首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Three node-centered finite volume discretizations for multiphase porous media flow are presented and compared. By combination of these methods two additional discretization methods are generated. The ability of these schemes to describe flows at textural interfaces of different geologic formations is investigated. It was found that models with nonzero-entry pressures for the capillary pressure-saturation relationship in conjunction with the Box discretization may give rise to spurious oscillations for flows around low permeable lenses. Furthermore, the applicability and sensitivity of the discretization methods with regard to the used computational grids is discussed. The schemes are used for the numerical study of two-phase flow in porous media with zones of different material properties. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
 Laboratory experiments on heterogeneous porous media (otherwise known as intermediate scale experiments, or ISEs) have been increasingly relied upon by hydrogeologists for the study of saturated and unsaturated groundwater systems. Among the many ongoing applications of ISEs is the study of fluid flow and the transport of conservative solutes in correlated permeability fields. Recent advances in ISE design have provided the capability of creating correlated permeability fields in the laboratory. This capability is important in the application of ISEs for the assessment of recent stochastic theories. In addition, pressure-transducer technology and visualization methods have provided the potential for ISEs to be used in characterizing the spatial distributions of both hydraulic head and local water velocity within correlated permeability fields. Finally, various methods are available for characterizing temporal variations in the spatial distribution (and, thereby, the spatial moments) of solute concentrations within ISEs. It is concluded, therefore, that recent developments in experimental techniques have provided an opportunity to use ISEs as important tools in the continuing study of fluid flow and the transport of conservative solutes in heterogeneous, saturated porous media. Received, December 1996 · Revised, July 1997 · Accepted, August 1997  相似文献   

3.
Richards' equation (RE) is often used to model flow in unsaturated porous media. This model captures physical effects, such as sharp fronts in fluid pressures and saturations, which are present in more complex models of multiphase flow. The numerical solution of RE is difficult not only because of these physical effects but also because of the mathematical problems that arise in dealing with the nonlinearities. The method of lines has been shown to be very effective for solving RE in one space dimension. When solving RE in two space dimensions, direct methods for solving the linearized problem for the Newton step are impractical. In this work, we show how the method of lines and Newton-iterative methods, which solve linear equations with iterative methods, can be applied to RE in two space dimensions. We present theoretical results on convergence and use that theory to design an adaptive method for computation of the linear tolerance. Numerical results show the method to be effective and robust compared with an existing approach.  相似文献   

4.
多孔介质中非均匀流动特性的染色示踪试验研究   总被引:3,自引:0,他引:3       下载免费PDF全文
通过土壤染色剂进行的4组试验,对不同介质结构条件下的水流和溶质非均匀运动规律,非均匀流动变异信息分布特征关系以及全局性非均匀流动示踪方法进行了研究。结果表明,即使在相对比较均匀的介质条件下,流动也表现出明显的非均匀特性;对数正态分布能够较好的反映水流的运动分布模式,相比水流运动,溶质的运动和分布规律明显不同,表现出更多的不确定性和变异性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号