首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
2.
Using data from two dense array of short period seismometers, we analyse the kinematic properties of volcanic tremor preceding and accompanying the 2004–2005 eruption of Etna Volcano, Italy. Results from slowness analyses indicate the action of at least two distinct sources. The first dominates the pre-eruptive period, and is likely associated with the main plumbing system feeding the Summit and southeast craters. Following the onset of the eruption, secondary directions of wave-arrival encompass the eruptive fissures, located on the lower eastern flank of the southeast crater. Nonetheless, significant energy radiation from this latter source was also occurring prior to the onset of the lava effusion, likely suggesting the presence of a resident magma batch, in agreement with independent petrologic and geochemical data.  相似文献   

3.
4.
基于采自柴达木盆地内部牦牛山的祁连圆柏树木样芯,新建采样区域过去2710 a的树轮宽度年表,并计算了器测时期(1957—2017 AD)气象数据与树轮宽度年表的相关系数。结果表明:树轮宽度年表与上一年7月至当年6月降水量变化的相关性最高(r=0.753,n=60,p <0.01),基于此重建了该区392 BC—2017 AD上一年7月至当年6月的降水量变化。器测时期方差解释量高达64%。重建结果显示,在年代际尺度上存在9个湿润期(106—75 BC、6—39 AD、179—229 AD、581—646 AD、823—914 AD、1026—1095 AD、1378—1414 AD、1567—1609 AD和1985—2017 AD)和7个干旱期(328 BC—297 BC、86—151 AD、694—747 AD、1168—1199AD、1444—1525 AD、1680—1725 AD和1792—1860 AD),1792—1860 AD是过去2400 a最干旱时期。功率谱分析结果表明,过去2400 a柴达木盆地东北部地区降水量存在2~8 a、40 a、80 a和225 a准周...  相似文献   

5.
6.
Four cores (ranging between ca. 9 and ca. 14 m in length) from Lago di Albano in Central Italy were studied for their ostracod content, as well as algal and bacterial pigments, CaCO3 and concentration of organic matter. Cores PALB 94 1E and PALB 94 1C from Site 1, located at the bottom of a steep slope at 70 m water depth, where oxygen concentration is below 6 mg l-1, spans the Holocene and the late Pleistocene until 28 kyr B.P. (calibrated age). The other cores, PALB 94 6A and PALB 94 6B taken at a depth of 30 m, where oxygen is 7--11 mg l-1, represent mainly Pleistocene deposits.Ostracod valves were found in the lowermost ca. 3 m of the sequence at Site 1, dated to ca. 28--24 kyr B.P., and throughout the sequence from Site 6 which represents the interval 23--17 kyr B.P.Candona neglecta is the dominant species in most of the levels at Site 1, whereas both C. neglecta and Cyclocypris sp. dominate during different biostratigraphic zones at Site 6. The influx of springs entering the lake at Site 1 was inferred on the basis of species of the genus Potamocypris and Ilyocypris bradyi present in the record. Wide fluctuations in species abundance and assemblages in both coring sites indicate lake-water level oscillations between 28 to 17 kyr B.P. In particular, a strong rise in water level of the order of 40 m occurred between 24 and 23 kyr B.P. Fluctuations in productivity, oxygen availability and water temperature at both sites were also reconstructed on the basis of the ostracod assemblages and the algal and bacterial pigment concentrations. The environmental reconstruction reached using ostracod remains and pigments was verified with other proxy records published elsewhere such as invertebrate remains, diatoms, magnetic properties, etc. A synthesis of climatic reconstructions for Central and Southern Italy for the late Full Glacial is attempted on the basis of previous studies on hydrology, lithostratigraphy and palynology. Sharp fluctuations in lake palaeoproductivity/palaeoclimate recorded by invertebrate and pigment remains at both sites from Lago di Albano might be related to similar events reported in North Atlantic Full-Glacial records from marine and ice cores.  相似文献   

7.
碳约束下中国县域尺度农业全要素生产率比较研究   总被引:3,自引:1,他引:3  
揭懋汕  郭洁  陈罗烨  雪燕  薛领 《地理研究》2016,35(5):898-908
基于2183个县级单元,利用SFA方法对1992-2011年碳约束下中国县域农业生态TFP及其分解项进行研究,并与不考虑碳排放的传统TFP进行比较。结果表明:第一,农业生态TFP年平均增长4.47%,低于传统TFP,但两者差距有缩小的趋势,2011年前者超过后者。第二,农业生态TFP贡献了中国农业总产值增长的54.9%,比传统TFP的份额低了3.6%,要素投入贡献为45.1%。第三,分解项上,前沿技术进步率是农业生态TFP的主要驱动因素,也是生态TFP与传统TFP差距缩小的动因。第四,空间分布上,生态TFP大于传统TFP的地区主要分布在胡焕庸线东南的地区;西部由于生态TFP和传统FTP都较低,呈现出“双重恶化”现象;除了嵊泗县以外,农业生态TE和TEC均低于传统TE和TEC,生态FTP也整体低于传统FTP。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号