首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 75 毫秒
1.
Hydrographic, current meter and ADCP data collected during two recent cruises in the South Indian Ocean (RRS Discovery cruise 200 in February 1993 and RRS Discovery cruise 207 in February 1994) are used to investigate the current structure within the Princess Elizabeth Trough (PET), near the Antarctic continent at 85°E, 63–66°S. This gap in topography between the Kerguelen Plateau and the Antarctic continent, with sill depth 3750 m, provides a route for the exchange of Antarctic Bottom Water between the Australian–Antarctic Basin and the Weddell–Enderby Basin. Shears derived from ADCP and hydrographic data are used to deduce the barotropic component of the velocity field, and thus the volume transports of the water masses. Both the Southern Antarctic Circumpolar Current Front (SACCF) and the Southern Boundary of the Antarctic Circumpolar Current (SB) pass through the northern PET (latitudes 63 to 64.5°S) associated with eastward transports. These are deep-reaching fronts with associated bottom velocities of several cm s-1. Antarctic Bottom water (AABW) from the Weddell–Enderby Basin is transported eastwards in the jets associated with these fronts. The transport of water with potential temperatures less than 0°C is 3 (±1) Sv. The SB is shown to meander in the PET, caused by the cyclonic gyre immediately west of the PET in Prydz Bay. The AABW therefore also meanders before continuing eastwards. In the southern PET (latitudes 64.5 to 66°S) a bottom intensified flow of AABW is observed flowing west. This AABW has most likely formed not far from the PET, along the Antarctic continental shelf and slope to the east. Current meters show that speeds in this flow have an annual scalar mean of 10 cm s-1. The transport of water with potential temperatures less than 0°C is 20 (±3) Sv. The southern PET features westward flow throughout the water column, since the shallower depths are dominated by the flow associated with the Antarctic Slope Front. Including the westward flow of bottom water, the total westward transport of the whole water column in the southern PET is 45 (±6) Sv.  相似文献   

2.
Multidisciplinary oceanic investigation was undertaken in Aug–Sep. 2003 along a transect from Northwestern (Busan, Korea) to Southeastern Pacific (Talcahuano, Chile) to understand the physical, chemical and biological features in the surface water, and to depict their interaction with the atmosphere. Among the twenty parameters measured, we describe the physical, chemical and biological features. Physico-chemical data were analyzed in conjunction with the geographic position and yielded 7 peculiar surface water masses. The first water mass (28.4°N, 130.8°E to 21.5°N, 139.5°E) was warm and low in phosphate and nitrate content, and high in silicate. The concentration of phytoplankton pigment was one of the lowest. The second (20.4°N, 140.7°E to 2.2°S, 162.9°E) was the warmest and the least saline. Nitrate and phosphate concentration were one of the lowest. Chlorophyll a (Chl a) concentration was the lowest among the surface waters. The third (3.4°S, 164.0°E to 14.5°S, 173.3°E) was warm. Nitrate concentration was the lowest. CHL-a, peridinin (Perid), violaxanthin (Viola), zeaxanthin (Zea), chlorophyll-b (Chl b) and β-CAR were abundant. The fourth (18.6°S, 177.5°E to 31.8°S, 123.9°W) was saline and poor in nutrient concentration. The contributions of 19′-butanoyloxyfucoxanthin (But-fuco), 19′-hexanoyloxyfucoxanthin (Hex-fuco), and CHL b to CHL a were non-negligible. The fifth (32.4°S, 122.1°W to 33.8°S, 117.2°W) was relatively cold and well oxygenated. Concentration of Fuco, But-fuco, Hex-fuco and Chl b was high. The sixth (34.2°S, 115.4°W to 37.4°S, 92.1°W) was cold, well oxygenated and enriched with phosphate and nitrate. Concentration of phytoplankton pigment was, however, one of the lowest. The seventh, located off the Chilean coast, from 37.2°S, 87.2°W to 36.1°S, 74.1°W was well oxygenated and highly enriched with nitrate and phosphate. Phytoplankton pigments such as Fuco, Perid, But-fico, and Hex-fuco were rich. The 7 surface water masses are partially attributed to Kuroshio Current, North Equatorial Current and North Equatorial Countercurrent, South Equatorial current, South Pacific Subtropical Gyre, South Pacific Current, Subtropical Front and Chilean coastal water. The differences in physicochemical characteristics and the history of the surface water resulted in difference in quantity and composition of the phytoplankton pigment.  相似文献   

3.
The ultraslow-spreading Southwest Indian Ridge(SWIR) to the east of the Melville fracture zone is characterized by very low melt supply and intensive tectonic activity. Due to its weak thermal budget and extremely slow spreading rate, the easternmost SWIR was considered to be devoid of hydrothermal activity until the discovery of the inactive Mt. Jourdanne hydrothermal field(27°51′S, 63°56′E) in 1998. During the COMRA DY115-20 cruise in2009, two additional hydrothermal fields(i.e., the Tiancheng(27°51′S, 63°55′E) and Tianzuo(27°57′S, 63°32′E)fields) were discovered. Further detailed investigations of these two hydrothermal sites were conducted by Chinese manned submersible Jiaolong in 2014–2015. The Tiancheng filed can be characterized as a lowtemperature(up to 13.2°C) diffuse flow hydrothermal field, and is hosted by fractured basalts with hydrothermal fauna widespread on the seafloor. The Tianzuo hydrothermal field is an inactive sulfide field, which is hosted by ultramafic rocks and controlled by detachment fault. The discovery of the three hydrothermal fields around Segment #11 which receives more melt than the regional average, provided evidence for local enhanced magmatism providing heat source to drive hydrothermal circulation. We further imply that hydrothermal activity and sulfide deposits may be rather promising along the easternmost SWIR.  相似文献   

4.
Calcareous nannoplankton from sediment trap samples collected at six sites in the Atlantic Ocean from 23° S to 73° N (cruise 20 of R/V Vityaz’ and cruise 33 and 34 of R/V Akademik Mstislav Keldysh). Those samples were studied with a scanning electron microscope. In the coastal and open-sea regions of the North and South Atlantic and in the subarctic region of the Norwegian Sea, the conditions are significantly different. In the shelf area of the Benguela upwelling, 11 species were recognized; some of them were agglutinated by diatoms and tintinnides or covered the surface of pellets. The Broken Spur and TAG pelagic areas of the North Atlantic contained up to 43 coccolith species. They included holococcoliths, large pelagic, and delicate easily soluble species distributed over the entire water column. The presence of coccoliths in the high-latitude area of the Norwegian Sea is related to their supply with the warmer North Atlantic waters. These assemblages are distinguished by a low species diversity and an enhancement of the coccolith solubility with the depth increase.  相似文献   

5.
We report the occurrence and distribution of Carapidae larvae in the southwest Atlantic Ocean, between Real River (12°S) and São Tomé Cape (22°S), off Brazil. Carapidae larvae were collected during three oceanographic cruises: spring 1998, winter 1999 and autumn 2000. The hauls were conducted obliquely from a maximum depth of 200 m, during day and night, with bongo nets 330- and 500-μm mesh size. Three species were recorded in this study: Carapus bermudensis, Echiodon dawsoni and Snyderidia canina. Only one C. bermudensis was collected during the winter cruise off the Salvador coast (13°S). Twenty-one larvae of E. dawsoni were collected during the three cruises between 14.5° and 22°S, including some at the banks of Vitória–Trindade Ridge. One S. canina larva occurred, during the spring in the north coast of Rio de Janeiro (22°S).  相似文献   

6.
The circulation and transport of Antarctic Bottom Water (σ4<45.87) in the region of the Vema Channel are studied along three WOCE hydrographic lines, the geostrophic velocities referenced to previously published direct current measurements. The primary supply of water to the deep Vema Channel is from the Argentine Basin's deep western boundary current, with no indication of an inflow from the southeast. In the northern Argentine Basin, detachment of lower North Atlantic Deep Water from the continental slope is associated with a deep thermohaline front near 34°S. To the north of this front, the upper part of the AABW bound for the Vema Channel (σ4<46.01) exhibits a significant NADW influence. Further modification of the throughflow water occurs near 30°30′S, where the channel orientation changes by ∼50°. Southward flow of bottom water on the eastern flank of the Vema Channel, amounting to ∼1.5 Sv, represents a significant countercurrent to the deep channel transport. Inclusion of this countercurrent reduces the net flow of AABW through the Vema Channel from 3.2±0.7 to 1.7±1.1 Sv. Water properties imply that the near-zero net flow over the Santos Plateau results from a near-closed cyclonic circulation fed by the deep Vema Channel throughflow. A disruption of the northward boundary current in the upper AABW (lower circumpolar water) is required by this flow pattern. The extension of the cyclonic circulation on the Santos Plateau enters the Brazil Basin as a ∼1 Sv flow distinct from the outflow in the Vema Channel Extension (6.2 Sv). The high magnitude of the latter suggests a southward recirculation of bottom water near the western boundary to the north of the region of study.  相似文献   

7.
The degree of connectivity among island populations can influence their demography and affect their level of genetic differentiation. In this study we investigated genetic and morphometric differences among four populations of Grapsus grapsus (Linnaeus 1758), in Saint Peter and Saint Paul Archipelago (0°55′ N, 29°20′ W), Fernando de Noronha Archipelago (3°50′ S, 32°24′ W), Rocas Atoll (3°50′ S, 33°49′ W) and Trindade Island (20°30′ S, 29°20′ W) from 2003 to 2011. Morphometric results indicated the existence of two distinct groups based on the morphology of their chelae (Trindade Island/Saint Peter and Saint Paul Archipelago versus Fernando de Noronha/Rocas Atoll). In addition, genetic variation in a fragment of the mitochondrial control region revealed substantial differentiation between Trindade and the other islands, with Trindade Island showing only exclusive haplotypes. The congruence of the genetic and morphologic analyses suggests the occurrence of a divergent population in Trindade Island as well as high connectivity among the three remaining equatorial islands. This is the first study to assess the level of morphologic differentiation and genetic connectivity of a species among all four Southwestern Atlantic oceanic islands. Our results provide valuable insight into understanding connectivity through surface ocean currents and suggest that the unstable current system of this area could be responsible for different dispersal patterns. We also suggest that the design of Brazilian marine protected areas should be adjusted to provide stronger protection for Trindade Island as it harbors unique genetic and morphologic variation in G. grapsus.  相似文献   

8.
《Marine Chemistry》2001,73(1):21-36
As part of the ANTARES 3/F-JGOFS cruise, the distributions of dissolved iron and manganese were measured in October 1995 in the north–east wake of the Kerguelen archipelago (48°40′–49°40′S, 68°70′–70°50′E), an area that shows high phytoplankton biomass (CZCS and SeaWiFS data) in the middle of the High Nutrient Low Chlorophyll (HNLC) Southern Ocean. The study area (about 25,000 km2) comprised a branch of the Polar Front with Antarctic surface water (AASW) intruding northward, shouldering the shelf break of the Kerguelen Plateau. The coastal zone was clearly affected by material of lithogenic origin (riverine discharges, soil leaching by rain waters, aeolian inputs), as well as by inputs from the sediments (effluxes from the sediment–water interface, resuspension from the sediments), its near surface waters showing considerable enrichment in dissolved iron (5.3–12.6 nM) and in dissolved manganese (2.9–8.6 nM). The offshore waters, although less enriched in trace-metals, were also affected by trace-metal inputs from coastal and continental shelf origin. Dissolved iron and manganese concentrations in these waters were 0.46–0.71 and 0.68–1.3 nM, i.e. far over typical antarctic open ocean surface water concentrations of 0.16 nM for iron [Martin, J.H., Gordon, R.M., Fitzwater, S.E., 1990. Iron in Antarctic waters. Nature, 345: 156–158.] and around 0.1 nM for manganese [Martin, J.H., Gordon, R.M., Fitzwater, S.E., 1990. Iron in Antarctic waters. Nature, 345: 156–158; Sedwick, P.N., Edwards, P.R., Mackey, D.J., Griffiths, F.B., Parslow, J.S., 1997. Iron and manganese in surface waters of the Australian subantarctic region. Deep-Sea Res., 44: 1239–1253.]. The dissolved iron enrichment in coastal waters of the Kerguelen Islands is much more important (about 10 times for dissolved iron) than for the Galapagos Islands, another oasis in the HNLC Equatorial oceanic system, where the concentration increase in dissolved iron in the surface waters around the islands is mostly driven by upwelling of the Equatorial Under Current (EUC) as it reaches the Galapagos Platform.  相似文献   

9.
The distribution of pelagic blue-green algae, especially ofTrichodesmium thiebautii, was investigated on the basis of the collection of theHakuhō Maru Cruise KH-69-4 along 155°W (50°N-15°S) in the North Pacific Ocean from September to November 1969.
  1. Five species were identified:Trichodesmium thiebautii (most predominant),T. erythraeum, Oscillatoria sp.,Katagnymene spiralis andRichelia intracellularis.
  2. T. thiebautii was most abundant in the western North Pacific central water and abundant next to it in the equatorial water, but it did not occur in the subarctic water.
  3. T. thiebautii was ubiquitously distributed in the lower layer of 100–200 m in the equatorial water, though not in a large quantity.
  4. T. thiebautii inhabited only the water warmer than 20°C. In its main habitat, nitrate and nitrite were almost zero, but ammonia and phosphate were present. There was not found any correlation between its occurrence and the salinity.
  5. Blue-green algae were generally thinly populated in the water rich in diatoms.
  相似文献   

10.
春季黄海浮游植物生态分区:物种组成   总被引:3,自引:1,他引:2  
Phytoplanktonic ecological provinces of the Yellow Sea(31.20°–39.23°N, 121.00°–125.16°E) is derived in terms of species composition and hydrological factors(temperature and salinity). 173 samples were collected from 40 stations from April 28 to May 18, 2014, and a total of 185 phytoplanktonic algal species belonging to 81 genera of 7phyla were identified by Uterm?hl method. Phytoplankton abundance in surface waters is concentrated in the west coast of Korean Peninsula and Korea Bay, and communities in those areas are mainly composed of diatoms and cyanobacteria with dominant species of Cylindrotheca closterium, Synechocystis pevalekii, Chroomonas acuta,Paralia sulcata, Thalassiosira pacifica and Karenia mikimotoi, etc. The first ten dominant species of the investigation area are analyzed by multidimensional scaling(MDS) and cluster analysis, then the Yellow Sea is divided into five provinces from Province I(P-I) to Province V(P-V). P-I includes the coastal areas near southern Liaodong Peninsula, with phytoplankton abundance of 35 420×10~3–36 163×10~3 cells/L and an average of 35 791×10~3 cells/L, and 99.84% of biomass is contributed by cyanobacteria. P-II is from Shandong Peninsula to Subei coastal area. Phytoplankton abundance is in a range of 2×10~3–48×10~3 cells/L with an average of 24×10~3cells/L, and 63.69% of biomass is contributed by diatoms. P-III represents the Changjiang(Yangtze River) Diluted Water. Phytoplankton abundance is 10×10~3–37×10~3 cells/L with an average of 24×10~3 cells/L, and 73.14% of biomass is contributed by diatoms. P-IV represents the area affected by the Yellow Sea Warm Current.Phytoplankton abundance ranges from 6×10~3 to 82×10~3 cells/L with an average of 28×10~3 cells/L, and 64.17% of biomass is contributed by diatoms. P-V represents the cold water mass of northern Yellow Sea. Phytoplankton abundance is in a range of 41×10~3–8 912×10~3 cells/L with an average of 1 763×10~3 cells/L, and 89.96% of biomass is contributed by diatoms. Overall, structures of phytoplankton community in spring are quite heterogeneous in different provinces. Canonical correspondence analysis(CCA) result illustrates the relationship between dominant species and environmental factors, and demonstrates that the main environmental factors that affect phytoplankton distribution are nitrate, temperature and salinity.  相似文献   

11.
Phytoplankton samples were collected from the equatorial Pacific (10°S to 10°N along 155°E) in June 1992 as part of the Australian contribution to the JGOFS program. Chlorophyll and carotenoid pigments were measured by HPLC, and a PC-based computer program (CHEMTAX) was used to estimate the contribution of 9 algal classes to the total chlorophyll a concentration in 9 separate depth bands at each location. This cruise occurred in the middle of the prolonged 1991/1993 El Niño, and the results are compared with similar data from a cruise in October 1990 which occurred before this El Niño but after the 1988/1989 La Niña.Changes in the pigment : chlorophyll a ratios appeared consistent across algal classes and, apart from some minor exceptions, consistent between cruises. Pigments involved in light-harvesting generally increased relative to chlorophyll a with increasing depth, whereas the ratio for photoprotective pigments (e.g. diadinoxanthin) usually decreased with depth. The zeaxanthin concentration per cell for cyanobacteria decreased with depth in the surface 75 m during 1992 as would be expected for a photoprotective pigment.Based on their contribution to the total chlorophyll a concentration, haptophytes, prochlorophytes, cyanobacteria (Synechococcus) and chlorophytes were the dominant algal classes in 1992. The chlorophyte contribution to chlorophyll a in 1992 (14.8%) was almost double that in 1990 (7.8%). This increase was largely at the expense of the cyanobacteria and haptophytes, which both decreased significantly. The increase in chlorophytes in 1992 was particularly noticeable in the surface waters south of the equator at about 4°S, where there was evidence of upwelling.  相似文献   

12.
We conducted full-depth hydrographic observations between 8°50′ and 44°30′N at 165°W in 2003 and analyzed the data together with those from the World Ocean Circulation Experiment and the World Ocean Database, clarifying the water characteristics and deep circulation in the Central and Northeast Pacific Basins. The deep-water characteristics at depths greater than approximately 2000 dbar at 165°W differ among three regions demarcated by the Hawaiian Ridge at around 24°N and the Mendocino Fracture Zone at 37°N: the southern region (10–24°N), central region (24–37°N), and northern region (north of 37°N). Deep water at temperatures below 1.15 °C and depths greater than 4000 dbar is highly stratified in the southern region, weakly stratified in the central region, and largely uniform in the northern region. Among the three regions, near-bottom water immediately east of Clarion Passage in the southern region is coldest (θ<0.90 °C), most saline (S>34.70), highest in dissolved oxygen (O2>4.2 ml l?1), and lowest in silica (Si<135 μmol kg?1). These characteristics of the deep water reflect transport of Lower Circumpolar Deep Water (LCDW) due to a branch current south of the Wake–Necker Ridge that is separated from the eastern branch current of the deep circulation immediately north of 10°N in the Central Pacific Basin. The branch current south of the Wake–Necker Ridge carries LCDW of θ<1.05 °C with a volume transport of 3.7 Sv (1 Sv=106 m3 s?1) into the Northeast Pacific Basin through Horizon and Clarion Passages, mainly through the latter (~3.1 Sv). A small amount of the LCDW flows northward at the western boundary of the Northeast Pacific Basin, joins the branch of deep circulation from the Main Gap of the Emperor Seamounts Chain, and forms an eastward current along the Mendocino Fracture Zone with volume transport of nearly 1 Sv. If this volume transport is typical, a major portion of the LCDW (~3 Sv) carried by the branch current south of the Wake–Necker and Hawaiian Ridges may spread in the southern part of the Northeast Pacific Basin. In the northern region at 165°W, silica maxima are found near the bottom and at 2200 dbar; the minimum between the double maxima occurs at a depth of approximately 4000 dbar (θ~1.15 °C). The geostrophic current north of 39°N in the upper deep layer between 1.15 and 2.2 °C, with reference to the 1.15 °C isotherm, has a westward volume transport of 1.6 Sv at 39–44°30′N, carrying silica-rich North Pacific Deep Water from the northeastern region of the Northeast Pacific Basin to the Northwest Pacific Basin.  相似文献   

13.
The distribution of structural and functional characteristics of virioplankton in the north of the Ob River estuary and the adjacent Kara Sea shelf (between latitudes 71°44′44″ N and 73°45′24″ N) was studied with consideration of the spatial variations in the number (N B) and productivity (P B) of bacteria and water properties (temperature, salinity, density) by analyzing samples taken in September 2013. The number of plankton viruses (N V), the occurrence of visible infected bacteria cells, virus-induced mortality of bacteria, and virioplankton production in the studied region varied within (214?2917) × 103 particles/mL, 0.3?5.6% of NB, 2.2?64.4% of P B, and (6?17248) × 103 particles/(mL day), respectively. These parameters were the highest in water layers with a temperature of +7.3–7.5°C, salinity of 3.75?5.41 psu, and conventional density (στ) of 2.846?4.144. The number of bacterioplankton was (614?822) × 103 cells/mL, and the N V/N B ratio was 1.1?4.5. A large amount of virus particles were attached to bacterial cells and suspended matter. The data testify to the considerable role of viruses in controlling the number and production of heterotrophic bacterioplankton in the interaction zone of river and sea waters.  相似文献   

14.
Heat fluxes are estimated across transatlantic sections made at 4°30′S and 7°30′N in January–March 1993, following Hall and Bryden (1982. Deep-Sea Research 29, 339–359). Particular care is given to the computation of Ekman volume and heat fluxes, which are assessed both (a) from the windstress data for the period of the cruise and (b) from the comparison between geostrophic and Vessel Mounted Acoustic Doppler Current Profiler (VM-ADCP) velocities. In contrast with previous studies, the two estimates for Ekman fluxes do not converge for either section: (a) (11.5±0.5 Sv; 1.01±0.05 PW) across 7°30′N and (−9.3±1.2 Sv; −0.85±0.12 PW) across 4°30′S when windstress data at the date of the hydrographic stations are used; (b) (6.3±1.1 Sv; 0.56±0.09 PW) across 7°30′N and (−3.4±3.0 Sv; −0.35±0.24 PW) across 4°30′N when the ageostrophic transport above the thermocline is used. The divergence would have been even greater at 4°30′S if the strong ageostrophic signal beneath the thermocline, which brings a transport of (8.4 Sv; 0.82 PW), had been considered. The corresponding total meridional heat fluxes are: (a) 1.40±0.16 PW and (b) 0.95±0.20 PW across 7°30′N, (a) 1.05±0.12 PW and (b) 1.67±0.14 PW (2.39±0.14 PW when the subthermocline ageostrophic transport is taken into account) across 4°30′S.The estimates based on windstress data are compared with the results from an inverse model (Lux and Mercier, 1999) to show the importance of the heat flux due to the deviation of the local depth-averaged potential temperature from its average over the section, which is neglected in the Hall and Bryden (1982. Deep-Sea Research 29, 339–359) method but is not negligible in our computation in which we do not isolate the transport of the western boundary current east of the 200 m isobath; this corrective flux amounts here to −0.19 PW across 7°30′N and 0.33 PW across 4°30′S.The seasonal variability of the meridional heat flux across 7°30′N is studied through the hydrographic data collected during the ETAMBOT 1–2 cruises, which repeated the 7°30′N section west of 35°W in September 1995 and April 1996. When the section is completed east of 35°W with CITHER 1 data and when windstress data are used for the computation of the Ekman transport, the estimates for the meridional heat fluxes are 0.20±0.14 PW in September 1995 and 1.69±0.27 PW in April 1996. The estimates fit well with results from numerical models.  相似文献   

15.
During September and October 1996 planktic foraminifers and pteropods were sampled from the upper 2500 m of the water column in the BIOTRANS area (47°N, 20°W), eastern North Atlantic, as part of the JGOFS program. Hydrography, chlorophyll fluorescence, and nutrient content were recorded at high spatial and temporal resolution providing detailed information about the transition time between summer and fall. At the beginning of the cruise a shallow pycnocline was present and oligotrophic conditions prevailed. Over the course of the cruise, the mixed layer depth increased and surface water temperature decreased by 1.5°C. Both chlorophyll-a dispersed in the upper 50 m by vertical mixing and chlorophyll-a concentrations at the sea surface increased. The nitracline shoaled and nutrient enriched waters were entrained into the mixed layer. Planktic foraminifers and pteropods closely reflected the changes in the hydrography by increased growth rates and changes in species composition. Three main groups of planktic foraminiferal species were recognized: (1) a temperate and low-productivity group dominated by Neogloboquadrina incompta characterized the shallow mixed layer depths. (2) A temperate and high-productivity group dominated by Globigerina bulloides characterized the period with wind-induced dispersal of chlorophyll-a and entrainment of nutrient-enriched waters. (3) A warm water group containing Globigerinoides sacculifer, Orbulina universa, Globigerinoides ruber (white), and Globigerinella siphonifera was most common during the first days of sampling. Synchronous with the hydrographic change from summer to fall, planktic foraminiferal and pteropod growth was stimulated by redistribution of chlorophyll-a and entrainment of nutrient-enriched waters into the mixed layer. In addition, the seasonal change in the eastern North Atlantic resulted in a transition of the epipelagic faunal composition and an increased calcareous particle flux, which could be used to trace seasonality in fossil assemblages and allow for better paleoceanographic interpretation of the boreal Atlantic.  相似文献   

16.
Meiobenthos from the Waiwhetu Stream (41°14.22′S, 174°54.28′E), a heavily polluted site, was low in density and numbers of species; a tubificid oligochaete Limnodrihts cf. hoffmeisteri dominated. In the Hutt River estuary (41°14.09′S, 174°53.85′E), meiofauna density was the same as in similar sediments world‐wide, but dominance by 2 species of harpacticoid copepods produced a low‐diversity assemblage. The fauna in the Pauatahanui Inlet (41°05.2′S, 174°54.05′E) was comparable in density and diversity to the faunas of muddy estuarine sediments in other parts of the world. The dominance of nematodes, abundance of Echinoderes cf. coulli (Kinorhyncha), and the variety of species suggest that the Pauatahanui site was the most normal of the 3 sampled.  相似文献   

17.
《Marine Chemistry》2002,80(1):11-26
Profiles of particulate and dissolved 234Th (t1/2=24.1 days) in seawater and particulate 234Th collected in drifting traps were analyzed in the Barents Sea at five stations during the ALV3 cruise (from June 28 to July 12, 1999) along a transect from 78°15′N–34°09′E to 73°49′N–31°43′E. 234Th/238U disequilibrium was observed at all locations. 234Th data measured in suspended and trapped particles were used to calibrate the catchment efficiency of the sediment traps. Model-derived 234Th fluxes were similar to 234Th fluxes measured in sediment traps based on a steady-state 234Th model. This suggests that the sediment traps were not subject to large trapping efficiency problems (collection efficiency ranges from 70% to 100% for four traps). The export flux of particulate organic carbon (POC) can be calculated from the model-derived export flux of 234Th and the POC/234Th ratio. POC/234Th ratios measured in suspended and trapped particles were very different (52.0±9.9 and 5.3±2.2 μmol dpm−1, respectively). The agreement between calculated and measured POC fluxes when the POC/234Th ratio of trapped particles was used confirms that the POC/234Th ratio in trap particles is representative of sinking particles. Large discrepancies were observed between calculated and measured POC fluxes when the POC/234Th ratio of suspended particles was used. In the Barents Sea, vertical POC fluxes are higher than POC fluxes estimated in the central Arctic Ocean and the Beaufort Sea and lower than those calculated in the Northeast Water Polynya and the Chukchi Sea. We suggest that the latter fluxes may have been strongly overestimated, because they were based on high POC/234Th ratios measured on suspended particles. It seems that POC fluxes cannot be reliably derived from thorium budgets without measuring the POC/234Th ratio of sediment trap material or of large filtered particles.  相似文献   

18.
Direct velocity measurements undertaken using a nine-system mooring array (M1–M9) from 2004 to 2005 and two additional moorings (M7p and M8p) from 2003 to 2004 reveal the spatial and temporal properties of the deep-circulation currents southwest of the Shatsky Rise in the western North Pacific. The western branch of the deep-circulation current flowing northwestward (270–10° T) is detected almost exclusively at M2 (26°15′N), northeast of the Ogasawara Plateau. It has a width less than the 190 km distance between M1 (25°42′N) and M3 (26°48′N). The mean current speed near the bottom at M2 is 3.6±1.3 cm s?1. The eastern branch of the deep-circulation current is located at the southwestern slope of the Shatsky Rise, flowing northwestward mainly at M8 (30°48′N) on the lower part of the slope of the Shatsky Rise with a mean near-bottom speed of 5.3±1.4 cm s?1. The eastern branch often expands to M7 (30°19′N) at the foot of the rise with a mean near-bottom speed of 2.8±0.7 cm s?1 and to M9 (31°13′N) on the middle of the slope of the rise with a speed of 2.5±0.7 cm s?1 (nearly 4000 m depth); it infrequently expands furthermore to M6 (29°33′N). The width of the eastern branch is 201±70 km on average, exceeding that of the western branch. Temporal variations of the volume transports of the western and eastern branches consist of dominant variations with periods of 3 months and 1 month, varying between almost zero and significant amount; the 3-month-period variations are significantly coherent to each other with a phase lag of about 1 month for the western branch. The almost zero volume transport occurs at intervals of 2–4 months. In the eastern branch, volume transport increases with not only cross-sectional average current velocity but also current width. Because the current meters were too widely spaced to enable accurate estimates of volume transport, mean volume transport is overestimated by a factor of nearly two, yielding values of 4.1±1.2 and 9.8±1.8 Sv (1 Sv=106 m3 s?1) for the western and eastern branches, respectively. In addition, a northwestward current near the bottom at M4 (27°55′N) shows a marked variation in speed between 0 and 20 cm s?1 with a period of 45 days. This current may be part of a clockwise eddy around a seamount located immediately east of M4.  相似文献   

19.
Using a flow cytometer (FCM) onboard the R/V Xuelong during the 24th Chinese Antarctic cruise, picoplankton community structure and biomass in the surface water were examined along the latitude and around the Antarctic Ocean. Salinity and temperature were automatically recorded and total Chla was determined. Along the cruise, the abundance of Synechococcus, Prochlorococcus, pico-eukaryotes and heterotrophic bacteria ranged in 0.001-1.855×108 ind./L, 0.000-2.778£108 ind./L, 0.002-1.060×108 ind./L and 0.132-27.073×108 ind./L, respectively. Major oceanic distribution of Synechococcus and Prochlorococcus appeared between latitudes 30°N and 30°S. Prochlorococcus was mainly influenced by water temperature, water mass combination and freshwater inflow. Meanwhile, Synechococcus distribution was significantly associated with landing freshwater inflow. Pico-eukaryotes and heterotrophic bacteria were distributed all over the oceans, but with a relatively low abundance in the high latitudes of the Antarctic Ocean. Principal Component Analysis showed that at same latitude of Atlantic Ocean and Indian Ocean, picoplankton distribution and constitution were totally different, geographical location and different water masses combination would be main reasons.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号