma. Ophiolite emplacement is also constrained by intrusive bodies: a gabbro yielded a concordia age of 697 ± 5 Ma, and a quartz-diorite yielded a concordia age of 709 ± 4 Ma. Cessation of deformation is constrained by syn- to post-tectonic granite with a concordia age of 629 ± 5 Ma. These new data, combined with published zircon ages for ophiolites and stitching plutons from the YOSHGAH suture zone, suggest a 2-stage evolution for the YOSHGAH ophiolite belt ( 810–780 Ma and 730–750 Ma) and indicate that accretion between the Gabgaba–Gebeit–Hijaz terranes to the south and the SE Desert–Midyan terranes to the north occurred as early as 730 Ma and no later than 709 ± 4 Ma. 相似文献
12.
The Qichun granitoids exposed in the Dabie Orogen of China are composed of two types of rocks: porphyritic monzogranite (with variable schistosity) and syenogranite (without schistosity). The two types show large differences in geochemical characteristics. The porphyritic monzogranite is characterized by high Al2O3 content (15.73%), relatively high CaO (2.46%) and Na2O contents (Na2O/K2O=1.27), strong depletion in HREE and strong fractionation between LREE and HREE ((La/Yb)N=46.8), similar to some high Al2O3 Archaean TTG gneisses. Conversely, the syenogranite is characterized by relatively low Al2O3 (14.05%) and CaO (0.82%) contents, and higher K2O than Na2O (Na2O/K2O=0.81). The degree of fractionation between LREE and HREE is minor. The U–Pb SHRIMP zircon age of the porphyritic monzogranite is 841±15 and 824±27 Ma for the syenogranite. These ages are similar to the protolith emplacement ages of granitic gneisses in the Dabie Orogenic Belt. The existence of weakly to unmetamorphosed granitoids in the Dabie Orogen shows that the granitoids were situated in the back part of the subducted plate during collision and subduction between the Yangtze and the North China cratons, and may represent outcrops of the Yangtze basement. 相似文献
13.
J. X. ZHANG C. G. MATTINSON S. Y. YU J. P. LI F. C. MENG 《Journal of Metamorphic Geology》2010,28(9):955-978
Coesite‐bearing eclogites from >100 km2 in the southern Dulan area, North Qaidam Mountains (NQM) of western China, contain zircon that records protolith crystallization and ultra high pressure (UHP) metamorphism. Sensitive High‐Resolution Ion Microprobe (Mass Spectrometer) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry U–Pb analyses from cathodoluminescence (CL)‐dark zircon cores in a coesite‐bearing eclogite yield an upper intercept age of 838 ± 50 Ma, and oscillatory zoned cores in a kyanite‐bearing eclogite gave a weighted mean 206Pb/238U age of 832 ± 20 Ma. These zircon cores yield steep heavy rare earth element (HREE) slopes and negative Eu anomalies that suggest a magmatic origin. Thus, c. 835 Ma is interpreted as the eclogite protolith age. Unzoned CL‐grey or ‐bright zircon and zircon rims from four samples yield weighted mean ages of 430 ± 4, 438 ± 2, 446 ± 10 and 446 ± 3 Ma, flat HREE patterns without Eu anomalies, and contain inclusions of garnet, omphacite, rutile, phengite and rare coesite. These ages are interpreted to record 16 ± 5 Myr of UHP metamorphism. These new UHP ages overlap the age range of both eclogite and paragneiss from the northern Dulan area, suggesting that all UHP rock types in the Dulan area belong to the same tectonic unit. Our results are consistent with slow continental subduction, but do not match oceanic subduction and diapiric exhumation UHP model predictions. These new data suggest that, similar to eclogites in other HP/UHP units of the NQM and South Altyn Tagh, protoliths of the eclogites in the Dulan area formed in a continental setting during the Neoproterozoic, and then subducted to mantle depth together with continental materials during the Early Palaeozoic. 相似文献
14.
Matteo Maino Giorgio Dallagiovanna Laura Gaggero Silvio Seno Massimo Tiepolo 《Geological Journal》2012,47(6):632-652
In the Ligurian Alps, the Barbassiria massif (a Variscan basement unit of the Briançonnais domain) is made up of orthogneisses derived from K‐rich rhyolite protoliths and minor rhyolite dykes. However, on account of subsequent Alpine deformation and a related blueschist facies metamorphic overprint that are pervasive within the Barbassiria Orthogneisses, little evidence of the earlier Variscan metamorphism is preserved. In this study, new U–Pb laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) dating of zircon from the Barbassiria Orthogneisses and dykes was undertaken to unravel the relationships between protolith magmatism and the Variscan metamorphic overprint. The results suggest a protolith age for the Barbassiria Orthogneisses of ~315–320 Ma (i.e., Early/Late Carboniferous), and constrain the age of a subsequent rhyolite dyke emplacement event to 260.2 ± 3.1 Ma (i.e., Late Permian). The Variscan high‐temperature (greenschist–amphibolite facies) metamorphic event that affected the Barbassiria Orthogneisses was likely associated with both tectonic burial and compression during the final stages of the Variscan collision during the Late Carboniferous period. Emplacement of late‐stage rhyolite dykes that cut the Barbassiria Orthogneisses is linked to a diffuse episode of Late Permian rhyolite volcanism that is commonly observed in the Ligurian Alps. The age of this dyke emplacement event followed a ~10–15 Ma Mid‐Permian gap in the volcano‐sedimentary cover sequence of the Ligurian Alps, and represents the post‐orogenic stage in this segment of the Variscides. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
15.
Qingdong Zeng Jinhui Yang Zuolun Zhang Jianming Liu Xiaoxia Duan 《Geological Journal》2014,49(1):1-14
The Yangchang granite‐hosted Mo deposit is typical of the Xilamulun metallogenic belt, which is one of the important Mo–Pb–Zn–Ag producers in China. A combination of major and trace element, Sr, Nd and Pb isotope, and zircon U–Pb age data are reported for the Yangchang batholith to constrain its petrogenesis and Mo mineralization. Zircon LA‐ICPMS U–Pb dating yields mean ages of 138 ± 2 and 132 ± 2 Ma for monzogranite and granite porphyry, respectively. The monzogranites and granite porphyries are calc‐alkaline with K2O/Na2O ratios of 0.75–0.92 and 1.75–4.42, respectively. They are all enriched in large‐ion lithophile elements (LILEs) and depleted in high‐field‐strength elements (HFSEs) with negative Nb and Ta anomalies in primitive‐mantle‐normalized trace element diagrams. The monzogranites have relatively high Sr (380–499 ppm) and Y (14–18 ppm) concentrations, and the granite porphyries have lower Sr (31–71 ppm) and Y (5–11 ppm) concentrations than those of monzogranites. The monzogranites and granite porphyries have relatively low initial Sr isotope ratios of 0.704573–0.705627 and 0.704281, respectively, and similar 206Pb/204Pb ratios of 18.75–18.98 and 18.48–18.71, respectively. In contrast, the εNd(t) value (−3.7) of granite porphyry is lower than those of monzogranites (−1.5 to −2.7) with Nd model ages of about 1.0 Ga. These geochemical features suggest that the monzogranite and granite porphyries were derived from juvenile crustal rocks related to subduction of the Paleo‐Pacific plate under east China. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
16.
Multiple growth of garnet,sillimanite/kyanite and monazite during amphibolite facies metamorphism: implications for the P–T–t and tectonic evolution of the western Altai Range,Mongolia 下载免费PDF全文
N. Nakano Y. Osanai M. Owada M. Satish‐Kumar T. Adachi S. Jargalan A. Yoshimoto K. Syeryekhan CH. Boldbaatar 《Journal of Metamorphic Geology》2015,33(9):937-958
Four amphibolite facies pelitic gneisses from the western Mongolian Altai Range exhibit multistage aluminosilicate formation and various chemical‐zoning patterns in garnet. Two of them contain kyanite in the matrix and sillimanite inclusions in garnet, and the others have kyanite inclusions in garnet with sillimanite or kyanite in the matrix. The Ca‐zoning patterns of the garnet are different in each rock type. U–Th–Pb monazite geochronology revealed that all rock units experienced a c. 360 Ma event, and three of them were also affected by a c. 260 Ma event. The variations in the microstructures and garnet‐zoning profiles are caused by the differences in the (i) whole‐rock chemistry, (ii) pressure conditions during garnet growth at c. 360 Ma and (iii) equilibrium temperatures at c. 260 Ma. The garnet with sillimanite inclusions records an increase in pressure at low‐P (~5.2–7.2 kbar) and moderate temperature conditions (~620–660 °C) at c. 360 Ma. The garnet with kyanite inclusions in the other rock types was also formed during an increase in pressure but at higher pressure conditions (~7.0–8.9 kbar at ~600–640 °C). The detrital zircon provenance of all the rock types is similar and is consistent with that from the sedimentary rocks in the Altai Range, suggesting that the provenance of all the rock types was a surrounding accretionary wedge. One possible scenario for the different thermal gradient is Devonian ridge subduction beneath the Altai Range, as proposed by several researchers. The subducting ridge could have supplied heat to the accretionary wedge and elevated the geotherm at c. 360 Ma. The differences in the thermal gradients that resulted in varying prograde P–T paths might be due to variations in the thermal regimes in the upper plate that were generated by the subducting ridge. The c. 260 Ma event is characterized by a relatively high‐T/P gradient (~25 °C km?1) and may be due to collision‐related granitic activity and re‐equilibrium at middle crustal depths, which caused the variations in the aluminosilicates in the matrix between the rock units. 相似文献
17.
In the southeastern Reynolds Range, central Australia, a low- P granulite facies metamorphism affected two sedimentary sequences: the Lander Rock Beds and the Reynolds Range Group. In the context of the whole of the Reynolds Range and the adjacent Anmatjira Range, this metamorphism is M3 in a sequence M1–4 that occurred over a period of 250 Ma. In particular, M1 affected the Lander Rock Beds prior to the deposition of the Reynolds Group. M3 has an areally restricted, high-grade area in the southeastern Reynolds Range, affecting both the Reynolds Range Group and the underlying Lander Rock Beds. The effects of M3 are characterized by spinel + quartz-bearing peak metamorphic assemblages in metapelites, which imply peak conditions of ≥750°C and 4.5 ± 1 kbar, and involved isobaric cooling or compression with cooling. It is concluded that one of a series of thermal perturbations caused by thinning of mantle lithosphere contemporaneous with crustal thickening was responsible for M3. In the southeastern Reynolds Range, evidence of both the unconformity between the two rock groups and previous metamorphism/deformation has been completely erased by recrystallization during M3–D3. 相似文献
18.
19.
LA‐ICP‐MS U–Pb detrital zircon studies typically analyse 50–200 grains per sample, with the consequent risk that minor but geologically important age components (e.g., the youngest detrital zircon population) are not detected, and higher abundance age components are misrepresented, rendering quantitative comparisons between samples impossible. This study undertook rapid U–Pb LA‐ICP‐MS analyses (8 s per 18–47 μm diameter spot including baseline and ablation) of zircon, apatite, rutile and titanite using an aerosol rapid introduction system (ARIS). As the ARIS resolves individual single pulses at fast sampling rates, spot analyses require a high repetition rate (> 50 Hz) so the signal does not return to baseline and mass sweep times (> 80 ms) that span several laser pulses (i.e., major undersampling of the signal). All rapid U–Pb spot analyses employed 250–300 pulses, repetition rates of 53–65 Hz (total ablation times of 4.1–5.7 s) and low fluence (1.75–2.5 J cm?2), resulting in pit depths of ca. 15 μm. Zircon, apatite, rutile and titanite reference material data yield an accuracy and precision (2s) of < 1% for pre‐Cenozoic reference materials and < 2% for younger reference materials. We present a detrital zircon data set from a Neoproterozoic tillite where > 1000 grains were analysed in < 3 h with a precision and accuracy comparable to conventional LA‐ICP‐MS analytical protocols, demonstrating the rapid acquisition of huge detrital data sets. 相似文献
20.
Syn‐metamorphic folding in the Tauern Window,Austria dated by Th–Pb ages from individual allanite porphyroblasts 下载免费PDF全文
R. A. Cliff F. Oberli M. Meier G. T. R. Droop M. Kelly 《Journal of Metamorphic Geology》2015,33(4):427-435
High‐precision 232Th–208Pb dates have been obtained from allanite porphyroblasts that show unambiguous microstructural relationships to fabrics in a major syn‐metamorphic fold in the SE Tauern Window, Austria. Three porphyroblasts were analysed from a single garnet mica schist from the Peripheral Schieferhülle in the core of the Ankogel Synform, one of a series of folds which developed shortly before the thermal peak of Alpine epidote–amphibolite facies metamorphism: allanite grain 1 provided two analyses with a combined age of 27.7 ± 0.7 Ma; grain 2, which was slightly bent and fractured during crenulation, provided two analyses with a combined age of 27.7 ± 0.4 Ma; a single analysis from grain 3, which overgrew an already crenulated fabric, gave an age of 28.0 ± 1.4 Ma. The five 232Th–208Pb ages agree within error and define an isochron with an age of 27.71 ± 0.36 Ma (95% confidence level; MSWD = 0.46). The results imply that the crenulation event was in progress in a short interval (<1 Ma) c. 28 Ma, and that the Ankogel Synform was forming at this time. The thermal peak of regional metamorphism in the SE Tauern Window was probably attained shortly after 28 Ma, only c. 5 Ma after eclogite facies metamorphism in the central Tauern Window. Metasediment may contain allanite porphyroblasts with clear‐cut microstructural relationships to fabric development and metamorphic crystallization; for such rocks, 232Th–208Pb dating on microsamples offers a powerful geochronological tool. 相似文献