首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of Sea Research》2009,61(4):246-254
The aim of this study was to investigate controls on the phytoplankton community composition and biogeochemistry of the estuarine plume zone of the River Thames, U.K. using an instrumented moored buoy for in situ measurements and preserved sample collection, and laboratory-based measurements from samples collected at the same site. Instrumentation on the moored buoy enabled high frequency measurements of a suite of environmental variables including in situ chlorophyll, water-column integrated irradiance, macronutrients throughout an annual cycle for 2001 e.g. nitrate and silicate, and phytoplankton biomass and species composition. The Thames plume region acts as a conduit for fluvial nutrients into the wider southern North Sea with typical winter concentrations of 45 μM nitrate, 17 μM silicate and 2 μM phosphate measured. The spring bloom resulted from water-column integrated irradiance increasing above 60 W h m 2 d 1 and was initially dominated by a diatom bloom mainly composed of Nitzschia sp. and Odontella sinesis. The spring bloom then switched after ∼ 30 days to become dominated by the flagellate Phaeocystis reaching a maximum chlorophyll concentration of 37.8 μg L 1. During the spring bloom there were high numbers of the heterotrophic dinoflagellates Gyrodinium spirale and Katodinium glaucum that potentially grazed the phytoplankton bloom. This diatom–flagellate switch was predicted to be due to a combination of further increasing water-column integrated irradiance > 100 W h m 2 d 1 and/or silicate reaching potentially limiting concentrations (< 1 μM). Post spring bloom, diatom dominance of the lower continuous summer phytoplankton biomass occurred despite the low silicate concentrations (Av. 0.7 μM from June–August). Summer diatom dominance, generally due to Guinardia delicatula, was expected to be as a result of microzooplankton grazing, dominated by the heterotrophic dinoflagellate Noctiluca scintillans, controlling 0.7–5.0 μm ‘flagellate’ fraction of the phytoplankton community with grazing rates up to 178% of ‘flagellate’ growth rate. The Thames plume region was therefore shown to be an active region of nutrient and phytoplankton processing and transport to the southern North Sea. The use of a combination of moorings and ship-based sampling was essential in understanding the factors influencing nutrient transport, phytoplankton biomass and species composition in this shelf sea plume region.  相似文献   

2.
3.
《Oceanologica Acta》1998,21(2):325-333
The arsenic (As) cycle in the marine environment is known to be sensitive to biological activity. Within the scope of the National Coastal Oceanography Program, we undertook a specific study of the behaviour of this element in a water column on the continental shelf of the Bay of Biscay off the Gironde estuary during two oceanographic cruises conducted in May 1994 and May 1995. Various chemical forms were measured: arsenate (As3), arsenate (As5), monomethylarsenic (MMA), dimethylarsenic (DMA) and dissolved total As after ultraviolet mineralization. The net flux of total As from the Gironde estuary was evaluated as well as its effect on the concentration in surface marine waters. The vertical profiles in the coastal zone during a period of active primary production confirmed a certain analogy between arsenates and phosphates as well as the formation of As3 and DMA. The importance of organoarsenic species not directly accessible to the formation of volatile hydrides is demonstrated. Their presence modifies assessments, reducing the deficit of dissolved total As in the euphotic layer to just 5%. For particles, the As content in phytoplankton was estimated at 6 μg·g−1 compared to 20 to 30 μg·g−1 in iron- and aluminium-rich terrigenous particles. These results do not invalidate the role of phytoplankton in the speciation of dissolved As but indicate that their involvement in vertical transfers was apparently not predominant in the zone under study.  相似文献   

4.
We describe the impact of an open-ocean convection event on nutrient budgets, carbon budget, elemental stoichiometry, phytoplankton biomass and activity in the Northwestern Mediterranean Sea (NWM). In the convective episode examined here we estimated an input of nutrients to the surface layer of 7.0, 8.0 and 0.4×108 mol of silicate, nitrate and phosphate, respectively. These quantities correspond to the annual nutrient input by river discharges and atmospheric depositions in the Gulf of Lion. Such nutrient input is sufficient to sustain new primary production from 46 to 63 g C m−2 y−1, which is the same order of magnitude found in the NWM open waters. Our results together with satellite data analysis, propose new scenarios that explain the origin of the spring phytoplankton bloom occurring in NWM.  相似文献   

5.
An enhancement of aeolian inputs to the ocean due to a future increase in aridity in certain parts of the world is predicted from global change. We conducted an experimental simulation to assess the biological response of NW Mediterranean coastal surface waters to an episodic dust addition. On the assumption that planktonic growth was limited by phosphorus, dust effects were compared to those induced by equivalent enrichments of phosphate. The experiment analyzed the dynamics of several parameters during one week: inorganic nutrients, total and fractioned chlorophyll a, bacterial abundance, phytoplankton species composition, abundance of autotrophic and heterotrophic flagellates, particulate organic carbon and particulate organic nitrogen. The maximum addition of dust (0.5 g dust L−1) initiated an increase in bacterial abundance. After 48 h, bacterial numbers decreased due to a peak in heterotrophic flagellates and a significant growth of autotrophic organisms, mainly nanoflagellates but also diatoms, was observed. Conversely, lower inputs of dust (0.05 g dust L−1) and phosphate enrichments (0.5 μmol PO43− L−1) only produced increases in phototrophic nanoflagellates. In our experiment, dust triggered bacterial growth, changed phytoplankton dynamics and affected the ratio of autotrophic to heterotrophic biomass, adding to the variability in the sources that affect system dynamics, energy and carbon budgets and ultimately higher trophic levels of the coastal marine food web.  相似文献   

6.
Carbonate system parameters (pH and alkalinity) were used to estimate the coastal water CO2 fluxes off central Chile (30°S) during September 2007. Coastal waters rich in nitrate and silicate were strongly CO2 supersaturated and normally poor in chlorophyll a. MODIS satellite chlorophyll a data suggest that phytoplankton biomass remained particularly low during September 2007 although coastal waters were highly fertilized with nitrate and silicate. The phytoplankton gross primary productivity in macronutrient-rich waters was very low with the exception of shallow waters (e.g. within or near bays). Several iron-enrichment bottle experiments show that fCO2 rapidly decreases during iron-enrichment treatments compared to controls. This suggests that iron limitation of phytoplankton growth (mainly diatoms) plays a role in maintaining high-CO2 outgassing by preventing rapid interception of upwelled CO2.  相似文献   

7.
Nutrients, chlorophyll-a, particulate organic carbon (POC), and environmental conditions were extensively investigated in the northern East China Sea (ECS) near Cheju Island during three seasonal cruises from 2003 to 2005. In spring and autumn, relatively high concentrations of nitrate (2.6~12.4 μmol kg-1) and phosphate (0.17~0.61 μmol kg-1) were observed in the surface waters in the western part of the study area because of the large supply of nutrients from deep waters by vertical mixing. The surface concentrations of nitrate and phosphate in summer were much lower than those in spring and autumn, which is ascribed to a reduced nutrient supply from the deep waters in summer because of surface layer stratification. While previous studies indicate that upwellings of the Kuroshio Current and the Changjiang (Yangtze River) are main sources of nutrients in the ECS, these two inputs seem not to have contributed significantly to the build-up of nutrients in the northern ECS during the time of this study. The lower nitrate:phosphate (N:P) ratio in the surface waters and the positive correlation between the surface N:P ratio and nitrate concentration indicate that nitrate acts as a main nutrient limiting phytoplankton growth in the northern ECS, contrary to previous reports of phosphate-limited phytoplankton growth in the ECS. This difference arises because most surface water nutrients are supplied by vertical mixing from deep waters with low N:P ratios and are not directly influenced by the Changjiang, which has a high N:P ratio. Surface chlorophyll-a levels showed large seasonal variation, with high concentrations (0.38~4.14 mg m-3) in spring and autumn and low concentrations (0.22~1.05 mg m-3) in summer. The surface distribution of chlorophyll-a coincided fairly well with that of nitrate in the northern ECS, implying that nitrate is an important nutrient controlling phytoplankton biomass. The POC:chlorophyll-a ratio was 4~6 times higher in summer than in spring and autumn, presumably because of the high summer phytoplankton death rate caused by nutrient depletion in the surface waters.  相似文献   

8.
Nutrient and chlorophyll a concentrations and distributions in two adjoining regions of the South Atlantic Bight (SAB), Onslow Bay and nearshore Long Bay, were investigated over a 3-year period. Onslow Bay represents the northernmost region of the SAB, and receives very limited riverine influx. In contrast, Long Bay, just to the south, receives discharge from the Cape Fear River, draining the largest watershed within the State of North Carolina, USA. Northern Long Bay is a continental shelf ecosystem that has a nearshore area dominated by nutrient, turbidity and water-color loading from inputs from the river's plume. Average planktonic chlorophyll a concentrations ranged from 4.2 μg l−1 near the estuary mouth, to 3.1 μg l−1 7 km offshore in the plume's influence, to 1.9 μg l−1 at a non-plume station 7 km offshore to the northeast. Average areal planktonic chlorophyll a was approximately 3X that of benthic chlorophyll a at plume-influenced stations in Long Bay. In contrast, planktonic chlorophyll a concentrations in Onslow Bay were normally <0.50 μg l−1 at a nearshore (8 km) site, and <0.15 μg l−1 at sites located 45 and 100 km offshore. However, high water clarity (KPAR 0.10–0.25 m−1) provides a favorable environment for benthic microalgae, which were abundant both nearshore (average 58.3 mg m−2) and to at least 45 km offshore in Onslow Bay (average 70.0 mg m−2) versus average concentrations of 10–12 mg m−2 for river-influenced areas of Long Bay. This provides evidence that much of the inner shelf food web in Onslow Bay is based on benthic microalgal production, in contrast to a plankton-based food web in northern Long Bay and more southerly areas of the SAB.  相似文献   

9.
Abundance of picoplanktonic chroococcoid marine cyanobacteria Synechococcus was monitored weekly over the year 1998 in shallow coastal waters of the northern Levantine Basin. The ambient physical, chemical and biological variables (temperature, salinity, Secchi disk depth, total suspended sediment, nitrate, phosphate, Chl a and phytoplankton) were also measured. Synechococcus was found to be more abundant during summer and early autumn and less during winter and early spring. At the surface and 15 m depth, cell concentrations were in the range 6.4 × 103–1.5 × 105 and 3.2 × 103–1.6 × 105 cells·ml−1, respectively. Based on the Pearson product–moment correlation analysis, a highly significant correlation between Synechococcus abundance and ambient temperature was observed (n = 40, r = 0.558, P < 0.01). As Synechococcus forms blooms that usually do not last more than a week, the short time‐scale survey achieved in this study was appropriate to reveal its abundance dynamics. Several factors such as rapid changes in nutrient concentration (especially nitrate), phytoplankton, light availability, temperature, salinity, freshwater input and vertical mixing played a relevant role on the abundance of Synechococcus over the year in the highly dynamic shallow coastal waters of the Levantine Basin.  相似文献   

10.
Ocean Station Papa (OSP, 50°N 145°W) in the NE subarctic Pacific is characterised as high nitrate low chlorophyll (HNLC). However, little is known about the spatial extent of these HNLC waters or the phytoplankton dynamics on the basin scale. Algal biomass, production and size-structure data are presented from winter, spring and summer between 1992 and 1997 for five stations ranging from coastal to open-ocean conditions. The inshore stations (P04–P16) are characterised by the classical seasonal cycle of spring and late summer blooms (production >3 g C m−2 d−1), diatoms are not Fe-stressed, and growth rate is probably controlled by macronutrient supply. The fate of the phytoplankton is likely sedimentation by diatom-dominated spring blooms, with a pelagic recycling system predominating at other times. The offshore stations (P20/OSP) display low seasonality in biomass and production (OSP, mean winter production 0.3 g C m−2 d−1, mean spring/summer production 0.85 g C m−2 d−1), and are dominated by small algal cells. Low Fe availability prevents the occurrence of diatom blooms observed inshore. The main fate of phytoplankton is probably recycling through the microbial food web, with relatively low sedimentation compared to inshore. However, the supply of macro- and micro-nutrients to the coastal and open ocean, respectively, may vary between years. Variability in macro-nutrient supply to the coastal ocean may result in decreased winter reserve nitrate, summer nitrate limitation, subsequent floristic shifts towards small cells, and reduced primary production. Offshore, higher diatom abundances are occasionally observed, perhaps indicating episodic Fe supply. The two distinct oceanic regimes have different phytoplankton dynamics resulting in different seasonality, community structure and fate of algal carbon. These differences will strongly influence the biogeochemical signatures of the coastal and open-oceanic NE subarctic Pacific.  相似文献   

11.
《Oceanologica Acta》1998,21(6):923-935
As part of the Programme National d'Océanographie Côtière, the nutrient dynamics of the Bay of Seine were studied between 1992 and 1994 in order to complement work on ecological modelling. Firstly, the River Seine's nutrient fluxes were established: 80 000–130 000 t a−1 of dissolved inorganic nitrogen, 6 400–8 4001 a−1 of dissolved phosphorus and 20 000–77 000 t a−1 of dissolved silicium. Estuarine processes were taken into account. Consequences of nutrient loading for the bay were then evaluated at the pelagic level (nutrient and chlorophyll enrichments) and the benthic level (distribution of various phosphorus fractions in superficial sediments). The large continental inputs always induce concentration gradients in the water from the mouth of the river to the northwest of the bay. The northward spreading of fine particulate matter controls the distribution of adsorbed phosphate and iron-aluminium bound phosphate in sediments. In contrast, calcium bound phosphate, the main fraction in sediments, is not affected by river inputs. Organic phosphorus in sediments is related to phytoplankton blooms, with increasing concentrations during productive periods; afterwards the fast recycling prevents sedimentary accumulation. The nutrient depletions observed beyond the turbid plume during spring 1992 enabled the calculation of nutrient uptake rates, and the comparison of these rates with phytoplankton biomass (chlorophyll a + phaeopigments). Ratios of nutrient consumption to pigment concentration were estimated at 1 μmol μg−1 for nitrogen, 0.05 for phosphorus and 0.5 for silicate. These values, as N/P and Si/N uptake ratios (respectively 17.5 and 0.4), were similar to usual values.  相似文献   

12.
The European Regional Seas Ecosystem Model (ERSEM) has been coupled with a two-dimensional depth-averaged transport model of the Humber plume region and run to simulate 1988–1989. Simulations of the spatial and temporal variations in chlorophyll-a, nitrate, phosphate and suspended particulate matter distributions in winter, spring and summer show how the development of the spring bloom and subsequent maintenance of primary production is controlled by the physicochemical environment of the plume zone. Results are also shown for two stations, one characterised by the high nutrient and suspended matter concentrations of the plume and the other by the relatively low nutrient and sediment concentrations of the offshore waters. The modelled net primary production at the plume site was 105 g C m−2 a−1 and 127 g C m−2 a−1 offshore. Primary production was controlled by light limitation between October and March and by the availability of nutrients during the rest of the year. The phytoplankton nutrient demand is met by in-situ recycling processes during the summer. The likely effect of increasing and decreasing anthropogenic riverine inputs of nitrate and phosphate upon ecosystem function was also investigated. Modelling experiments indicate that increasing the nitrogen to silicate ratio in freshwater inputs increased the production of non-siliceous phytoplankton in the plume. The results of this model have been used to calculate the annual and quarterly mass balances describing the usage of inorganic nitrogen, phosphate and silicate within the plume zone for the period of the NERC North Sea survey (September 1988 to October 1989). The modelled Humber plume retains 3.9% of the freshwater dissolved inorganic nitrogen, 2.2% of the freshwater phosphate and 1.3% of the freshwater silicate input over the simulated seasonal cycle. The remainder is transported into the southern North Sea in either dissolved or particulate form. The reliability of these results is discussed.  相似文献   

13.
We conducted a study that shows that light and dark conditions do not affect the uptake rates of ammonium and nitrate by the seagrass Zostera noltei. This is an important advantage over some seaweed species in which these rates are severely reduced at night. In the light, the ammonium uptake rates were initially higher (15 and 20 μmol·g?1·h?1) and stabilized at a rate of 5 μmol·g?1·h?1 after 1 h, whereas in the dark the rates remained constant at a rate of 10 μmol·g?1·h?1 over the first 180 min of incubation. The rates of nitrate uptake in the light were high within the first 120 min of incubation (7.2–11.1 μmol·g?1·h?1) and decreased afterwards to lower values (0.8–3.9 μmol·g?1·h?1), whereas in the dark the rates fluctuated around 0.0–11.1 μmol·g?1·h?1 throughout the whole incubation time (7 h). The soluble sugar content of Z. noltei leaves increased significantly with both ammonium and nitrate incubations in the light, indicating the metabolic outcome of photosynthesis. In the dark, there was no significant variation in either the soluble sugar or in the starch content of leaves, rhizomes or roots in either the ammonium or nitrate incubations. However, the total starch content of plants decreased at night whereas the total soluble sugars increased, suggesting a process of starch catabolism to generate energy with the consequent production of smaller monosaccharide products. The starch content of rhizomes decreased significantly during the light incubations with nitrate but not with ammonium. These results suggest that carbohydrate mobilization is necessary for Z. noltei to account for extra energetic costs needed for the uptake and assimilation of nitrate. Furthermore, our results suggest that nitrate uptake, at least during the day, requires the mobilization of starch whereas the uptake of ammonium does not.  相似文献   

14.
透明胞外聚合颗粒物(TEP)在海洋微食物网和海洋碳循环中发挥着重要作用。本文针对夏季闽东沿海TEP的分布特征及影响因素进行研究。结果表明,闽东沿海TEP含量(以黄原胶为标准物质计算,后同)范围为25.2~935.5 μg/L,平均值为(201.8±177.9) μg/L。整体而言,TEP的分布表现为近岸高、远岸低,表层TEP含量相对于底层要低。相关性分析显示,研究海域TEP含量与浊度和营养盐(硅酸盐、磷酸盐、硝酸盐、亚硝酸盐和铵盐)浓度呈正相关,与pH、溶解氧浓度和小型浮游生物量呈负相关。分级叶绿素a结果显示,相对于其他尺寸浮游植物,调查海域小型浮游生物可能对TEP含量的贡献最大。相比于开阔大洋中TEP主控因素为浮游植物而言,夏季闽东海域TEP主要由浮游植物在衰退阶段产生,其分布主要受颗粒物再悬浮作用影响。该结果不仅进一步阐明了近岸海域与开阔大洋TEP影响因素的区别,并且对我国近海海域不同区域TEP分布研究空白进行了补充。  相似文献   

15.
《Marine Chemistry》2007,103(1-2):84-96
An isotope dilution method has been developed to determine by gas chromatography/mass spectrometry (GC/MS) the rates of ammonium and nitrite oxidation in severely oligotrophic marine waters. The method is based on the formation of sudan-1 from nitrite, or from nitrate following reduction to nitrite. Samples were collected by solid phase extraction and purified by high performance liquid chromatography (HPLC). A deuterated sudan-1 internal standard was synthesized, purified by HPLC and used for quantitative analysis. Concentrations of NO2 and NO3 were generally < 2 nmol/kg and < 5 nmol/kg respectively, typical of oligotrophic surface waters, and turnover times for the inorganic N pools ranged from < 1 day to > 10 days. Significant rates of nitrification were measured in the surface oligotrophic ocean, with rates of ammonium and nitrite oxidation generally within the range of 10–500 pmol/kg/h. Consequently, a significant proportion of daily NO3 assimilation by marine phytoplankton is regenerated, and not new. In a case study of the oligotrophic gyre of the North Atlantic, the influence of NH4+ regeneration and nitrification on f-ratio values suggests that in the oligotrophic ocean, f-ratio values may be significantly, and sometimes grossly, overestimated.  相似文献   

16.
Phytoplankton growth and microzooplankton grazing were studied during the 2007 spring bloom in Central Yellow Sea. The surveyed stations were divided to pre-bloom phase (Chl a concentration less than 2 μg L−1), and bloom phase (Chl a concentration greater than 2 μg L−1). Shipboard dilution incubation experiments were carried out at 19 stations to determine the phytoplankton specific growth rates and the specific grazing rates of microzooplankton on phytoplankton. Diatoms dominated in the phytoplankton community in surface waters at most stations. For microzooplankton, Myrionecta rubra and tintinnids were dominant, and heterotrophic dinoflagellate was also important in the community. Phytoplankton-specific growth rates, with an average of 0.60±0.19 d−1, were higher at pre-bloom stations (average 0.62±0.17 d−1), and lower at the bloom stations (average 0.59±0.21 d−1), but the difference of growth rates between bloom and pre-bloom stations was not statistically significant (t test, p=0.77). The phytoplankton mortality rate by microzooplankton grazing averaged 0.41±0.23 d−1 at pre-bloom stations, and 0.58±0.31 d−1 during the blooms. In contrast to the growth rates, the statistic difference of grazing rates between bloom and pre-bloom stations was significant (after removal of outliers, t test, p=0.04), indicating the importance of the top-down control in the phytoplankton bloom processes. Average potential grazing efficiency on primary productivity was 66% at pre-bloom stations and 98% at bloom stations, respectively. Based on our results, the biomass maximum phase (bloom phase) was not the maximum growth rate phase. Both phytoplankton specific growth rate and net growth rate were higher in the pre-bloom phase than during the bloom phase. Microzooplankton grazing mortality rate was positively correlated with phytoplankton growth rate during both phases, but growth and grazing were highly coupled during the booming phase. There was no correlation between phytoplankton growth rate and cell size during the blooms, but they were positive correlated during the pre-bloom phase. Our results indicate that microzooplankton grazing is an important process controlling the growth of phytoplankton in spring bloom period in the Central Yellow Sea, particularly in the “blooming” phase.  相似文献   

17.
The tropical seagrass Halophila stipulacea is dominant in most regions of the Indo‐Pacific and the Red Sea and was introduced into the Mediterranean Sea after the opening of the Suez canal. The species is considered invasive in the Mediterranean Sea and has been progressively colonizing new areas westward. Growth and photosynthetic responses of H. stipulacea have been described but no information is yet available on the nitrogen nutrition of the species. Here we simultaneously investigated the uptake kinetics of ammonium and nitrate and the internal translocation of incorporated nitrogen in H. stipulacea using 15N‐labelled substrates across a range of Ni levels (5, 25, 50 and 100 μm ). The ammonium uptake rates exceeded the nitrate uptake rates 100‐fold, revealing a limited capacity of H. stipulacea to use nitrate as an alternative nitrogen source. The uptake rates of ammonium by leaves and roots were comparable up to 100 μm 15NH4Cl. At this concentration, the leaf uptake rate was 1.4‐fold higher (6.22 ± 0.70 μmol·g?1 DW h?1) than the root uptake rate (4.54 ± 0.28 μmol·g?1 DW h?1). The uptake of ammonium followed Michaelis–Menten kinetics, whereas nitrate uptake rates were relatively constant at all nutrient concentrations. The maximum ammonium uptake rate (Vmax) and the half‐saturation constant (Km) of leaves (9.79 μmol·g?1 DW h?1 and 57.95 μm , respectively) were slightly higher than that of roots (6.09 μmol·g?1DW h?1 and 30.85 μm , respectively), whereas the affinity coefficients (α = Vmax/Km) for ammonium of leaves (0.17) and roots (0.20) were comparable, a characteristic that is unique among seagrass species. No substantial translocation (<2.5%) of 15N incorporated as ammonium was detected between plant parts, whereas the translocation of 15N incorporated as nitrate was higher (40–100%). We conclude that the Ni acquisition strategy of H. stipulacea, characterized by a similar uptake capacity and efficiency of leaves and roots, favors the geographical expansion potential of the species into areas with variable water‐sediment N levels throughout the Mediterranean.  相似文献   

18.
Sea level, salinity, temperature, nitrate, nitrite, phosphate, silicate, chlorophylls a, b and c and their phaeophytins, phytoplankton abundance and phytoplankton productivity time series were generated for the mouth and three interior locations of Bahia San Quintin, Baja California, Mexico, for 10 days during summer of 1979. The samples were taken once every 2 h. This was done to describe space and time variability of these ecological properties and to elucidate the main factors that cause this variability. Upwelling events bring nutrient reach waters near the bay mouth and tidal currents propagate those waters throughout the bay. Nutrient remineralization at the sediments and the effect of turbulence induced by tidal currents and winds increase nutrient concentrations in the interiors of the bay. In comparison with available information on nutrients limited growth of planktonic algae, nutrients seemed not to be limiting to phytoplankton growth during the sampling period. Phytoplankton cell abundances at the extremes of the lagoon are an order of magnitude lower than at the mouth due to greater turbidity. Chlorophyll concentrations at the extremes are about one-third of those of the mouth. Primary productivity decreases from the mouth to the interiors in the same manner as chlorophyll does. There is not a significant difference in cell size between phytoplankton at the bay mouth and those at the extremes of the bay. Primary productivity in the bay is comparable to the productivity maxima of other upwelling areas. There is no clear permanent dominance of diatoms over dinoflagellates, or vice versa, at any location in the bay. The alternation of upwelling and non-upwelling played an important role, together with that of the spring-neap tide cycle, in producing low frequency (< 0.01 cycles h?1) temporal variability of ecological properties throughout the bay.  相似文献   

19.
The uptake of urea, nitrate and ammonium by phytoplankton was measured using 15N isotopes over a one-year period in Great South Bay, a shallow coastal lagoon. The bay is a unique environment for the study of nutrient uptake since ambient concentrations of NO3?NH4+ and urea remain relatively high through the year, and phytoplankton are probably never nutrient limited. Urea nitrogen averaged 52% of the total assimilated, while ammonium represented 33% and nitrate 13%. High rates of ammonium uptake occurred only at low urea concentrations (ca< 1-μg-atom urea l?1). Over the sampling period urea was present in relatively high concentrations, averaging 5·35 μg-atom N l?1, while means for ammonium and nitrate averaged 1·94 and 0·65 μg-atom N l?1, respectively. Total N uptake measured with 15N averaged about 3·3 times the calculated (from elemental ratios and 14C productivity measurements) N needs of the phytoplankton population. Highest nitrogen uptake occurred in the summer and coincided with the primary production maximum.  相似文献   

20.
The annual loads of nutrients (TOxN equal to nitrate+nitrite; ammonium, phosphate, silicate) to all the estuaries on the mainland of the United Kingdom were estimated from data on water flow through gauging stations at the tidal limits of estuaries, and from concentration measurements under the Harmonised Monitoring Scheme of nutrient concentrations in water samples from these stations. The annual loads of nutrients showed distinct regional variations, with estuaries along the west coast of Wales and northern Scotland having much smaller loads than those along the east coast of England. The largest nitrogen loads were of TOxN, and ammonium loads were usually small in comparison. The Severn, Mersey, Humber and Thames had the highest loads, although these were small in relation to the larger continental European estuaries. Loads of TOxN per unit of catchment area were surprisingly constant (about 105 moles N km−2 y−1). The nutrient loads showed that most U.K. catchments were influenced by human activity, the majority being in the ‘ moderately influenced ’ category. Nutrient loads were also normalized for the area of each estuary, as a measure of the relative influence of nutrients on the receiving estuaries. The ratios of N:P, N:Si and P:Si in the annual loads suggested that most estuaries were likely to be, if anything, P limited rather than N or Si limited. However, crude annual loads may conceal significant seasonal variations.The spring maximum chlorophylla concentrations in coastal waters adjacent to each estuary were significantly correlated with the log total annual loads of TOxN, ammonium and phosphate (but not silicate) for each estuary, providing a direct link between a measure of the degree of biological response in coastal waters and the nutrient load through the estuaries. There were no significant correlations between spring maximum chlorophyll a concentrations and either catchment-normalized or estuary-normalized nutrient loads. There was significant correlation between catchment area-normalized loads of phosphate and an urbanization index for the catchments, but not with the catchment area-normalized loads of the other nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号