首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Hematite is an important iron oxide mineral in loess-paleosol sequences in central China. Investigation of the mineralogical characteristics, genetic mechanism and relationship of hematite with other iron oxides and Fe-bearing minerals will help understand the geochemical process before and after eolian deposit, paleocliamte significance of magnetic susceptibility and reconstruct paleoclimate in central China. So, hematite and related minerals of the loess and paleosol units from Chinese Loess Plateau were investigated using optical microscope, X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission microscopy (HRTEM). The results show that there are five genetic types of hematite in loess-paleosol sequences of central China: (1) weathering of Fe-bearing silicate minerals, for instance, chlorite, will release iron that is precipitated as aggregates of hematite nano-crystals on mineral surfaces; (2) hematite combined with eolian magnetite grains that resulted from partial oxidation of magnetite, even though the partial oxidation may occur in the original area; (3) phase transformation from eolian goethite to hematite; (4) hematite formed on the edge and surface of maghemite because of dissolution and hematite recrystallization; and (5) eolian detrial hematite. The hematite formed from chemical weathering of Fe-bearing silicates with nanoporous texture because of dehydration from iron hydroxide is the most important genetic mechanism. It is proposed that the fact that hematite was formed from chemical weathering of Fe-bearing silicates is a main reason for the redness in paleosol units. However, too intense pedogenesis and high amounts of precipitation will promote oxidation of eolian magnetite and maghemite dissolution, which may result in the decreasing of magnetic susceptibility.  相似文献   

2.
The SEM-EDX technique was applied to investigate Au, and Cu+Sn alloyed grains in the mineralization of the Um Shashoba mine for achieving further understanding of occurrences, internal structures and microchemistry of Au and Cu alloys and associated minerals, and mineralization type. This study is aiming at the genetic history of ore-bearing fluid events, geochemical evaluation and exploration significance. The results showed that the mineralization could be considered as a single major episode generated by metamorphic mesothermal solution rich in sulfides and unsaturated respect to Au. It was differentiated into many stages; started with formation of auriferous pyrite that was pseudomorphed by secondary hematite, limonite and goethite. Three phases of Au alloy were precipitated, and Cu+Sn and Ag-rich alloys were produced respectively and followed by deposition of two generations of barren pyrite. Calcite and ankerite were crystalized, surrounded and partially replaced some of early formed minerals. Finally, barren muscovite recrystallized around and inside both later formed carbonate minerals that were free of any sign of Au in their structures. The processes of deformation, recrystallization, annealing, dissolution, remobilization and re-precipitation played the most important roles in the genetic history of the mineralization.  相似文献   

3.
The Takab area in NW of Iran is an important gold mineralized region with a long history of gold mining. In this study ASTER data is used to evaluate environmental effects of gold mining. The results show that mining activities have resulted in release of potentially toxic metals (PTMs) in the area. Principal component analysis (PCA) of ASTER data is used to map sources of PTMs and their secondary hosts (iron oxides) through alteration mapping. The results show that selective PCA is a robust yet time consuming technique for alteration mapping. A color composite is created for finding common hydrothermally altered rocks. The created color composite successfully mapped the known deposits and anomalous areas identified by geological survey of Iran. Because of the low spatial resolution of ASTER sensor, the iron oxide mapping is restricted to the wider portions of the streams. Spectral analyses confirm the presence of hematite and goethite in stream sediments. This is in accordance with measured pH values.  相似文献   

4.
The compositional variation of oil-soluble gaseous hydrocarbons in high-pressure in-place oil from more than 40 oil wells in the Northern Jiangsu oil field, China, was studied. Samples in which the effects of the factors of pressure and biodegradation had been got rid of were chosen as the representatives that could really reflect the original composition of hydrocarbon gases. Such samples were compared compositionally with their corresponding hydrocarbons formed by decarboxylation of volatile low-molecular fatty acids. Thus highly correlative regularities were found to exist between them. The numerical values of both are graphically expressed. The two curves on the diagram are very similar. These two sets of values have a simple correlation coefficient of 0.9935, which presents their genetic relation.Based on the study of the formation of gaseous hydrocarbons from decarboxylation of volatile fatty acids, the following regularities of the isomers are revealed:1) n-butyric acid + isobutyric acid = propane:2) 1 2 isopentanoic acid(2-methyl-butyric acid) + n-pentanoic acid = n-butane; and3) 1 2 isopentanoic acid(3-methyl-butyric acid) = isobutane.The thermodynamics of decarboxylation was analysed and the enthalpy change △H, entropy change △S and Gibbs free energy change △G in the following reaction were calculated:CH_3COOH(1)--CH_4(g) + CO_2(g).Thus the author considers that the reaction for the formation of hydrocarbons due to the decarboxylation of fatty acids is an exothermic one with increased entropy and decreased free energy as well as a spontaneous one. According to the CRC rule, the resultant Gibbs free energy change △G is approximately-41.84 kJ/mol, which is well within the range of the energy levels of biophysiological changes.According to the changes in odd-carbon preference in n-alkanes of petroleum and sediments and the analysis of fatty acids and amino acids, it is considered that hydrocarbon gases do not originate from pyrolysis or thermal degradation but from decarboxylation of organisms. But this biological reaction is not ordinary biochemical reaction in the artificial fermentation for generating marsh gas. On the basis of the change tendency of the fatty acid content in the fermentation liquor for marsh gas generation and the change tendency of the carbon isotopes in methane and carbon dioxide in the marsh gas, it can be judged that the biochemical reaction for forming hydrocarbon gases is a special biological one occurring after the fermentation.  相似文献   

5.
In its cationic,trivalent form,Chromium(Cr)it is a micronutrient,and exhibits low environmental mobility.In hexavalent form,however,it is a human carcinogen and also highly mobile.Climate is a key environmental factor controlling weathering rates and stability of primary and secondary Cr-bearing minerals.Knowledge of Cr oxidation state and mineral residence is therefore essential to estimating the risk posed by Cr in serpentinites,chromite mine wastes,and soils developed on these parent materials.X-ray absorption spectroscopy(XAS)is currently the best available technique for determination of the relative abundance of Cr(III)and Cr(VI)in situ(that is,without digestion of solid phases).A brief review of relevant XAS studies of is presented below,focusing on studies in tropical climates1,as they will be most relevant to eastern Cuba’s extensively serpentinized ophiolite belt.Cr(III)-bearing spinels are usually the dominant and most refractory Cr host in ultramafic rocks.Previous XAS studies2 indicate that in tropical climates,Cr-spinels weather rapidly to form Cr(III)-bearing secondary Fe(III)(hydr)oxides(goethite,hematite).Manganese(Mn)is also enriched in ultramafic rocks2;as Mn(IV),it can also co-precipitate with Fe(III)(hydr)oxides,or form its own secondary(hydr)oxides.A previous study found up to 20%Cr(VI)in in a tropical,serpentine soil that contained substantial Mn,and a strong correlation between the*amounts of Cr(VI)and Mn(IV)in the soil profile2.Theresults of several XAS studies suggest that a close association of Mn(IV)and Cr(III)in secondary Fe(hydr)oxides is necessary for oxidation of Cr(III)to Cr(VI)via electron transfer reactions with Mn(IV);however,additional XAS studies have shown that organic matter3and Cr-bearing aluminosilicates4 may also be important sources of Cr(III)to the environment under specific conditions.The stability and fate of Cr has not been studied in detail for these two host phase types,to the best of our knowledge.Access to XAS facilities to perform Cr geochemical experiments is limited and will only become more so in the future.We are working to develop and apply(micro)Raman spectroscopy to evaluate Cr oxidation state and mineral residence(in crystalline and amorphous materials).In addition to standard Raman scattering,we are employing resonance Raman(785 nm laser)to enhance signal from Cr(VI)-bearing phases and laser-stimulated photoluminescence to identify Cr(III)associated with Al-rich alteration products  相似文献   

6.
Subsolidus phase relations have been determined in the systems SiO2-Cr-O and MgO-SiO2-Cr-O in equilibrium with metallic Cr, at 1100 to 1500℃ and 0 to 2.88 GPa. The results show that there are no ternary phases in the SiO2-Cr-O system at these conditions, i.e., only the assemblage eskolaite-Cr-metal-quartz (or tridymite) is found. In the MgO-containing system, however, extensive substitution of Cr2+ for Mg is observed in (Mg, Cr2+)2SiO4 olivine, (Mg, Cr2+)2Si2O6 pyroxene, and (Mg, Cr2+)Cr2O4 spinel. Cr3+ levels in olivine and pyroxene are below detection limits. The pyroxene is orthohombic at XCrPx2+ < 0.2, monoclinic at higher XCrPx2+ . Thestructure of the spinels becomes tetragonally distorted at XCr2+Sp >0.2. The experimental datahave been fitted to a thermodynamic model, and the authors obtained the mixing parameter (W) of Mg-Cr2+ in olivine, pyroxene and spinel, and the relation between temperatures and free energies of formation for the end-members: Cr2+-olivine (Cr2SiO4), Cr2+-pyroxene (Cr2Si2O6)  相似文献   

7.
The Damoshan deposit is a small B-F-Sn Bi exoskarn deposit and contains a distinctive mineral assemblage comprising andradite,vesuvianite,calcite,diopside,magnetite,hematite,nordenskioldine,cassiterite,varlamoffite,schenfliesite,native bismuth,eulytite,bismite and bismuthite,in which the occurrence of eulytite is the first reported in China.Textures of the mineral paragenses show that andradite,vesuvianite and diopside were the earliest phases formed during metasomatism,i.e.,the skarn forming stage.Then nordenskioldine,magnetite and native bismuth,perhaps together with eulytite,were precipitated at the stage of retrograde alteration.The minerals varlamoffite,schoenfliesite,hematite ,bismite and bismuthite were probably the product of supergene alteration.The minerals were analyzed by means of electron microprobe.The data on the ,coexisting phases and their compositons show that during the metasomatism reduced F-and Sn-rich primary mineralizing solutions reacted with highly oxidized carbonated of the Gejie Formation,producing a high Fe^2 /Fe^3 skarn(vesuvianite-fluorite skarn)near the contact of granite,and a low Fe^2 /Fe^3 skarn(vesuvianite-fluorite skarn)near the contact of granite,and a low Fe^2 /Fe^3 skarn(andradite skarn)in the outer zone of the skarn body in which andradite is extremely tin-bearing up to 5.14 wt% SnO2),In the retrograde alteration stage ,B-rich,but F-and Si-deficient mineralizing solutions replaced the tin-bearing andradite,forming an association of nordenskioldine and magnetite,No sulphides were deposited at this stage because of the oxidization ambient conditions in the andradite skarn.In the spergene oxidation zone,the nordenskioldine was dissolved into varlmoffite and calcite,the native bismuth was transformed into bismite or bismuthite ,and the magnetite was altered into hematite under the action of the CO2-rich supergene solutions.  相似文献   

8.
The Hizeh-Jan kaolin deposit(northwest of Varzeghan, East-Azarbaidjan Province, NW Iran) is a product of the alteration of Eocene andesitic rocks. Based on mineralogical examinations, kaolinite, quartz, smectite, pyrophyllite, muscovite-illite, alunite, calcite, diaspore, goethite and hematite are the most abundant mineral phases in this deposit. The geochemical indicators, such as Y/Ho and Zr/Hf, indicate the non-CHARAC(non-Charge-radius control) behavior of these pairs, which are likely to be due to the occurrence of the tetrad effect phenomenon in this deposit. Simultaneous concave and convex shapes in the chondrite-normalized REE distribution patterns are a remarkable feature of the kaolin samples. Bivariate diagrams of the size of the third tetrad effect(T_3) versus geochemical parameters such as Y/Ho, Nb/Ta and Zr/Hf ratios display two distinct populations for the kaolin samples. The first population is characterized by high T_3 values(>0.13), which are near or on the fault zone. The second population is characterized by low T_3 values(<0.13), and are farther from the fault zone. The obtained results from the geochemical data have furnished compelling evidence that fluidrock interaction, overprint of hypogene processes by supergene ones, and structural control, are key controlling factors for the occurrence of tetrad effects in REE distribution patterns in the Hizeh-Jan kaolin deposit.  相似文献   

9.
It is well known that in pyroxene structure,there are two metal sites,M1 and M2.Generally speaking,Ferrous iron in each of these sites would normally be expected to give rise to a doublet,However,anomalies have been found in the relative areas of the peaks in the room temperature spectra of some clinopyroxene(CPX)when the above assignment is followed.According to the calculation of Next Nearest Neighbor configurations of divalent cations in M1,we found that the four configurations of M1 can be divided into two groups.One group is 3Ca configuration that increases with the content of Ca(p.f.u);the other group is made up of three No-3Ca configurations that decrease with the content of Ca.The two groups contribute to the spectrum structure of M1.so in this study we fit two doublets for ferrous iron in M1.Though there were several reports on Fe^3 in tetrahedral site previously,it was not sure that Fe^3 occupies the T site is a universal fact in CPX,despite of the content of Al.We found that the Fe^3 in the T site fitted by Moessbauer spectroscopy is negatively correlated to the Si content in the T site and positively correlated to the Fe^3 in the T site estimated on the supposition that Fe^3 and Al occupy the T site randomly.If it is true.it is important in the modeling of ion exchange geobarometries and geothermomeries.  相似文献   

10.
Determination of Fe2+/Fe3+ ratios from metallogenic belts to explore controlling physical and chemical conditions of rock formation is of great significance. In order to explore magnetite Fe2+/Fe3+ ratios of the Qimantag metallogenic belt, part of the Eastern Kunlun orogenic belt in the northeastern margin of the Qinghai–Tibetan plateau, western Central Orogenic Belt of China, and overcome the limitation of the traditional electronic probe, five different measurement methods are proposed and their respective advantages and disadvantages evaluated, with the composition data of the magnetite obtained using electron probe microanalysis (EPMA). The direct oxygen measurement method has a significant impact on the determination results of FeO and Fe2O3, but the accuracy and uniformity of the results are low. The valence method (Flank method) based on the spectral intensity ratio of Lα to Lβ for iron is also unreliable for FeO and Fe2O3 measurements because it is difficult to establish a relationship between Lβ/Lα, the spectral intensity ratio, and the Fe2+/Fe3+ content ratio. In comparison, the charge difference method, the surplus-oxygen method and the M?ssbauer spectrum method are still the most favorable. M?ssbauer spectroscopy, with its isomer movement particularly sensitive to the oxidation state of iron, yields results closer to 0.5, which is relatively reliable. Earlier magnetite deposits are located in intrusions or contact zones and formed by magmatic fluids with high Fe2+/Fe3+ ratios, whereas later magnetite deposits are farther away from intrusions and have low Fe2+/Fe3+ ratios. The transformation mechanism of hematite and magnetite in the Qimantage metallogenic belt is also studied. No large volume changes, such as pore filling and shrinkage fracture, were detected in the metallogenic belt, and the transformation mechanism is more similar to a reoxidation and reduction mechanism.  相似文献   

11.
A method for the prediction of Gibbs free energies of formation for minerals belonging to the alunite family is proposed, based on an empirical parameter ΔGO= Mz+(c) characterizing the oxygen affinity of the cation Mz+. The Gibbs free energy of formation from constituent oxides is considered as the sum of the products of the molar fraction of an oxygen atom bound to any two cations, multiplied by the difference of oxygen affinity ΔGO= Mz+(c) between any two consecutive cations. The ΔGO= Mz+(c) value, using a weighing scheme involving the electronegativity of a cation in a specific site (12-fold coordination site, octahedral and tetrahedral) is assumed to be constant. It can be calculated by minimizing the difference between experimental Gibbs free energies (determined from solubility measurements) and calculated Gibbs free energies of formation from constituent oxides. Results indicate that this prediction method gives values within 0.5% of the experimentally measured values. The relationships between ΔGO= Mz+(alunite) corresponding to the electronegativity of a cation in either dodecahedral sites, octahedral sites or tetrahedral sites and known as ΔGO= Mz+(aq) were determined, thereby allowing the prediction of the electronegativity of rare earth metal ions and trivalent ions in dodecahedral sites and highly charged ions in tetrahedral sites. This allows the prediction of Gibbs free energies of formation of any minerals of the alunite supergroup (bearing various ions located in the dodecahedral and tetrahedral sites). Examples are given for hydronium jarosite and hindsalite, and the results appear excellent when compared to experimental values.  相似文献   

12.
The elastic properties of coexisting natural 3T and 2M 1 phengite samples (Cima Pal, Sesia Zone; Val Savenca; Western Alps, Italy) with similar chemical compositions have been studied by room temperature–high pressure powder diffraction, using synchrotron radiation on the ID9A beam-line at ESRF (Grenoble, France). The PV curves have been modelled by the Birch–Murnaghan model; a third-order expansion fitted to the experimental data yields for 3T and 2M 1 K 0=60.4(±0.7) GPa, K′=5.79(±0.11) at V 0=703.8851 Å3, and K 0=57.3(±1.0) GPa, K′=6.97(±0.24) at V 0=938.8815 Å3, respectively. The relative stability of 3T vs. 2M 1 has been explored as a function of pressure and temperature in terms of configuration and deformation contributions to the Gibbs energy, using the elastic properties determined here and other thermodynamic parameters from earlier investigations. The results presented agree with the hypothesis of stability of the 3T polytype in the high pressure regime.  相似文献   

13.
14.
The high‐precision δ60/58Ni values of twenty‐six geological reference materials, including igneous rocks, sedimentary rocks, stream sediments, soils and plants are reported. The δ60/58Ni values of all samples were determined by double‐spike MC‐ICP‐MS (Nu Plasma III). Isotope standard solution (NIST SRM 986) and geological reference materials (BHVO‐2, BCR‐2, JP‐1, PCC‐1, etc.) were used to evaluate the measurement bias and intermediate precision over a period of six months. Our results show that the intermediate precision of Ni isotope determination was 0.05‰ (2s, n = 69) for spiked NIST SRM 986 and typically 0.06‰ for actual samples, and the δ60/58Ni NIST SRM 986 values were in excellent agreement with previous studies. Eighteen high‐precision Ni isotope ratios of geological reference materials are first reported here, and their δ60/58Ni values varied from ?0.27‰ to 0.52‰, with a mean of 0.13 ± 0.34‰ (2s, n = 18). Additionally, SGR‐1b (0.56 ± 0.04‰, 2s), GSS‐1 (?0.27 ± 0.06‰, 2s), GSS‐7 (?0.11 ± 0.01‰, 2s), GSD‐10 (0.46 ± 0.06‰, 2s) and GSB‐12 (0.52 ± 0.06‰, 2s) could potentially serve as candidate reference materials for Ni isotope fractionation and comparison of Ni isotopic compositions among different laboratories.  相似文献   

15.
The incorporation of hydrogen into ferrosilite, Fe-bearing enstatite and orthopyroxene containing different trivalent cations (Cr3+ and Al3+, Cr3+ and Fe3+) was investigated experimentally at 25 kbar. Hydrogen concentration was determined by FTIR-spectroscopy on oriented crystal sections and by secondary ion mass spectroscopy, whereas Mößbauer spectroscopy and optical spectroscopy were used to characterise the valence state of Fe in orthopyroxene. Results suggest that hydrogen incorporation in ferrosilite is achieved by a similar mechanism as in pure enstatite. In Cr-bearing samples, however, hydrogen incorporation is reduced by the presence of other trivalent cations by an increased tendency to form Tschermaks substitutions, e.g. Si T 4+ + Mg M1 2+ ? Al T 3+ + Cr M1 3+ . Thus, hydrogen solubility in natural orthopyroxenes from the Earth’s mantle, containing significant amounts of Cr3+, Al3+, and Fe3+, may be much more limited than expected from their trivalent cation content, as a large fraction of the trivalent cations does not participate in H-incorporating reactions as 2 Mg M1 2+ ? M M1 3+ + VM1 + H i + .  相似文献   

16.
It was not possible to carry out a complete analyses of crystal, as the experiment by Ding and Shi et al.. It's analysis precision R=0.25 or more big than this, which value are not satisfied for single crystal study, but we through many test and found the best: [R(int)=14.5%]. The final fullmatix least-squares refinement on F2 converged to R1=0.0791 and wR2=0.1864 for 704 observed reflections [I 3 2s(I)]. Daomanite is orthorhombic system, space group Cmc21, a=3.7520(8))?, b=15.844(4) ?, c=5.8516(12) ?, α=β=γ=90°. V=347.86(14)?3, Z=4. Daomanite chemical formula is Cu Pt AsS 2. Idealized composition Me+M2+M2+S2=CuS ·PtA s S. There is no other similar mineral in the world.  相似文献   

17.
PENG GAO 《Sedimentology》2012,59(6):1926-1935
A recently developed bedload equation (Abrahams & Gao, 2006) has the form ib = ωG3˙4, where ib is the immersed bedload transport rate, ω is the stream power per unit area, G = 1?θc/θ, θ is the dimensionless shear stress and θc is the associated threshold value for the incipient motion of bed grains. This equation has a parsimonious form and provides good predictions of transport rate in both the saltation and sheetflow regimes (i.e. flows with low and high θ values, respectively). In this study, the equation was validated using data independent of those used for developing it. The data represent bedload of identical sizes transported in various steady, uniform, fully rough and turbulent flows over plane, mobile beds. The equation predicted ib quite well over five orders of magnitude. This equation was further compared with six classic bedload equations and showed the best performance. Its theoretical significance was subsequently examined in two ways. First, based on collision theory, the parameter G was related to the ratio of grain‐to‐grain collisions to the total collisions including both grain‐to‐grain and grain‐to‐bed collisions, Pg by Pg = G2, suggesting that G characterizes the dynamic processes of bedload transport from the perspective of granular flow, which partly accounts for the good performance of the equation. Moreover, examining the ability of two common equations to predict bedload in gravel‐bed rivers revealed that G can also be used to simplify equations for predicting transport capacities in such rivers. Second, a simple dimensionless form of the equation was created by introducing B = ib/ω. The theoretical nature of the term B was subsequently revealed by comparing this equation with both the Bagnold model and two commonly used parameters representing dimensionless bedload transport rates.  相似文献   

18.
Electron paramagnetic resonance (EPR) study of single crystals of chromium-doped forsterite grown by the Czochralski method in two different research laboratories has revealed, apart from the known paramagnetic centers Cr3+(M1), Cr3+(M2) and Cr4+, a new center \textCr 3+ (M 1)-V\textMg 2+ (M 2) {\text{Cr}}^{ 3+ } (M 1){-}V_{{{\text{Mg}}^{ 2+ } }} (M 2) formed by a Cr3+ ion substituting for Mg2+ at the M1 structural position with a nearest-neighbor Mg2+ vacancy at the M2 position. For this center, the conventional zero-field splitting parameters D and E and the principal g values and A values of the 53Cr hyperfine splitting have been determined as follows: D = 33.95(3) GHz, E = 8.64(1) GHz, g = [1.9811(2), 1.9787(2), 1.9742(2)], A = [51(3), 52(2), 44(3)] MHz. The center has been identified by comparing EPR spectra with those of the charge-uncompensated ion Cr3+(M1) and the ion pair Cr3+(M1)–Li+(M2) observed in forsterite crystals codoped with chromium and lithium. It has been found that the concentration of the new center decreases to zero, whereas that of the Cr3+(M1) and Cr3+(M1)–Li+(M2) centers increases with an increase of the Li content from 0 up to ~0.03 wt% (at the same Cr content ~0.07 wt%) in the melt. The known low-temperature luminescence data pertinent to the centers under consideration are also discussed.  相似文献   

19.
Al-containing MgSiO3 perovskites of four different compositions were synthesized at 27 GPa and 1,873 K using a Kawai-type high-pressure apparatus: stoichiometric compositions of Mg0.975Si0.975Al0.05O3 and Mg0.95Si0.95Al0.10O3 considering only coupled substitution Mg2+ + Si4+ = 2Al3+, and nonstoichiometric compositions of Mg0.99Si0.96Al0.05O2.985 and Mg0.97Si0.93Al0.10O2.98 taking account of not only the coupled substitution but also oxygen vacancy substitution 2Si4+ = 2Al3+ + VO¨. Using the X-ray diffraction profiles, Rietveld analyses were performed, and the results were compared between the stoichiometric and nonstoichiometric perovskites. Lattice parameter–composition relations, in space group Pbnm, were obtained as follows. The a parameters of both of the stoichiometric and nonstoichiometric perovskites are almost constant in the X Al range of 0–0.05, where X Al is Al number on the basis of total cation of two (X Al = 2Al/(Mg + Si + Al)), and decrease with further increasing X Al. The b and c parameters of the stoichiometric perovskites increase linearly with increasing Al content. The change in the b parameter of the nonstoichiometric perovskites with Al content is the same as that of the stoichiometric perovskites within the uncertainties. The c parameter of the nonstoichiometric perovskites is slightly smaller than that of the stoichiometric perovskites at X Al of 0.10, though they are the same as each other at X Al of 0.05. The Si(Al)–O1 distance, Si(Al)–O1–Si(Al) angle and minimum Mg(Al)–O distance of the nonstoichiometric perovskites keep almost constant up to X Al of 0.05, and then the Si(Al)–O1 increases and both of the Si(Al)–O1–Si(Al) angle and minimum Mg(Al)–O decrease with further Al substitution. These results suggest that the oxygen vacancy substitution may be superior to the coupled substitution up to X Al of about 0.05 and that more Al could be substituted only by the coupled substitution at 27 GPa. The Si(Al)–O1 distance and one of two independent Si(Al)–O2 distances in Si(Al)O6 octahedra in the nonstoichiometric perovskites are always shorter than those in the stoichiometric perovskite at the same Al content. These results imply that oxygen defects may exist in the nonstoichiometric perovskites and distribute randomly.  相似文献   

20.
Chemical and isotopic data were measured for 51 leached brine springs in the Changdu-Lanping-Simao Basin (CD-LP-SM), China. The predominance of Cl and Na, saturation indices of carbonate minerals, and Na/Cl and Ca/SO4 ratios of ~1 suggest that halite, sulphate, and carbonate are the solute sources. Integration of geochemical, δ18O, and δD values suggests that springs are mainly derived from meteoric water, ice-snow melt, and water-rock interactions. B concentrations range from 0.18 to 11.9 mg/L, with δ11B values of ?4.37‰ to +32.39‰, indicating a terrestrial source. The δ11B-B relationships suggest B sources of crustal origin (marine carbonates with minor crust-derived volcanics); we did not identify a marine or deep mantle origin. The δ11B values of saline springs (+4.61‰ to +32.39‰) exceed those of hot (?4.37‰ to +4.53‰) and cold (?3.47‰ to +14.84‰) springs; this has contributed to strong water-rock interactions and strong saturation of dissolved carbonates. Conversely, the global geothermal δ11B-Cl/B relationship suggests mixing of marine and non-marine sources. The δ11B-Cl/B relationships of the CD-LP-SM are similar to those of the Tibet geothermal belt and the Nangqen Basin, indicating the same B origin. These differ from thermal waters controlled by magmatic fluids and seawater, suggesting that B in CD-LP-SM springs has a crustal origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号