首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Nolan site (16MA201), 14C dated 5200–4800 cal yr B.P. and located in the Tensas Basin of northeastern Louisiana, is the only recorded Middle Archaic mound site in the alluvial valley of the Mississippi River. Alluvial deposition has buried the Nolan site under 3–4 m of Holocene sediment, prohibiting traditional excavation of the site. Because data are unattainable by other means, soil coring and subsequent stratigraphic and sedimentological analyses permit reconstruction of the natural and cultural depositional history of the Nolan site. The sedimentary characteristics of basal deposits within cores suggest the presence of an Arkansas River paleochannel immediately adjacent to the site. Chronostratigraphic data show this channel was no longer active by ca. 5200 cal yr B.P. Contrary to existing models, the Arkansas River Meander Belt 4 and the Mississippi River Meander Belt 4 are not the same age. Microartifact and losson‐ignition analyses of sediment identify natural versus cultural strata and permit the identification of artificial constructions—including four earthen mounds and one earthen ridge—at the Nolan site. Overbank sediments attributed to a mapped Mississippi River Stage 4 meander belt are dated ca. 4800–3800 cal yr B.P. This age is considerably younger than previous estimates and demonstrates the existing chronological models for Mississippi River meander belts must be carefully assessed. Core analyses also reveal flood‐related crevasse splays deposited throughout the Tensas Basin after the occupation of the Nolan site. These deposits serve as relative chronological indicators and aid in stratigraphic assessments of the Nolan site. Reconstruction of the earthworks and their stratigraphic context reveals one of the largest and earliest Middle Archaic mound sites in North America. © 2006 Wiley Periodicals, Inc.  相似文献   

2.
A filled prehistoric water well discovered at the village of San Marcos Necoxtla, Puebla, Mexico, may be the oldest directly dated water-management feature in the Americas. The ∼10 m stratigraphic section exposed at this remarkable site records 18,000+ yr of deposition, erosion, water-table and hydrochemical fluctuations, and ≥10,000 yr of continual occupation. Temporal control is afforded by a multicomponent cultural chronology and radiocarbon assays by conventional and experimental techniques. The ∼10 m wide, ∼5 m deep well was excavated, utilized, maintained, and filled with cultural material between <9863 and ≫5950 yr B.P., a span of ≪3913 yr. Ages of other reported Late Pleistocene(?) to Middle Holocene wells in the New World are based on indirect or questionable dating, or are ≤6600 yr. Because of its age and continuity of occupation, the San Marcos Necoxtla well site may help define the nature of the peopling of the Americas and the advent of New World agriculture. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
The Big Eddy site (23CE426) in the Sac River valley of southwest Missouri is a rare recorded example of distinctly stratified Early through Late Paleoindian cultural deposits. Early point types recovered from the site include Gainey, Sedgwick, Dalton (fluted and unfluted), San Patrice, Wilson, and Packard. The Paleoindian record at Big Eddy represents only a fraction of the site's prehistoric cultural record; stratified cultural deposits in alluvium above the Paleoindian components span the entire known prehistoric sequence, and terminal Pleistocene alluvium may contain pre‐Early Paleoindian cultural deposits. This study focused on the paleogeomorphic setting, stratigraphy, depositional environments, pedology, geochronology, and history of landscape evolution of the late Pleistocene and early Holocene alluvium at the site. The Paleoindian sequence is associated with a complex buried soil 2.85 m below the modern surface (T1a) of the first terrace of the Sac River valley in the site vicinity. This soil formed at the top of the early submember of the Rodgers Shelter Member (underlying the T1c paleogeomorphic surface) and contains at least 70 cm of stratified Paleoindian cultural deposits, all in floodplain and upper point‐bar facies. A suite of 36 radiocarbon ages indicates that the alluvium hosting the Paleoindian sequence aggraded between ca. 13,250 and 11,870 cal yr B.P. (11,380 and 10,180 14C yr B.P.). Underlying deposits accumulated between ca. 15,300 and 13,250 cal yr B.P. (12,950 and 11,380 14C yr B.P.). By ca. 11,250 cal yr B.P. (9,840 14C yr B.P.) the T1c paleogeomorphic surface was buried by the earliest increment of a thick sequence of overbank sheetflood facies, ultimately resulting in deep burial and preservation of the Paleoindian record. The landform‐sediment assemblage that hosts the Paleoindian and possibly earlier cultural deposits at Big Eddy is both widespread and well preserved in the lower Sac River valley. Moreover, the terminal Pleistocene and early Holocene depositional environments were favorable for the preservation of the archaeological record. © 2007 Wiley Periodicals, Inc.  相似文献   

4.
The Great Plains contain many of the best‐known Paleoindian sites in North America, and a number of these localities were key to determining the chronology of Paleoindian occupations in the years before, during, and since the development of radiocarbon and other chronometric dating methods. Initial attempts at dating were based on correlation with extinct fauna, the “geologic‐climatic” dating method, and stratigraphic relationships of artifacts within sites. By the time radiocarbon dating was developed (1950), the basic Paleoindian sequence (oldest to youngest) was: Clovis‐Folsom‐unfluted lanceolates (such as Plainview, Eden, and Scottsbluff). Initial applications of radiocarbon dating in the 1950s did little to further resolve age relationships. In the 1960s, however, largely through the efforts of C. V. Haynes, a numerical geochronology of Paleoindian occupations on the Great Plains began to emerge On the Southern Great Plains the radiocarbon‐dated artifact chronology is: Clovis (11,600–11,000 yr B.P.); Folsom and Midland (10,900–10,100 yr B.P.); Plainview, Milnesand, and Lubbock (10,200–9800 yr B.P.); Firstview (9400–8200 yr B.P.); St. Mary's Hall, Golondrina, and Texas Angostura (9200–8000 yr B.P.). The chronology for the Northern Great Plains is: Clovis (11,200–10,900 yr B.P.); Goshen (ca. 11,000 yr B.P.); Folsom (10,900–10,200 yr B.P.); Agate Basin (10,500–10,000 yr B.P.); Hell Gap (10,500–9500 yr B.P.); Alberta, Alberta‐Cody (10,200–9400 yr B.P.); Cody (Eden‐Scottsbluff) (9400–8800 yr B.P.); Angostura, Jimmy Allen, Frederick, and other parallel‐oblique types (9400–7800 yr B.P.). Fifty years after the development of radiocarbon dating, the basic typological sequence has not changed significantly except for the realization that there probably was significant temporal overlap of some point types, and that the old unilinear sequence does not account for all the known typological variation. The chronology has been continually refined with the determination of hundreds of radiocarbon ages in recent decades. © 2000 John Wiley & Sons, Inc.  相似文献   

5.
Until the early 1950s, it was believed that the archaeological record of eastern Washington state did not exceed 4000 years. That belief changed in the middle 1950s after discovery of the Lind Coulee site (45GR97), originally dated to the Holocene on the basis of geochronological data and subsequently dated via radiocarbon to 8700 B.P. Geochronology and geoarchaeology provided temporal control and resulted in archaeological time being measured discontinuously as stratigraphically associated sets of artifacts were stacked one upon the other. Percentage stratigraphy and frequency seriation played no role in the measurement of time or the construction of cultural chronologies. Local cultural chronologies originally constructed on the basis of chronostratigraphic marker horizons were not significantly altered in the 1960s and 1970s because few radiocarbon ages were run and the chronological validity of the ages was questioned. The increased intensity of cultural resource management in the 1980s witnessed a marked increased in the production of radiocarbon ages, but extant cultural chronologies have not been significantly altered in structure or appearance. © 2000 John Wiley & Sons, Inc.  相似文献   

6.
Pioneer is an open‐air, stratified, multicomponent archaeological site located in the upper Snake River Plain of southeastern Idaho, USA. Block excavations provided an opportunity to contribute to the Late Quaternary geomorphic history of the Big Lost River drainage and provide geochronological context of archaeological components at the site. The stratigraphic sequence is interpreted as reflecting multiple depositional episodes and five soil‐formation periods beginning pre‐7200 cal. yr B.P. and lasting to the historic period. The stratigraphic sequence contains an archaeological component dated to ∼3800 cal. yr B.P. and several other components post‐800 cal. yr B.P. Major site formation processes include fluvial deposition and erosion, pedogenesis (accumulation of secondary carbonates), and bioturbation. Periods of increased deposition at Pioneer and elsewhere along the Big Lost River are inferred to have occurred between ∼8400–6500 cal. yr B.P. and ∼2700–400 cal. yr B.P., potentially related to cooler/wetter episodes of the mid‐to‐late Holocene, including increased precipitation during the Medieval Climatic Anomaly (post‐750 cal. yr B.P.). There is also evidence of a high‐energy erosional event at ∼3800 cal. yr B.P. indicating a large middle Holocene flood. Pioneer provides an example of the archaeological and paleoclimatic value of studying alluvial buried soil stratigraphic sequences in arid environments.  相似文献   

7.
North America's Atlantic Coast has been a focus of human settlement and subsistence for millennia, but sea‐level rise, sedimentation, and other processes pose significant challenges for archaeological research. Radiocarbon dating of 31 shell middens near the Rhode River Estuary, Maryland provides an opportunity to evaluate human land use, settlement, and cultural chronologies on the Chesapeake Bay. Sixty calibrated radiocarbon dates on eastern oyster (Crassostrea virginica) shell and charcoal demonstrate that Native Americans, colonial, and historic peoples harvested oysters and other shellfish from at least 3200 years ago through the 19th century. The number of dated sites increases during the Late Woodland period after about 1000 cal yr B.P., a factor probably related to greater site visibility and preservation, as well as increased human exploitation of the watershed. Accumulation rates for five of the shell middens provide preliminary indications that some of the sites accumulated rapidly suggesting, along with other evidence, that many of the region's shell middens were logistical or perhaps seasonal camps. Our study demonstrates the importance of regional watershed surveys and radiocarbon dating programs to help build and refine cultural chronologies in coastal regions threatened by sea‐level rise and other processes.  相似文献   

8.
Accelerator mass spectrometer radiocarbon ages of the Roxana Silt (loess) along the Upper Mississippi Valley of Wisconsin and Minnesota indicate that loess sedimentation of the Roxana Silt occurred between about 55,000 and 27,000 14 C yr B.P. However, due to local environmental controls, the basal age at any given site may range from 55,000 to 35,000 14C yr B.P. The radiocarbon ages presented here are in agreement with previous radiocarbon ages for the Roxana Silt in its type area of west-central Illinois, but indicate that long-term sedimentation rates along the bluffline of the Upper Mississippi Valley were very slow (4-8 cm/1000 yr) compared to long-term sedimentation rates along the bluffline of the type area (40-70 cm/1000 yr). Comparison of radiocarbon ages for midcontinent middle Wisconsinan loess deposits indicates that sedimentation along the Mississippi River valley may have preceded loess sedimentation along the Missouri River valley by as much as 20,000 yr or that basal ages for middle Wisconsinan loess along the Missouri Valley are erroneously young. The bracketing ages for the Upper Mississippi Valley Roxana Silt indicate that the Mississippi River valley was receiving outwash sedimentation between 55,000 and 27,000 14C yr B.P.  相似文献   

9.
The highest shoreline features of paleo-Lake Malheur are undated gravelly barrier beaches south of Harney Lake that lie ca. 3.5 m higher than the hydrographic outlet of Harney Basin at Malheur Gap (1254 m). The earliest Quaternary record for Lake Malheur consists of occurrences of water-deposited tephra dated to ca. 70,000–80,000 yr ago. The next identified lake interval is dated by shells with ages of ca. 32,000 and 29,500 yr B.P. No dates are available for the terminal-Pleistocene Lake Malheur. Lake(s) were present between ca. 9600 and 7400 yr B.P., although periodic low levels or desiccation are suggested by a paleosol dated as ca. 8000 yr B.P. The lake system probably dried further after 7400 yr B.P., although dates are lacking for the period between ca. 7400 and 5000 yr B.P. Dune deposits on the lake floor are ca. 5000 yr old and indicate generally dry conditions. Fluctuating shallow lakes have probably characterized the last 2000 years. A date of 1000 yr B.P. gives a maximum age for beach deposits at 1254 m, near the basin threshold elevation. Thus, the Malheur Lake system may have drained to the Pacific Ocean by way of Malheur Gap during the latest Holocene.  相似文献   

10.
Human occupation and utilization of plant resources have affected vegetation in the lower Little Tennessee River Valley of East Tennessee for 10,000 yr. Changes in Indian cultures and land use are documented by radiocarbon chronologies, lithic artifacts, ceramics, settlement patterns, and ethnobotanical remains from 25 stratified archaeological sites within the Holocene alluvial terrace. The ethnobotanical record consists of 31,500 fragments (13.7 kg) of wood charcoal identified to species and 7.7 kg of carbonized fruits, seeds, nutshells, and cultigens from 956 features. Pollen and plant macrofossils from small ponds both in the uplands and on lower stream terraces record local vegetational changes through the last 1500 to 3000 yr. Human impact increased after cultigens, including squash and gourd, were introduced ca. 4000 yr B.P. during the Archaic cultural period. Forest clearance and cultivation disturbed vegetation on both the floodplain and lower terraces after 2800 yr B.P., during the Woodland period. Permanent Indian settlements and maize and bean agriculture extended to higher terraces 1.5 km from the floodplain by the Mississippian period (1000 to 300 yr B.P.). After 300 yr B.P., extensive land clearance and cultivation by Historic Overhill Cherokee and Euro-Americans spread into the uplands beyond the river valley.  相似文献   

11.
12.
This paper compares archaeological evidence of Aboriginal occupation inside rock shelters and outside in adjacent sand sheets, focusing on two locations in the Keep‐River region, northwestern Australia. Luminescence and radiocarbon dating reveal that occupation sequences inside rock shelters are generally younger ( < 10,000 yr B.P.) than outside ( < 18,000 yr B.P.). Differences in occupation chronology and artifact assemblages inside and outside rock shelters result from depositional and postdepositional processes and shifts in site function. An increase in regional sedimentation rate from 10 cm/ka − 1 in the Pleistocene to 20 cm/ka − 1 in the Holocene may account for late buildup of sediments within rock shelters, increased artifact accumulation, and reduced postdepositional disturbance in some settings. More intense use of rock shelters in the Late Holocene is indicated from a change in hunting technology and greater production of rock art. The results indicate that some cultural interpretations might be flawed unless archaeological evidence from rock‐shelter and open‐site excavations is integrated. © 2006 Wiley Periodicals, Inc.  相似文献   

13.
Geoarchaeological investigations at the Clovis type site, Blackwater Locality No. 1, in 1983 and 1984 included core drilling, archaeological test excavations, stratigraphic profiling, sedimentary analyses, and radiocarbon dating. Six lines of core holes transverse to the outlet channel clearly defined the subsurface configuration and stratigraphy of the prehistoric spring run. Pieces of large animal bone from units B, C, D, and E that elsewhere in the site contain Paleoindian artifacts suggest occurrences of additional buried sites along the ancient spring run. Four Paleoindian projectile points recovered during archaeological testing confirm these prospects. The Clovis type site, located in an abandoned gravel pit, is in a natural depression initially occupied by a late Pleistocene lake. After breaching of the depression by overflow or sapping, it became a springhead and was enlarged by slumping and slopewash. Detailed stratigraphic profiling of the south wall of the abandoned gravel pit provided precise stratigraphic control for sediment sampling and radiocarbon dating, and revealed more complex microstratigraphy and facies relationships than heretofore known for the site. The interfingering of dune facies around the depression with lacustrine and spring-laid facies within it aid paleoclimatic interpretation. Deflational contacts within the depression appear to correlate with adjacent wedges of dune sand reflecting relatively arid intervals. Between these arid episodes occur intervals of increased ground water level attended initially by deposition of spring-laid sands of unit B during the late Pleistocene (13,000–11,500 yr B.P.). As the water table rose following a period of severe deflation, slumping and gravity flow deposited clayey sand, Unit C, on the floor of the blowout between 11,500 and 11,000 yr B.P. During this time Clovis people first appeared at the site. After another brief period of deflation, a lake rose causing sand of Unit D0 to be washed in from shore followed by deposition of diatomities, units D1 and D2. These were separated by a brief influx of eolian sand, unit D2z. Between 10,800 and 10,000 yr B.P. outflow from the lake was reduced by accumulation of eolian sand in the outlet while Folsom people and later Agate Basin people arrived to hunt bison during this time. Cody complex people appeared during and after a brief erosional episode that preceded deposition of eolian silt and sand of units E and F from 10,000 to 8000 yr B.P. Eolian deposition during post-Folsom time converted the pond to a wet meadow and eventually, during Cody time, to a grassy swale. Some of these deposits were blown out during the Altithermal arid period (ca. 8000-5000 yr B.P.), a time when prehistoric Archaic peoples excavated wells in the floor of the depression. Subsequent eolian activity has resulted in deflation and dune migration during the late Holocene. The best prospects for Paleoindian finds are along the buried outlet south of the south wall and in early Holocene dune sands on the uplands around the depression. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
The orthodox archaeological sequence at the Sigatoka Dunes site (VL 16/1) in Fiji proposes three phases of occupation spanning Fijian prehistory, each associated with a period of dune stability. It has been taken as the standard model of Fijian prehistory for more than 30 years. Recently, however, it has been argued that there is no stratigraphic support for three discrete levels and that the occupation history was fragmented, complex, and continuous within a volatile dune system. We present new data, from optical and radiocarbon dating, to argue that a three‐phase model, although somewhat more complex in detail, remains the most robust interpretation of site history. The longest stable phase (Level 2) began 2500–2300 cal yr B.P. and is possibly associated with relatively low ENSO frequency. Substantial sand dune accumulation began after ˜1300 cal yr B.P. © 2006 Wiley Periodicals, Inc.  相似文献   

15.
The Dent site provided the first association of fluted points with mammoth bones in the New World. However, the stratigraphic integrity of the site has remained in doubt since the original excavations in 1932 and 1933. Core sampling at the Dent Clovis site indicates that the site, on Kersey terrace gravel, extends under railroad tracks adjacent to the original area of excavation. Four hundred meters south the Kuner strath terrace has been exposed by a roadcut at the Bernhardt site. An Archaic hearth dated 4030 ± 60 B.P. is near the top of a 1-m-thick eolian sand overlying 1 m of fine-grained alluvium dated 5740 ± 60 B.P., which in turn overlies sand and gravel of the Kuner strath terrace with an AMS radiocarbon age of 10,105 ± 90 B.P. The South Platte River appears to have been quasistable at the Kuner level during the Younger Dryas when Paleoindians from Clovis to Cody hunted megafauna on the Kersey terrace. © 1998 John Wiley & Sons, Inc.  相似文献   

16.
Stratigraphic exposures in natural profiles, archaeological excavation units, backhoe trenches, and an uncased water well from the Laguna Seca Chapala basin in the Central Desert of Baja California (29°N, 115°W) record lake level and climate changes and provide a context for prehistoric occupation predating 9070 yr B.P. and extending through the Holocene. Lithofacies analysis points to the presence of a large (ca. 66 km2) lake prior to 9070 yr B.P., which desiccated by 7.45 ka yr B.P., promoting rapid dune growth. New dating and redefinition of stratigraphic units in the basin refutes earlier models of lacustrine history and prehistoric occupation including a proposed series of Pleistocene lake levels with associated cultural occupations. The geologic record from the Laguna Seca Chapala basin compares well with other paleoenvironmental records in southwestern North America, supporting interpretations of wet and cool conditions in Baja California during the late Pleistocene and early Holocene. © 2003 Wiley Periodicals, Inc.  相似文献   

17.
In 1980 a large proboscidean femur, probably Mammuthus sp., was found in situ in a bluff exposure at the mouth of the Tyone River in the northwestern part of the Copper River Basin, Alaska. The regional setting, stratigraphy, radiocarbon chronology, flora, and implications of the fossil locality, which represents the first documented occurrence of Pleistocene terrestrial mammalian fauna in southern Alaska, are described. Radiocarbon dates and stratigraphic relations at the site indicate that the sediments containing the fossil accumulated during the transition from interstadial to glacial conditions during terminal middle Wisconsin time. During this interval the immediate vicinity was unforested and large areas of south-central Alaska may have been available for faunal and possibly human habitation. This documented find, dated at 29,450 ± 610 14C yr B.P., extends the known range for Pleistocene mammals and possibly steppe-tundra conditions south-ward at least 150 km, and suggests that mountain passes through the Alaska Range to the north were ice free during the last part of the middle Wisconsin interstadial.  相似文献   

18.
Stratigraphic records from coastal cliff sections near the Marresale Station on the Yamal Peninsula, Russia, yield new insight on ice-sheet dynamics and paleoenvironments for northern Eurasia. Field studies identify nine informal stratigraphic units from oldest to youngest (the Marresale formation, Labsuyakha sand, Kara diamicton, Varjakha peat and silt, Oleny sand, Baidarata sand, Betula horizon, Nenets peat, and Chum sand) that show a single glaciation and a varied terrestrial environment during the late Pleistocene. The Kara diamicton reflects regional glaciation and is associated with glaciotectonic deformation from the southwest of the underlying Labsuyakha sand and Marresale formation. Finite radiocarbon and luminescence ages of ca. 35,000 to 45,000 yr from Varjakha peat and silt that immediately overlies Kara diamicton place the glaciation >40,000 yr ago. Eolian and fluvial deposition ensued with concomitant cryogenesis between ca. 35,000 and 12,000 cal yr B.P. associated with the Oleny and the Baidarata sands. There is no geomorphic or stratigraphic evidence of coverage or proximity of the Yamal Peninsula to a Late Weichselian ice sheet. The Nenets peat accumulated over the Baidarata sand during much of the past 10,000 yr, with local additions of the eolian Chum sand starting ca. 1000 yr ago. A prominent Betula horizon at the base of the Nenets peat contains rooted birch trees ca. 10,000 to 9000 cal yr old and indicates a >200-km shift northward of the treeline from the present limits, corresponding to a 2° to 4°C summer warming across northern Eurasia.  相似文献   

19.
The Y-5 ash is the most widespread layer in deep-sea sediments from the eastern Mediterranean. This ash layer was previously correlated with the Citara-Serrara tuff on Ischia Island and dated at approximately 25,000 yr B.P. New data on the glass chemistry of the Y-5 ash and pyroclastic deposits from the Neopolitan volcanic province suggest that the layer is correlative with the large-volume Campanian ignimbrite and not with the deposit from Ischia Island. The volume of the Y-5 ash is approximately 65 km3 which is comparable in magnitude to the volume of the Campanian ignimbrite. An interpolated age of approximately 38,000 yr B.P. is estimated based on sedimentation rates derived from δ18O stratigraphy. There is a discrepancy between this estimate and previously reported radiocarbon ages which range from 24,000 to 35,000 yr B.P. We propose that the “Campanian tuff ash layer” should be adopted as the full stratigraphic name for the Y-5 ash. The deep-sea ash layer is divisible into two units in proximal localities, probably correlating with two major phases of the eruption: plinian and ignimbrite.  相似文献   

20.
Holocene evolution and human occupation of the Sixteen Mile Beach barrier dunes on the southwest coast of South Africa between Yzerfontein and Saldanha Bay are inferred from the radiocarbon ages of calcareous dune sand, limpet shell (Patella spp.) manuports and gull-dropped white mussel shells (Donax serra). A series of coast-parallel dunes have prograded seaward in response to an overall marine regression since the mid-Holocene with dated shell from relict foredunes indicating periods of shoreline progradation that correspond to drops in sea level at around 5900, 4500 and 2400 calibrated years before the present (cal yr B.P.). However, the active foredune, extensively covered by a layer of gull-dropped shell, has migrated 500 m inland by the recycling of eroded dune sand in response to an approximate 1 m sea level rise over the last 700 yr. Manuported limpet shells from relict blowouts on landward vegetated dunes indicate human occupation of coastal dune sites at 6200 and 6000 cal yr B.P. and help to fill the mid-Holocene gap in the regional archaeological record. Coastal midden shells associated with small hearth sites exposed in blowouts on the active foredune are contemporaneous (1600-500 cal yr B.P.) with large midden sites on the western margin of Langebaan Lagoon and suggest an increase in marine resource utilisation associated with the arrival of pastoralism in the Western Cape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号