首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
In the western Trans-Mexican Volcanic Belt voluminous silicic volcanism has been associated with the rifting of the Jalisco block from mainland Mexico. Rhyolitic volcanism started at 7.5 Ma after a major pulse of basaltic volcanism aged 11–8.5 Ma associated with slab detachment. This was followed by a second period, between 4.9 and 2.9 Ma, associated with rhyolitic domes and ignimbrite coexisting with basaltic volcanism. The similarity in rare earth element contents between basalts and rhyolites excludes a simple liquid line of descent. The low Ba and Sr contents and the ferroan character of the rhyolites suggest extensive fractional crystallization. Late Miocene–early Pliocene rhyolite Sr isotope values are only slightly more radiogenic than the basalts, whereas Nd isotope ratios are indistinguishable. We successfully modelled the 7.5–3 Ma silicic magmatism as a result of partial melting of crustal gabbroic complexes that we infer to have formed in the mid-lower crust due to the high-density Fe-enriched composition of the late Miocene basaltic volcanism. Slab rollback since ~7.5 Ma favoured decompression melting and arrival of additional mafic magmas that intruded in the lower crust. These basalts heated and melted the gabbroic complexes forming the silicic magmas, which subsequently underwent assimilation and fractional crystallization processes. The first silicic pulse was emplaced during a period of low tectonic activity. Extensional faulting since the Pliocene favours the eruption of both silicic magma and lesser amount of mafic lavas.  相似文献   

2.
天山及邻区各微地块上分布有震旦纪—早寒武世火山-沉积岩系,寒武系底部均发育含磷层,震旦系中见2~3层大致可对比的冰碛岩,暗示各微地块当时可能是一个统一大陆块的组成部分。震旦纪—早寒武世大陆拉伸→大陆裂谷火山活动是天山古生代洋盆开启的前兆,意味着早寒武世为天山古生代洋盆开启时限的下限。中天山巴仑台微地块中的下石炭统马鞍桥组底部的粗碎屑岩,是碰撞造山中晚期的地质记录。它意味着天山古生代洋盆已经闭合。石炭纪时,天山造山带已进入新的造山后裂谷拉伸阶段,发育有大规模大陆裂谷双峰式火山活动和花岗质岩浆活动。早石炭世是天山古生代洋盆闭合时限的上限。  相似文献   

3.
祁连山地区的新元古代中—晚期至早古生代火山作用显示系统地时、空变化,其乃是祁连山构造演化的火山响应。随着祁连山构造演化从Rodinia超大陆裂谷化—裂解,经早古生代大洋打开、扩张、洋壳俯冲和弧后伸展,直至洋盆闭合、弧-陆碰撞和陆-陆碰撞,火山作用也逐渐从裂谷和大陆溢流玄武质喷发,经大洋中脊型、岛弧和弧后盆地火山活动,转变为碰撞后裂谷式喷发。850~604 Ma的大陆裂谷和大陆溢流熔岩主要分布于祁连和柴达木陆块。从大约550 Ma至446 Ma,在北祁连和南祁连洋-沟-弧-盆系中广泛发育大洋中脊型、岛弧和弧后盆地型熔岩。与此同时,在祁连陆块中部,发育约522~442 Ma的陆内裂谷火山作用。早古生代洋盆于奥陶纪末(约446 Ma)闭合。随后,从约445 Ma至约428 Ma,于祁连陆块北缘发育碰撞后火山活动。此种时-空变异对形成祁连山的深部地球动力学过程提供了重要约束。该过程包括:(1)地幔柱或超级地幔柱上涌,导致Rodinia超大陆发生裂谷化、裂解、早古生代大洋打开、扩张、俯冲,并伴随岛弧形成;(2)俯冲的大洋板片回转,致使弧后伸展,进而形成弧后盆地;(3)洋盆闭合、板片断离,继而发生软流圈上涌,诱发碰撞后火山活动。晚志留世至早泥盆世(420~400 Ma),先期俯冲的地壳物质折返,发生强烈的造山活动。400 Ma后,山体垮塌、岩石圈伸展,相应发生碰撞后花岗质侵入活动。  相似文献   

4.
The Miocene northeast Honshu magmatic arc, Japan, formed at a terrestrial continental margin via a stage of spreading in a back‐arc basin (23–17 Ma) followed by multiple stages of submarine rifting (19–13 Ma). The Kuroko deposits formed during this period, with most forming during the youngest rifting stage. The mode of magma eruption changed from submarine basalt lava flows during back‐arc basin spreading to submarine bimodal basalt lava flows and abundant rhyolitic effusive rocks during the rifting stage. The basalts produced during the stage of back‐arc basin spreading are geochemically similar to mid‐ocean ridge basalt, with a depleted Sr–Nd mantle source, whereas those produced during the rifting stage possess arc signatures with an enriched mantle source. The Nb/Zr ratios of the volcanic rocks show an increase over time, indicating a temporal increase in the fertility of the source. The Nb/Zr ratios are similar in basalts and rhyolites from a given rift zone, whereas the Nd isotopic compositions of the rhyolites are less radiogenic than those of the basalts. These data suggest that the rhyolites were derived from a basaltic magma via crystal fractionation and crustal assimilation. The rhyolites associated with the Kuroko deposits are aphyric and have higher concentrations of incompatible elements than do post‐Kuroko quartz‐phyric rhyolites. These observations suggest that the aphyric rhyolite magma was derived from a relatively deep magma chamber with strong fractional crystallization. Almost all of the Kuroko deposits formed in close temporal relation to the aphyric rhyolite indicating a genetic link between the Kuroko deposits and highly differentiated rhyolitic magma.  相似文献   

5.
论博格达俯冲撕裂型裂谷的形成与演化   总被引:66,自引:23,他引:43  
博格达裂谷带位于准噶尔与吐-哈两个前寒武纪地块之间,呈东-西走向,东端与克拉麦里-哈尔里克泥盆-石炭纪火山弧呈大角度相交。该 裂谷于早-中石炭世启动和沉降,在盆地中堆积了巨厚的陆源碎屑岩夹双峰式火山岩。裂谷的闭合发生于中石炭世末至晚石炭世。在裂谷闭合后区域构造由挤压向拉张的转折时期,发生了以辉绿岩为主的侵入活动,并伴有少量中-酸性分异产物。博格达裂谷东、西两段的演化特征有着显著差异。东段早石炭世就已开始裂离,裂离过程的火山岩以玄武岩为主,仅有少量流纹岩,裂谷盆地强烈沉降,形成深海-半深海环境,裂谷在中石炭世末至晚石炭世初即已闭合,裂谷岩系因强烈褶皱,与上覆二叠系呈明显角度不整合,显示了“突变”式闭合特征。与此不同的是,西段至中石炭世才开始明显裂离,裂离过程的火山岩以英安岩和流纹岩为主,玄武岩量较少,火山-沉积岩系均形成于浅海环境,裂谷至晚石炭世末才发生闭合,裂谷岩系因未发生强烈褶皱,故与上覆二叠系为平行不整合接触,显示了“渐变”式闭合特征。该裂谷的形成是古亚洲洋壳向先存的准-吐-哈陆块斜向俯冲,将其东南端撕裂的产物,因而可称为俯冲撕裂型裂谷。演化过程沿走向的明显不均一性是这类裂谷的重要特点。  相似文献   

6.
The paper reviews and integrates geological, geochronological, geochemical and isotope data from 21 intra-oceanic arcs (IOA) of the Paleo-Asian Ocean (PAO), which have been identified in the Central Asian Orogenic belt, the world largest accretionary orogeny. The data We discuss structural position of intra-oceanic arc volcanic rocks in association with back-arc terranes and accretionary complexes, major periods of intra-oceanic arc magmatism and related juvenile crustal growth, lithologies of island-arc terranes, geochemical features and typical ranges of Nd isotope values of volcanic rocks. Four groups of IOAs have been recognized: Neoproterozoic – early Cambrian, early Paleozoic, Middle Paleozoic and late Paleozoic. The Neoproterozoic – early Cambrian or Siberian Group includes eleven intra-oceanic arcs of eastern and western Tuva-Sayan (southern Siberia, Russia), northern and southwestern Mongolia and Russian Altai. The Early Paleozoic or Kazakhstan Group includes Selety-Urumbai, Bozshakol-Chingiz and Baydaulet-Aqastau arc terranes of the Kazakh Orocline. The Middle Paleozoic or Southern Group includes six arc terranes in the Tienshan orogen, Chinese Altai, East-Kazakhstan-West Junggar and southern Mongoia. Only one Late Paleozoic intra-oceanic arc has been reliably identified in the CAOB: Bogda in the Chinese Tienshan, probably due to PAO shrinking and termination. The lithologies of the modern and fossil arcs are similar, although the fossil arcs contain more calc-alkaline varieties suggesting either their more evolved character or different conditions of magma generation. Of special importance is identification of back-arc basins in old accretionary orogens, because boninites may be absent in both modern and fossil IOAs. The three typical scenarios of back-arc formation - active margin rifting, intra-oceanic arc rifting and fore-arc rifting were reconstructed in fossil intra-oceanic arcs. Some arcs might be tectonically eroded and/or directly subducted into the deep mantle. Therefore, the structural and compositional records of fossil intra-oceanic arcs in intracontinental orogens allow us to make only minimal estimations of their geometric length, life span, and crust thickness.  相似文献   

7.
Khromykh  S. V.  Semenova  D. V.  Kotler  P. D.  Gurova  A. V.  Mikheev  E. I.  Perfilova  A. A. 《Geotectonics》2020,54(4):510-528

Studies of volcanic rocks in orogenic troughs of Eastern Kazakhstan were carried out. The troughs were formed at late-orogenic stages of evolution of Hercynian Altai collision system. Volcanic rocks are represented by basalts, andesites, dacites and rhyolites. Based on geochemical and isotopic data, the basalts and andesites derived from mafic magmas that formed as a result of partial melting of garnet peridotites in the upper mantle under the orogen. U–Pb zircon data prove two volcanic stages: more-scaled Middle Carboniferous (~311 Ma) and less-scaled Early Permian (297–290 Ma). Basalts and andesites in lower parts of the orogenic troughs and independent dacite-rhyolite structures were formed at the Middle Carboniferous stage. Parental mafic magmas were formed as a result of partial melting of mantle substrates in local transtensional zones along large shear faults. The formation of dacites and rhyolites could have been caused by partial melting of crustal substrates under effect of mafic magmas. Transtensional movements in the lithosphere of orogenic belts may indicate the beginning of collapse of orogens. A smaller volume of basalts and andesites formed at the Early Permian stage. Geochemical data prove the independent episode of partial melting in upper mantle. Synchronous basalts and andesites also appeared at wide territory in Tian Shan, Central Kazakhstan, and Central and Southern Mongolia. Early Permian volcanism indicates general extension of the lithosphere at the postorogenic stages. Large-scaled Early Permian mafic and granitoid magmatism in Central Asia has been interpreted in recent years as the Tarim Large Igneous Province caused by Tarim mantle plume activity. Thus, the extension of the lithosphere and associated volcanism in the Early Permian can be an indicator of the onset of the plume–lithosphere interaction process.

  相似文献   

8.
The Cambrian–lower Ordovician volcanic units of the South Armorican and Occitan domains are analysed in a tectonostratigraphic survey of the French Variscan Belt. The South Armorican lavas consist of continental tholeiites in middle Cambrian–Furongian sequences related to continental break-up. A significant volcanic activity occurred in the Tremadocian, dominated by crustal melted rhyolitic lavas and initial rifting tholeiites. The Occitan lavas are distributed into five volcanic phases: (1) basal Cambrian rhyolites, (2) upper lower Cambrian Mg-rich tholeiites close to N-MORBs but crustal contaminated, (3) upper lower–middle Cambrian continental tholeiites, (4) Tremadocian rhyolites, and (5) upper lower Ordovician initial rift tholeiites. A rifting event linked to asthenosphere upwelling took place in the late early Cambrian but did not evolve. It renewed in the Tremadocian with abundant crustal melting due to underplating of mixed asthenospheric and lithospheric magmas. This main tectono-magmatic continental rift is termed the “Tremadocian Tectonic Belt” underlined by a chain of rhyolitic volcanoes from Occitan and South Armorican domains to Central Iberia. It evolved with the setting of syn-rift coarse siliciclastic deposits overlain by post-rift deep water shales in a suite of sedimentary basins that forecasted the South Armorican–Medio-European Ocean as a part of the Palaeotethys Ocean.  相似文献   

9.
下古生界是塔里木盆地内最有潜力找到大油气田的层位。通过盆地内48口钻至下古生界钻井的沉积层序与沉积相分析、9800km地震剖面的地震相分析、大量Sr、C同位素及微量元素分析,并结合相关资料,开展了寒武纪—奥陶纪的以世或期为单位的岩相古地理研究,定性探讨海平面变迁。在此基础上,运用沉积地球化学定量探讨海平面的波动。分析表明,早古生代塔里木地区经历了两次大规模的海侵与海退过程,寒武纪和奥陶纪各经历了一次。每个海侵与海退过程内各包含了两个较高频的海平面升降旋回,即早寒武世早期海侵—早寒武世中期至中寒武世晚期海退、中寒武世末期海侵—晚寒武世晚期海退、早奥陶世早期至中奥陶世中期海侵—中奥陶世晚期海退、晚奥陶世早期海侵—晚奥陶世中至晚期海退。在上述2次大规模的海侵与海退以及4个较高频的海平面升降旋回中,两次大的海侵分别发育于早寒武世早期以及晚奥陶世早中期,三次较大的海退出现于中寒武世晚期、晚寒武世末期、晚奥陶世早期。岩溶在地层格架中的发育支持了上述结论。  相似文献   

10.
构造沉降作为盆地成因研究中的重要组成部分,对其特征进行分析有助于盆地成因的解析。本次通过对鄂尔多斯盆地内5口典型探井的多期不整合所代表的的剥蚀厚度进行恢复,结合去压实矫正模型以及平均密度、平均古水深等参数的确定,较为精确地刻画出了鄂尔多斯盆地不同构造单元自早寒武世至今的构造沉降特征,同时结合裂谷盆地瞬时拉张模型、裂后热坳陷模型以及前陆盆地挠曲模型对构造沉降曲线进行了模拟,对盆地成因进行分析。鄂尔多斯盆地中寒武世—中生代末期主要由早古生代沉降旋回、二叠—三叠纪沉降旋回与侏罗—白垩纪沉降旋回组成。其中岩石圈热冷却作用引起的沉降贯穿全地质时期。早古生代沉降旋回中,中寒武世的加速沉降主要体现在盆地南部,沉降机制为岩石圈伸展减薄,中奥陶世马家期为全盆地尺度的加速沉降,沉降机制仍为岩石圈伸展减薄。二叠—三叠纪沉降旋回中,晚二叠世—早-中三叠世为该旋回的加速沉降期,该期加速沉降具有多幕裂陷的特征。侏罗—白垩纪沉降旋回中,中侏罗世盆地南部处于缓慢沉降期,沉降机制为岩石圈热冷却作用,晚侏罗世—早白垩世,除伊盟隆起,盆地整体处于加速沉降期,沉降机制为前陆盆地引起的挠曲沉降。  相似文献   

11.
New whole-rock major and trace elements data, zircon laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U–Pb ages, and zircon Hf isotope compositions were analysed for Early Cretaceous volcanic rocks, also called Meiriqieco Formation (MF) in the Duobuzha area of the Southern Qiangtang–Baoshan Block (SQBB), northern Tibet. Our aim is to clarify their petrogenesis and tectonic setting, and constrain the evolution process on the northern margin of Bangong–Nujiang suture zone (BNSZ) during Early Cretaceous time. The MF volcanic rocks are mainly composed of andesites with subordinate basalts and rhyolites with high-K calc-alkaline affinity. Zircon LA-ICP-MS U–Pb dating for two andesite and one rhyolite samples give uniform ages within error of ca.113, 114, and 118 Ma, respectively, indicating they were erupted on the Early Cretaceous. The MF andesites have variable zircon εHf(t) values (+0.5 to +10.5), which is different from those of MF rhyolites (+7.9 to +10.7). All the MF rocks are enriched in large ion lithophile elements, and depleted in high field strength elements, yielding the affinity of arc rocks. The MF basalts were most likely derived from the mantle wedge that was metasomatized by fluids released from subducting slab with the involvement of subducted sediments. The MF rhyolites were generated by partial melting of the juvenile mafic lower crust. The MF andesites are interpreted to have formed by mixing of the magmas that parental of the MF basalts and the MF rhyolites. In addition, a couple of distinctly magmatic sources are identified in the SQBB, and this may be related to mantle components injected into the continental crust. Combined with published geological data in the BNSZ and SQBB, we consider that the MF volcanic rocks are formed in a continental arc setting, suggesting that BNO were subducting during the Early Cretaceous time in the Duobuzha area.  相似文献   

12.
《International Geology Review》2012,54(10):1189-1206
ABSTRACT

Volcaniclastic units are exposed at the base of the Puerto Blanco Formation in the Caborca region, northwestern Mexico. The lower unit reveals the presence of Early Cambrian mafic volcanism in this region. It consists of a volcano-sedimentary sequence represented by tuffaceous conglomerates, agglomerates, lapillistones, tuffs, and altered mafic volcanic flows. Petrographic analysis classified the volcanic clasts as albite-sphene-calcite-actinolite granofels, with a moderate to intense hydrothermal alteration, precisely characterized by EPMA analysis. Albite-actinolite geothermometry indicates temperatures from 400 to 500°C, suggesting metamorphic conditions in the upper temperature greenschist facies. Geochemistry analysis shows a high TiO2 basic–ultrabasic volcanism that originated the volcanic clasts. Rock protoliths were studied using immobile trace elements, which classified them as OIB-type alkaline basalts with the characteristic spider hump-shaped pattern, situated in an anorogenic intracontinental tectonic setting with enriched mantle signatures. 40Ar/39Ar geochronology shows metamorphic ages of 52.58 ± 2.0 and 91.67 ± 0.55 Ma, consistent with the emplacement of Laramidic granitoids identified in the region. Possible correlations of this alkaline volcanism include the Southern Oklahoma Aulacogen and the late stages of the rifting of north western Laurentia represented in western United States.  相似文献   

13.
The Gorny Altai region in southern Siberia is one of the key areas in reconstructing the tectonic evolution of the western segment of the Central Asian Orogenic Belt (CAOB). This region features various orogenic elements of Late Neoproterozoic–Early Paleozoic age, such as an accretionary complex (AC), high-P/T metamorphic (HP) rocks, and ophiolite (OP), all formed by ancient subduction–accretion processes. This study investigated the detailed geology of the Upper Neoproterozoic to Lower Paleozoic rocks in a traverse between Gorno-Altaisk city and Lake Teletskoy in the northern part of the region, and in the Kurai to Chagan-Uzun area in the southern part. The tectonic units of the studied areas consist of (1) the Ediacaran (=Vendian)–Early Cambrian AC, (2) ca. 630 Ma HP complex, (3) the Ediacaran–Early Cambrian OP complex, (4) the Cryogenian–Cambrian island arc complex, and (5) the Middle Paleozoic fore-arc sedimentary rocks. The AC consists mostly of paleo-atoll limestone and underlying oceanic island basalt with minor amount of chert and serpentinite. The basaltic lavas show petrochemistry similar to modern oceanic plateau basalt. The 630 Ma HP complex records a maximum peak metamorphism at 660 °C and 2.0 GPa that corresponds to 60 km-deep burial in a subduction zone, and exhumation at ca. 570 Ma. The Cryogenian island arc complex includes boninitic rocks that suggest an incipient stage of arc development. The Upper Neoproterozoic–Lower Paleozoic complexes in the Gorno-Altaisk city to Lake Teletskoy and the Kurai to Chagan-Uzun areas are totally involved in a subhorizontal piled-nappe structure, and overprinted by Late Paleozoic strike-slip faulting. The HP complex occurs as a nappe tectonically sandwiched between the non- to weakly metamorphosed AC and the OP complex. These lithologic assemblages and geologic structure newly documented in the Gorny Altai region are essentially similar to those of the circum-Pacific (Miyashiro-type) orogenic belts, such as the Japan Islands in East Asia and the Cordillera in western North America. The Cryogenian boninite-bearing arc volcanism indicates that the initial stage of arc development occurred in a transient setting from a transform zone to an incipient subduction zone. The less abundant of terrigenous clastics from mature continental crust and thick deep-sea chert in the Ediacaran–Early Cambrian AC may suggest that the southern Gorny Altai region evolved in an intra-oceanic arc-trench setting like the modern Mariana arc, rather than along the continental arc of a major continental margin. Based on geological, petrochemical, and geochronological data, we synthesize the Late Neoproterozoic to Early Paleozoic tectonic history of the Gorny Altai region in the western CAOB.  相似文献   

14.
秦岭造山带构造-成矿旋回与演化   总被引:5,自引:0,他引:5  
构造与成矿活动是否具有旋回性是地质界长期争论的一个命题。本文根据矿床成矿系列理论和方法,论述了秦岭造山带构造-成矿活动,划分出新太古代-古元古代早期、古元古代晚期、中-新元古代、早古生代、晚古生代和中、新生代6个构造-成矿旋回,探讨了每个旋回的矿床成矿系列特征和成矿演化历史。指出该造山带的成矿作用既有长期性和连续性,也有间断性和旋回性;中、新元古代至早古生代和中、新生代两个时期是秦岭造山带中两个主要的成矿高峰期;构造-成矿作用可分为开裂、拼合及相对稳定三个阶段;成矿作用早期以幔源岩浆侵入及海相火山活动为主,晚期以壳幔混源-壳源的陆相中酸性岩浆侵入及火山活动为主;与火成活动及开裂作用有关的成矿活动在南、北两个成矿域之间具有振荡性演化的特征.   相似文献   

15.
Remnants of the Early Paleozoic gabbro and gabbromonzonite with an age of 514.6 ± 7.2 Ma (U-Pb, Zrn, SHRIMP-RG, Turka Massif) were identified among basites spatially associated with Late Paleozoic granitoids of Western Transbaikalia. Obtained geochronological data are close to those of felsic subvolcanic rocks of the Early Cambrian volcanotectonic structures of the Uda-Vitim paleoisland arc and gabbro of the Dzhida island arc in Central and Southwestern Transbaikalia. As compared to the Late Paleozoic analogues, the Early Paleozoic gabbromonzonite is characterized by the moderately low potassic alkalinity, fractionated REE pattern, and LILE enrichment relative to HFSE. The Early Paleozoic gabbro and gabbromonzonite are depleted in Nb, Ta, Zr, and Hf and enriched in Pb and Sr, which is typical of suprasubduction magmatic rocks. Geochemical data indicate a contribution of crustal (subducted) material in a magma source. A combination of geological, geochemical, and isotope-geochronological data indicates that the Early Paleozoic gabbromonzonite was formed in the Uda-Vitim paleoisland arc system in a suprasubduction setting. The geochemical similarity of the Early Paleozoic rocks and Late Paleozoic basites, which are associated with the Late Paleozoic granitic rocks of the Angara-Vitim batholith and were formed 200 Ma later, is attributed to inheritance of mantle source.  相似文献   

16.
阿尔金山北缘早古生代岩浆活动的构造环境   总被引:17,自引:0,他引:17  
阿尔金山北缘地处塔里木盆地和柴达木盆地之间的阿尔金断裂的西北,是青藏高原北部边界地区。该区花岗岩类主要形成于早古生代以来,为钙碱性岩系(碱性程度不高),发育Ⅰ型和A型两种花岗岩类,缺少S型花岗岩。早古生代与蛇绿岩伴生的双峰式火山岩系属于亚碱性系列,其中的玄武岩主要为拉斑系列,流纹岩属钙碱系列。花岗岩类构造环境分析和判别结果表明,阿尔金山北缘早古生代处在破坏性活动板块边缘,构造环境可能经历了早古生代活动陆缘的(火山)岛弧、中生代大陆造陆抬升以至新生代的后造山作用演化过程。火山岩类的构造环境分析结果表明,玄武岩类可能具有洋脊区、岛弧区和板内区各种构造环境,流纹岩类则主要处在板内区。以上分析说明早古生代"阿尔金洋"的存在。   相似文献   

17.
在进行云南l∶5万板桥幅区域地质调查的过程中,对该区保山地块中前人划分的双麦地群进行了详细研究。结果发现,该区的双麦地群实为一套细碎屑板岩夹大理岩和安山质、玄武质火山岩组合,并在其中首次发现了晚寒武世崮山期Blackwelderia带的三叶虫化石分子Blackwelderia baoshanensis Luo,Blackwelderia sp.,Parashengia elongata Luo等,且具明显的底栖-浮游的混生现象,从而确定该套地层应属寒武系上统核桃坪组,而非寒武系下—中统双麦地群。该套地层岩石组合及其时代的确定,为进一步深入了解保山地块的构造属性、构造单元划分和发展演化提供了新的证据。  相似文献   

18.
The Rudny Altai and Gorny Altai regions had different geologic histories and differ in metallogenic patterns. The Vendian-Early Cambrian to Permian-Triassic multistage evolution of Gorny Altai included subduction, accretion-collision, and rifting events accompanied by magmatism and related mineralization. Metallogeny evolved in discrete pulses, with especially abundant Late Paleozoic-earliest Mesozoic mineralization. The Devonian-Carboniferous pulse produced diverse mineral deposits (iron, mercury, gold, silver, molybdenum, tungsten, cobalt, polymetallic ores, and rare earths), some of considerable economic value. The territory of Gorny Altai includes several large ore districts that belong to different zones. They are the Beloretsk-Kholzun iron district in the west, the Kayancha-Sinyukha fluorine-gold district in the northeast, the Kurai gold-mercury and Yustyd rare-metal-silver districts in the southeast, and the Kalguty rare-metal-tungsten and Ulandryk U-REE-Cu districts in the south. The largest mineral deposits are Kholzun (Fe, P2O5), Karakul (Co, Bi), Sinyukha (Au), Aktash and Chagan-Uzun (Hg), Ozernoe and Pogranichnoe (Ag), Kalguty (Mo, W), Alakha (Li, Ta), Rudnyi Log (Y,Fe-specularite), and Urzarsai (W-scheelite). Mineralization in Rudny Altai is mainly pyritic: copper-pyrite, pyrite-polymelallic ore, and barite-polymelallic ore. It resides in suprasubduction basalts and rhyolites and in Emsian to Frasnian island-arc volcanics at different stratigraphic levels of Devonian volcanosedimentary sequences in six ore districts. The Kurchum high-grade metamorphic block hosts copper-pyrite and gold-quartz mineralization related to Hercynian volcanism.  相似文献   

19.
华北克拉通北缘晚中生代火山岩   总被引:56,自引:5,他引:56  
辽宁西部广泛分布着晚中生代火山岩,横跨华北克拉通和兴-蒙造山带两大构造单元,一般认为它们是以在这一地区发育的两条主要断裂-西拉木伦河断裂和赤峰-开源断裂为界。这些火山作用曾被认为是中生代伊泽奈崎板块西向或西北向消减作用的结果。在岩性上它们主要以中酸性岩石为主,玄武岩等中基性岩石较少。为查明下伏岩石圈对这些岩浆作用成因的影响,对其中的SiO2含量<60%的中基性火山岩进行了详细的Sr-Nd-Pb同位素研究。结果显示,以西拉木伦河断裂和赤峰-开源断裂两侧为界,两侧火山岩的同位素特征存在显著区别。南区有明显的EMI特征并具EMI-PM混合趋势,而北区则显示了原始或略亏损的特征。南北两区之间的过渡带(介于西拉木伦河断裂和赤峰-开源断裂之间)则表现了同位素组成上相应的过渡特征。这一地球化学观测与已有的地质和地球物理资料颇为吻合。基于新生代幔源岩石化学反演的中国东部陆下地幔化学区划研究揭示了克拉通下(subcratonic)岩石圈地幔与EMI存在密切关系。本研究所提供的地球化学证据说明了采用中生代中基性在作为类似研究途径的可行性,并进一步提出对华北克拉通边缘中生代火山作用成因另一种可能的解释,即古消减带物质的活化有可能对华北北缘火山岩源区物质组成产生重要影响。  相似文献   

20.
Deformation and magmatism within the 90 km wide northern Ethiopian Rift system is concentrated along a narrow zone - the Wonji Fault Belt. Two key areas (the Nazret-Dera and Asela-Ziway areas), located along the eastern margin of the north-northeast to northeast trending Main Ethiopian Rift, have been investigated in order to reconstruct the recent tectonomagmatic evolution of the northern branch of the Main Ethiopian Rift. In these areas, Early Pleistocene volcanic products (Wonji Group) overlie Pliocene volcanic rocks (Eastern Margin Unit). Detailed stratigraphical reconstructions have revealed the presence of several tectonomagmatic units which can be correlated between the two study areas. The stratigraphical and petrological study of these units outlined (1) the bimodal composition (basalts-pantellerites) of the oldest and youngest units and the unimodal character (pantellerites) of the products erupted during the intervening period; (2) the mainly fissural origin of the ignimbrites and oldest basalts; and (3) a mafic/felsic volumetric ratio of 1:5.The geological data suggest that, around the Pliocene-Quaternary boundary, a change in the stress field occurred in this Main Ethiopian Rift sector, passing from a direction of extension roughly orthogonal to the rift shoulders, to oblique rifting related to an east-west trending extension. In this framework the change in the style of volcanism observed in the Nazret-Dera and Asela-Ziway areas can be related to the change of the stress field. A new geodynamic model is presented for the Late Pliocene to Recent evolution of this sector of the Main Ethiopian Rift. According to this model, a large volume of rhyolitic products was erupted during an oblique rifting phase, following a previous period of pure extension. The change in the tectonic regime favoured partial melting of the underplated basalts as a decrease in the pressure and an elevation of isotherms occurred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号