首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《International Geology Review》2012,54(16):1957-1979
ABSTRACT

Palaeozoic granitoids and meta-granitoids dominate the metamorphic basement of the Sakar unit of the Sakar-Strandzha Zone (SASTZ) in southeast Bulgaria. In this article, we present new whole-rock geochemical data and U–Pb zircon geochronology for the Sakar unit granitoids. The igneous minerals and textures are preserved, except the meta-granitoids that experienced a weak amphibolite-facies overprint. Geochemistry reveals compositions of peraluminous high-K calc-alkaline I- to S-type granitoids of volcanic arc origin. A major group of LILE-LREE-enriched granitoids and meta-granitoids and a single HFSE-HREE-enriched meta-granitoid are distinguished. U–Pb geochronology has yielded crystallization ages between 305 and 295 Ma for the major group granitoids and a ca. 462 Ma crystallization age of HFSE-HREE-enriched meta-granitoid. Late Palaeozoic granitoids of the Sakar unit show similar compositions and a similar tectonic setting when compared to other granitoids of the SASTZ, confirming a uniform region-wide tectono-magmatic event. As the Late Carboniferous-Permian magmatic arc components extend across the SASTZ, they trace the time-correspondent active continental margin along the Eurasian plate during subduction of the Palaeotethys oceanic lithosphere. The late Palaeozoic Eurasian active continental margin magmatic arc evolution of the SASTZ can be extended into the Serbo-Macedonian-Rhodope zones to the west, where time equivalent meta-granitoids support the same geodynamic context.  相似文献   

2.
This work presents new field and petrological data on a poorly known lower crustal section from the Alpine Jurassic ophiolites, the Pineto gabbroic sequence from Corsica (France). The Pineto gabbroic sequence is estimated to be ~1.5 km thick and mainly consists of clinopyroxene-rich gabbros to gabbronorites near its stratigraphic top and of troctolites and minor olivine gabbros in its deeper sector. The sequence also encloses olivine-rich troctolite and mantle peridotite bodies at different stratigraphic heights. The composition and the lithological variability of the Pineto gabbroic sequence recall those of the lower crustal sections at slow- and ultra-slow-spreading ridges. The gabbroic sequence considered in this study is distinct in the high proportion of troctolites and olivine gabbros, which approximately constitute 2/3 of the section. In particular, the lower sector of the Pineto gabbroic sequence shows the existence of large-scale fragments of the deepest oceanic crust displaying a highly primitive bulk composition. The mineral chemical variations document that the origin and the evolution of the Pineto gabbroic rocks were mostly constrained by a process of fractional crystallisation. The clinopyroxenes from the olivine gabbros and the olivine-rich troctolites also record the infiltration of olivine-dissolving, Cr2O3-rich melts that presumably formed within the mantle, into replacive dunite bodies. Cooling rates of the troctolites and the olivine gabbros were evaluated using the Ca in olivine geospeedometer. We obtained high and nearly constant values of ?2.2 to ?1.7 °C/year log units, which were correlated with the building of the Pineto gabbroic sequence through multiple gabbroic intrusions intruded into a cold lithospheric mantle.  相似文献   

3.
The evolution of Late Paleozoic granitoid magmatism in Transbaikalia shows a general tendency for an increase in the alkalinity of successively forming intrusive complexes: from high-K calc-alkaline granites of the Barguzin complex (Angara–Vitim batholith) at the early stage through transitional from calc-alkaline to alkaline granites and quartz syenites (Zaza complex) at the intermediate stage to peralkaline granitoids (Early Kunalei complex) at the last stage. This evolution trend is complicated by the synchronous development of granitoid complexes with different sets and geochemical compositions of rocks. The compositional changes were accompanied by the decrease in the scales of granitoid magmatism occurrence with time. Crustal metaterrigenous protoliths, possibly of different compositions and ages, were the source of granitoids of the Angara–Vitim batholith. The isotopic composition of all following granitoid complexes points to their mixed mantle–crustal genesis. The mechanisms of granitoid formation are different. Some granitoids formed through the mixing of mantle and crustal magmas; others resulted from the fractional crystallization of hybrid melts; and the rest originated from the fractional crystallization of mantle products or the melting of metabasic sources with the varying but subordinate contribution of crustal protoliths. Synplutonic basic intrusions, combined dikes, and mafic inclusions, specific for the post-Barguzin granitoids, are direct geologic evidence for the synchronous occurrence of crustal and mantle magmatism. The geodynamic setting of the Late Paleozoic magmatism in the Baikal folded area is still debatable. Three possible models are proposed: (1) mantle plume impact, (2) active continental margin, and (3) postcollisional rifting. The latter model agrees with the absence of mafic rocks from the Angara–Vitim batholith structure and with the post-Barguzin age of peralkaline rocks of the Vitim province.  相似文献   

4.
Basic and intermediate-acidic igneous rocks were developed during the late Hercynian in North Tarim basin.The geochemistry characteristics of the rocks show that basic volcanic rock has K2O/Na2O = 0.18-0.61 < 1 and falls into a category of basalt of sodium system.The rocks contain enriched large-ion lithophile elements (LILE) (K,Rb,Ba,Th) and high-field strength elements (HFSE) (Nb,Ta,Ti,Zr,P),with the magmatic material from the upper mantle.The intermediate-acidic volcanic rocks have σ = 1.91-2.96 < 3.3,K2O/Na2O =1.25-1.59 > 1,as well as the enriched LILE and depleted HFSE (Nb,Ta,Ti,P),presenting the same trace element compositions and characteristics as in the granitic rocks of South Tianshan Mt.; they are either shoshonitic igneous rocks or high-K calc-alkaline igneous rocks,with a distinct crust-derived component feature.The comprehensive analyses on the characteristics of the trace elements,the graphic tectonic discrimination,and the distribution features of the two types of igneous rocks show that they were formed under different tectonic settings and geodynamic environments:the basalt was formed in the active rifting period when the active mantle upwelling caused the thinning of lithosphere; the intermediateacidic volcanic-intrusive rock was formed in the island arc area of the active continental margin in North Tarim; the formation is associated with the plate subduction during the course of South Tianshan Ocean closure-the subduction of Middle Tianshan Mountain toward the Tarim plate.The basic and intermediate-acidic igneous rocks reveal a tectonic regime of extension-extrusion transition,which is significant in determining the key tectonic revolution period of North Tarim basin.  相似文献   

5.
Summary Ultramafic and mafic xenoliths in Ordovician Agardag alkaline basalt dikes from the Sangilen Plateau, southeastern Siberia, provide samples from the upper mantle and crust beneath central Asia. Three major groups were distinguished among the xenoliths: Group I xenoliths are spinel lherzolites, Group II xenoliths are spinel-garnet clinopyroxenites, and Group III comprises gabbroic xenoliths with two subgroups: Group IIIa comprises garnet bearing gabbroids and Group IIIb is represented by garnet-free gabbroids. The spinel lherzolite xenoliths represent the uppermost lithospheric mantle beneath the Sangilen Plateau and have geochemical characteristics similar to those of primitive mantle. Spinel-garnet clinopyroxenite and gabbroic xenoliths are of igneous origin and represent fragments of intrusive bodies crystallized at depths close to the mantle-crust boundary, as well as in the lower and the upper crust. The gabbroic xenoliths are evidently the crystallization products of melts similar in major and trace element composition to parental magma of the Bashkymugur gabbronorite-monzodiorite intrusion. Gabbroic xenoliths from the Ordovician Agardag alkaline basalt dikes demonstrate the presence of intermediate magmatic chambers within the crust beneath the Sangilen Plateau during the Early Palaeozoic. The relatively high equilibration temperatures of the mantle and lower crust xenoliths in the Agardag alkaline basalt dikes are largely attributable to a plume occurring beneath the Sangilen Plateau during the Ordovician.  相似文献   

6.
Ordovician igneous rocks in the western Acatlán Complex (Olinalá area) of southern Mexico include a bimodal igneous suite that intrudes quartzites and gneisses of the Zacango Unit, and all these rocks were polydeformed and metamorphosed in the amphibolite facies during the Devono-Carboniferous. The Ordovician igneous rocks consist of the penecontemporaneous amphibolites, megacrystic granitoids and leucogranite, the latter dated at ca. 464 Ma. Geochemical and Sm–Nd data indicate that the amphibolites have a differentiated tholeiitic signature, and that its mafic protoliths formed in an extensional setting transitional between within-plate and ocean floor. The amphibolites are variably contaminated by a Mesoproterozoic crustal source, inferred to be the Oaxacan basement exposed in the adjacent terrane. The most primitive samples have εNdt (t = 465 Ma) values significantly below that of the contemporary depleted mantle and were probably derived from the sub-continental lithospheric mantle. The megacrystic granites were most probably derived by partial melting of an arc crustal source (similar to the Oaxacan Complex) and triggered by the ascent of mafic magma from the lithospheric mantle. Sm–Nd isotopic signatures suggest that metasedimentary rocks from Zacango Unit were derived from adjacent Oaxacan Complex. Trace elements relationships (e.g. La/Th vs. Hf) and REE patterns suggest provenance in felsic-intermediate igneous rocks with a calc-alkaline signature. The Ordovician bimodal magmatism is inferred to have resulted from rifting on the southern flank of the Rheic Ocean and is an expression of a major rifting event that occurred along much of the northern Gondwanan margin in the Ordovician.  相似文献   

7.
Abstract

A new geodynamic model for the Sardinian segment of the Hercynian chain is presented. The improvement of knowledge regarding several geological, metamorphic, magmatic and geochronological aspects of the Sardinian Palaeozoic basement, mainly achieved in the last few years, allows us to propose a more complete picture of its evolution.

The occurrence of remnants of an oceanic suture along a major tectonic lineament in northern Sardinia, as well as the products of Ordovician calc-alkaline magmatism, testifies to the presence, during the Lower Paleozoic, of an ancient (Precambrian- Cambrian) oceanic domain and its consumption along an Andean- type subduction zone. The following Carboniferous continental collision caused crustal stacking with Barrovian metamorphism and southward-migrating deformation from the suture zone toward the foreland.

Early Carboniferous Culm-type facies sediments, deposited in the outermost zone of the chain, imply that continental collision took place earlier in the internal zone, from Late Devonian or Early Carboniferous.

The collisional orogenic wedge experienced ductile extension during the Late Carhoniferous as a result of gravitational collapse of the thickened continental crust.

Extensional tectonism enhanced the uplift of the chain and some regions underwent tectonic denudation or LP/HT metamorphism and somewhere anatexis. The emplacement of calc-alkaline batholiths and the development of Late Carboniferous - Early Permian molasse basins occurred during extension that prolonged throughout the Permian.  相似文献   

8.
Ultramafic rocks and gabbros are exposed in the southern Puna (NW Argentina) in tectonic association with continental arc-related Ordovician (volcano) sedimentary successions and granitoids. The origin of this mafic rock suite has been debated for three decades as either representing an Ordovician terrane suture, primitive Ordovician arc-related rocks or relics of the pre-Ordovician basement in tectonic contact with the Ordovician retro-arc basin successions. We present the first U–Pb ages of primary and inherited zircon from gabbros of this mafic–ultramafic assemblage. LA-ICP-MS analyses on cores and rims of these zircon grains yielded a concordia age of 543.4 ± 7.2 Ma for the gabbroic rocks. Other analysed zircons have Mesoproterozoic, and Early Ediacaran core and rim ages indicating that the magmas also assimilated Meso- and Neoproterozoic crustal material prior to final crystallization. The mafic rocks witnessed higher metamorphic grade than associated Ordovician rocks, which are unmetamorphosed or only affected by anchimetamorphism. The gabbros are mostly tholeiitic and enriched in Zr, Th, as well as other incompatible elements and have εNd t=540Ma ranging from 1.3 to 7.4 with most of the values between 5 and 7. 147Sm/144Nd ratios show evidence of weak crustal contamination. The mafic rocks do not reveal any affinity to mid-ocean ridge basalts in their geochemistry but point instead to an emplacement in an active plate margin arc environment. Chromites from ultramafic rocks show typical Ti, Al, Cr#, Fe3+ abundances found in magmatic arc rocks. The formation of the gabbros and the associated ultramafic rocks in the southern Argentine Puna is related to the evolution of the margin of the Pampia terrane, including the Puncoviscana basin, during the Late Neoproterozoic and earliest Cambrian. In contrast to previous interpretations, the rocks predate the Ordovician evolution of the Central proto-Andean active margin. Consequently, interpretations assuming these rocks to represent an oceanic terrane suture of Ordovician age have to be dismissed as much as all palaeotectonic models that define Ordovician terranes in the Central Andes based on assumption that the ultramafic rocks and gabbros exposed in the southern Puna mark plate boundaries.  相似文献   

9.
We report major and trace element abundances and Sr, Nd andPb isotopic data for Miocene (16·5–11 Ma) calc-alkalinevolcanic rocks from the western segment of the Carpathian arc.This volcanic suite consists mostly of andesites and dacites;basalts and basaltic andesites as well as rhyolites are rareand occur only at a late stage. Amphibole fractionation bothat high and low pressure played a significant role in magmaticdifferentiation, accompanied by high-pressure garnet fractionationduring the early stages. Sr–Nd–Pb isotopic dataindicate a major role for crustal materials in the petrogenesisof the magmas. The parental mafic magmas could have been generatedfrom an enriched mid-ocean ridge basalt (E-MORB)-type mantlesource, previously metasomatized by fluids derived from subductedsediment. Initially, the mafic magmas ponded beneath the thickcontinental crust and initiated melting in the lower crust.Mixing of mafic magmas with silicic melts from metasedimentarylower crust resulted in relatively Al-rich hybrid dacitic magmas,from which almandine could crystallize at high pressure. Theamount of crustal involvement in the petrogenesis of the magmasdecreased with time as the continental crust thinned. A strikingchange of mantle source occurred at about 13 Ma. The basalticmagmas generated during the later stages of the calc-alkalinemagmatism were derived from a more enriched mantle source, akinto FOZO. An upwelling mantle plume is unlikely to be presentin this area; therefore this mantle component probably residesin the heterogeneous upper mantle. Following the calc-alkalinemagmatism, alkaline mafic magmas erupted that were also generatedfrom an enriched asthenospheric source. We propose that bothtypes of magmatism were related in some way to lithosphericextension of the Pannonian Basin and that subduction playedonly an indirect role in generation of the calc-alkaline magmatism.The calc-alkaline magmas were formed during the peak phase ofextension by melting of metasomatized, enriched lithosphericmantle and were contaminated by various crustal materials, whereasthe alkaline mafic magmas were generated during the post-extensionalstage by low-degree melting of the shallow asthenosphere. Thewestern Carpathian volcanic areas provide an example of long-lastingmagmatism in which magma compositions changed continuously inresponse to changing geodynamic setting. KEY WORDS: Carpathian–Pannonian region; calc-alkaline magmatism; Sr, Nd and Pb isotopes; subduction; lithospheric extension  相似文献   

10.
The Northern Apennine ophiolites are remnants of the MiddleJurassic–Early Cretaceous lithosphere from the LigurianTethys. New trace element and Nd–Sr isotope investigationswere performed on: (1) the rare gabbros associated with thesubcontinental mantle rocks from the External Liguride ophiolites;(2) the gabbro–peridotite association from the poorlyknown ophiolitic bodies from Cecina valley (Southern Tuscany).Clinopyroxenes from the External Liguride and Cecina valleygabbros have similar trace element compositions, which are consistentwith formation from normal mid-ocean ridge basalt (N-MORB) magmas.Sm–Nd mineral isochron ages are 179 ± 9 Ma foran External Liguride gabbro and 170 ± 13 Ma and 173·5± 4·8 Ma for two different gabbroic bodies fromthe Cecina valley ophiolites. These ages are interpreted todate the igneous crystallization of the gabbros and are slightlyolder than the oldest pelagic sediments of the Ligurian Tethys.Initial  相似文献   

11.
《Gondwana Research》2002,5(2):287-305
Large volumes of granitoids were emplaced in the Hercynian Central Iberian Zone during the last ductile deformation phase (D3, 300-320 Ma). The biotite-rich granitoids are the most abundant: (1) syn-D3 granodiorites-monzogranites (313-319 Ma) with calc-alkaline and aluminopotassic affinities; (2) late-D3 granodiorites-monzogranites (306-311 Ma), related to subalkaline and aluminopotassic series. These granitoids are associated with coeval gabbro-norite to granodiorite bodies and/or mafic microgranular enclaves. Both granitoids and basic-intermediate rocks show petrological, geochemical and isotopic evidence of interaction between felsic and mafic magmas.The mantle-derived melts, represented by shoshonitic gabbro-norites, were probably derived from an enriched and isotopically homogeneous source (Sri = 0.7049 to 0.7053, eNd = -2.1 to -2.5). In some syn- and late-D3 plutons there are evidences of essentially crustal granites, represented by moderately peraluminous monzogranites of aluminopotassic affinity. They have similar Nd model ages (1.4 Ga) but different isotopic compositions (Sri = 0.7089 to 0.7106, eNd = -5.6 to -6.8), revealing a heterogeneous crust. Potential protoliths are metasedimentary (immature sediments) and/or felsic meta-igneous lower crust materials. Large amounts of hybrid magmas were generated by the interaction of these coeval mantle- and crust-derived liquids, giving rise to slightly peraluminous monzogranites/granodiorites of calc-alkaline and subalkaline affinities, which display more depleted isotopic compositions than the crustal end-members (Sri = 0.7064 to 0.7085, eNd = -4.4 to -6.2). Petrogenetic processes involving mingling and/or mixing and fractional crystallization (at variable degrees) in multiple reservoirs are suggested.A major crustal growth event occurred in late-Hercynian times (∼305-320 Ma) related to the input of juvenile mantle magmas and leading to the genesis of composite calc-alkaline and subalkaline plutons, largely represented in the Central Iberian Zone.  相似文献   

12.
High grade granitoid orthogneisses occur in several metamorphic units of the Erzgebirge in the Saxothuringian Zone of the Variscan Belt. The determination of protolith ages and the geochemical characterization of these rocks permit a reconstruction of the Neoproterozoic to early Palaeozoic magmatic and geodynamic history of the Erzgebirge. Single zircon Pb-Pb evaporation and SHRIMP ages combined with major and trace element data and Sm-Nd isotope systematics indicate at least two discrete magmatic events concealed in the so-called red gneisses, one at ~550 Ma in rocks of the medium pressure—medium temperature (MP-MT) unit and the other at ~500–480 Ma in rocks of the high pressure units. The transition zones comprise both Neoproterozoic granitoids and early Palaeozoic metarhyolites. The granitoid gneisses represent Neoproterozoic calc-alkaline granitoids with REE patterns similar to those produced in Andean-type continental margins. The early Palaeozoic muscovite gneisses are geochemically distinct from the older granitoids and may be derived from melts generated in a back-arc setting. Initial Nd values in all samples overlap and range from –4.1 to –9.2, corresponding to crustal sources with average residence times of 1.5 to 1.9 Ga. Zircon xenocryst ages as old as 2992 Ma provide evidence for Grenvillian, Svecofennian-Birimian-Aazonian and older age components and suggest an association of the Erzgebirge with Avalonia.B. Mingram and A. Kröner have shared senior authorship  相似文献   

13.
Ion microprobe U?CPb analyses of zircons from three gabbroic intrusions from the Spanish Central System (SCS) (Talavera, La Solanilla and Navahermosa) yield Variscan ages (300 to 305?Ma) in agreement with recent studies. Only two zircon crystals from La Solanilla massif gave slightly discordant Paleoproterozoic ages (1,848 and 2,010?Ma). Hf isotope data show a relatively large variation with the juvenile end-members showing ?Hfi values as high as +3.6 to +6.9 and +1.5 to +2.9 in the Navahermosa and Talavera gabbros, respectively. These positive ?Hfi values up to +6.9 might represent the composition of the subcontinental mantle which generates these SCS gabbros. This ?Hfi range is clearly below depleted mantle values suggesting the involvement of enriched mantle components on the origin of these Variscan gabbros, and is consistent with previous whole-rock studies. The presence of zircons with negative ?Hfi values suggest variable, but significant, crustal contamination of the gabbros, mainly by mixing with coeval granite magmas. Inherited Paleoproterozoic zircons of La Solanilla gabbros have similar trace element composition (e.g. Th/U ratios), but more evolved Hf-isotope signatures than associated Variscan zircons. Similar inherited ages have been recorded in zircons from coeval Variscan granitoids from the Central Iberian Zone. Granitic rocks have Nd model ages (TDM) predominantly in the range of 1.4 to 1.6?Ga, suggesting a juvenile addition during the Proterozoic. However, Hf crustal model ages of xenocrystic Proterozoic zircons in La Solanilla gabbro indicate the presence of reworked Archean protoliths (TDM2 model ages of 3.0 to 3.2?Ga) incorporated into the hybridized mafic magma.  相似文献   

14.
The Bad Vermilion Lake Anorthosite Complex (henceforth, the BVLA Complex) in western Ontario is one of the well-exposed, anorthosite-bearing, Archean layered intrusions in the Superior Province, Canada. This study presents new whole-rock major and trace element data for the various units of the Complex, oxygen isotope data for the anorthosite, and major and trace element data for the spatially associated granitic rocks intruding the BVLA Complex to constrain their petrogenetic and geodynamic origin. Zircons from granitic rocks have yielded a 207Pb/206Pb age of 2716 ± 18 Ma, constraining the minimum intrusion age of the Complex.Despite deformation and greenschist facies metamorphism, primary igneous textures are locally well preserved in the BVLA Complex. Its whole-rock major and trace elemental compositions and the oxygen isotopic systematics appear not to have been substantially modified by deformation and metamorphism. Mantle-like oxygen isotope signatures and major and trace element compositions are inconsistent with significant crustal contamination of the BVLA Complex during its emplacement. The existence of primary calcic igneous plagioclase, coherent negative Nb anomalies (Nb/Nb* = 0.08–0.88), and geochemical similarities between gabbros from the BVLA Complex and gabbros from Cenozoic arcs collectively suggest an intra-oceanic subduction zone geodynamic setting for the Complex. Near-flat REE patterns in the various units of the BVLA Complex suggest that they were derived from melting of a shallow source beneath a subarc mantle wedge. Trends in immobile major (e.g., MgO) and trace (e.g., Zr) element data indicate that the mineralogical composition of the Complex can be explained by fractional crystallization and accumulation of olivine, orthopyroxene, clinopyroxene, plagioclase and possibly amphibole.Compositionally, the bordering granitic rocks are A2-type and strongly enriched in Th and REE (> 100 times chondrite) and depleted of Ba, Sr, Eu and Ti. We suggest that they formed in a post-collisional, extensional, tectonic regime following emplacement of the BVLA Complex in an oceanic arc.  相似文献   

15.
对出露于内蒙古地区的华北地台北缘中段及兴蒙造山带内共21件不同岩性的样品进行Nd同位素研究。这些样品的Nd模式年龄值表明:兴蒙造山带与华北地台具完全不同的特征,兴蒙造山带以年轻的亏损地幔模式年龄为特征(tDM=0.4~1.1 Ga),普遍低于华北地台西段的tDM值(1.8~3.4 Ga)。锡林浩特地块作为独立块体具与兴蒙造山带不同的特征,锡林浩特地块的亏损地幔模式年龄介于兴蒙造山带年龄与华北地台年龄之间。Nd模式年龄计算结果表明内蒙古地区华北地台北缘的地壳增生事件主要集中于中元古代之前,而兴蒙造山带地壳增生事件自新元古代开始。通过对内蒙古地区华北地台北缘εNd(t)值随时间的变化分析可知,在中元古代及海西期均存在古老地壳的再循环及新地壳的增生事件。内蒙古兴蒙造山带地壳增生速率表明该区地壳主要增生事件发生于1 000~700 M a,其后形成的岩浆岩所反映的增生过程表明有古老地壳组分的参与。  相似文献   

16.
Abstract

Along the Periadriatic Lineament in the Alps and the Sava-Vardar Zone of the Dinarides and Hellenides, Paleogene magmatic associations form a continuous belt, about 1700 km long. The following magmatic associations occur: (1) Eocene granitoids; (2) Oligocene granitoids including tonalites; (3) Oligocene shoshonite and calc-alkaline volcanics with lamprophyres; (4) Egerian-Eggenburgian (Chattian) calc-alkaline volcanics and granitoids. All of these magmatic associations are constrained by radiometric ages, which indicate that the magmatic activity was mainly restricted to the time span between 55 and 29 Ma. These igneous rocks form, both at surface and in the subsurface, the distinct linear Periadriatic-Sava-Vardar magmatic belt, with three strikes that are controlled by the indentation of Apulia and Moesia and accompanying strike-slip faulting. The geology, seismicity, seismic tomography and magnetic anomalies within this belt suggest that it has been generated in the African-Eurasian suture zone. Based on published analytical data, the petrology, major and trace element contents and Sr, Nd and O isotopie composition of each magmatic association are briefly defined. These data show that Eocene and Oligocene magmatic associations of the Late Paleogene Periadriatic-Sava-Vardar magmatic belt originated along a consuming plate margin. Based on isotopie systems, two main rock groups can be distinguished: (1) 87Sr/86Sr = 0.7036–0.7080 and δ18O = 5.9–7.2‰, indicating basaltic partial melts derived from a continental mantle-lithosphere, and (2) 87Sr/86Sr = 0.7090–72131 and δ18O = 7.3–11.5‰, indicating crustal assimilation and melting. The mantle sources for the primary basalt melts are metasomatized garnet peridotites and/or spinel lherzolites and phlogopite lherzolites of upper mantle wedge origin. The geodynamic evolution of the plutonic and volcanic associations of the Periadriatic-Sava-Vardar magmatic belt was related to the Africa-Eurasia suture zone that was dominated by break-off of the subducted lithospheric slab of Mesozoic oceanic crust, at depths of 90–100 km. This is indicated by their contemporaneity along the 1700 km long belt. © 2002 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.  相似文献   

17.
An isotopic study of igneous and metamorphic rocks has been carried out at the Yermakovsky bertrandite-phenakite-fluorite deposit. It has been established that the model age of the schists pertaining to the Zun-Morino Formation is 1360–1260 Ma. In Nd and Sr isotopic composition, these schists deviate from the isotopic composition of the continental crust and are close in this respect to the enriched mantle reservoir (EM-II). The model age of carbonate rocks of the Zun-Morino Formation is 1330–1020 Ma. The Middle Riphean model age of the Zun-Morino Formation is interpreted as the age of its protolith. According to the Sr and Nd isotopic data, all preore igneous rocks (granitic dikes, gabbroic rocks, and gneissose granite of the Tsagan Complex) were formed with the participation of continental crustal material. Synore basic dikes, alkali leucogranite stock, and syenite intrusion are considered to be mixtures of mantle components (DM+HIMU) and various continental crustal components (Tsagan gneissose granite, crystalline schists, the mean composition of granitoids of the Angara-Vitim batholith as an estimate of average composition of the regional continental crust). Synore igneous rocks are genetically cognate and related to the magmatic activity in the Western Transbaikal Rift Zone presumably formed in the Triassic under effect of a mantle plume.  相似文献   

18.
满洲里—额尔古纳地区岩浆作用及其大地构造意义   总被引:14,自引:1,他引:14  
对满洲里-额尔古纳地区不同时代岩浆岩的地质,地球化学特征进行了初步研究,研究表明晚元古代花岗岩具S型花岗岩或地壳改造型花岗岩特征,形成于同碰撞造山环境,加里东早期花岗岩具I型,科迪勒拉I型或ACG特征,代表活动大陆边缘构造属性,加里东晚期花岗岩具S型或地壳改造型特征,代表陆-陆碰撞造山环境,加里东期花岗岩记录了多宝山-牙克石-伊尔施陆间洋壳消减和闭合的过程,海西晚期花岗岩属富碱低钙钙碱性岩石,具S型花岗岩或CPG,KCG花岗岩特征,形成于碰撞后构造环境,中生代早期岩 岩形成于蒙古--鄂霍茨克残余洋“剪刀式”闭合所造成的张性似裂谷环境,中生代晚期岩浆岩形成于挤压环境。  相似文献   

19.
ABSTRACT

The Ordovician plutons in the Erguna Block, NE China, can be classified into two groups: Early Ordovician diorites with zircon U–Pb ages ranging from 486 to 485 Ma and Middle Ordovician gabbros and granites with zircon U–Pb ages ranging from 466 to 463 Ma. The diorites are calc-alkaline in nature and are characterized by weak to moderate enrichments of large ion lithophile elements (LILE) and light rare earth elements (LREE) relative to high field strength elements (HFSE) and heavy rare earth elements (HREE). The gabbros and granites have high total alkali contents, and all samples are enriched in LREE and LILE and depleted in HFSE such as Nb, Ta, and Ti. Isotopically, Early Ordovician diorites display values that are less radiogenic [εHf(t) = + 9.9–+16.8] compared to those of Middle Ordovician gabbros [εHf(t) = ? 3.0–+5.0]. Middle Ordovician granites have positive εHf(t) values of +1.4 to +4.3 and two-stage Hf model ages (TDM2) of 1167 to 1356 Ma. These data indicate that the diorites may have been generated by the partial melting of a recently metasomatized mantle source, whereas the gabbros and granites may have been formed by the partial melting of enriched lithospheric mantle and Mesoproterozoic crust, respectively. Our results, combined with other regional results, suggest that Early Ordovician magmatism was likely associated with the northward subduction of the Heihe–Xilinhot oceanic plate beneath the Erguna–Xing’an Block, whereas the Middle Ordovician gabbros and granites were most likely formed in an extensional setting controlled by the rollback of this subducted oceanic plate.  相似文献   

20.
Layers of Ca-rich garnet–clinopyroxene rocks enclosedin a serpentinite body at Hujialin, in the Su–Lu terraneof eastern China, preserve igneous textures, relict spinel ingarnet, and exsolution lamellae of Ca-rich garnet, ilmenite/magnetite,Fe-rich spinel, and also amphibole in clinopyroxene. In termsof their major and trace element compositions, the studied samplesform a trend from arc cumulates towards Fe–Ti gabbros.Reconstructed augite compositions plot on the trend for clinopyroxenein arc cumulates. These data suggest that the rocks crystallizedfrom mantle-derived magmas differentiated to various extentsbeneath an arc. The Ca-rich garnet + diopside assemblage isinferred to have formed by compressing Ca-rich augite, whereasthe relatively Mg-rich cores of garnet porphyroblasts may haveformed at the expense of spinel. The protolith cumulates weresubducted from near the crust–mantle boundary (c. 1 GPa)deep into the upper mantle (4·8 ± 0·6 GPaand 750 ± 50°C). Negatively sloped P–T pathsfor the garnet–clinopyroxene rocks and the corollary ofcorner flow induced subduction of mantle wedge peridotite arenot supported by the available data. Cooling with, or without,decompression of the cumulates after the igneous stage probablyoccurred prior to deep subduction. KEY WORDS: arc cumulates; Ca-rich garnet; garnet–clinopyroxene rocks; Su–Lu terrane; UHP metamorphism  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号