首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As a result of the interaction between an elliptical accretion disk and gas flowing into it from the circumbinary envelope in a close binary in the course of its orbital motion, the matter of the disk and the circum-disk halo is periodically ejected from the vicinity of the Lagrange point L3, and a common envelope is formed in the system. Three-dimensional numerical gas-dynamical modeling is used to study the structure and dynamics of the envelope and determine its basic parameters. The evolution of the envelope is followed on timescales of the order of several orbital periods. The matter flow ejected through the vicinity of L3 displays a spiral shape. The maximum size of the forming spiral structure is restricted by the self-intersection point, and is of the order of four to five times the component separation. We consider the dynamics of the regions directly adjacent to the spiral structure: an inner, rarified and outer, fragmented region, which further makes a transition to an expanding diffuse ring.  相似文献   

2.
We present a three-dimensional hydrodynamical modeling of mass transfer in the close binary system β Lyr taking radiative cooling into account explicitly. The assumed mass-transfer rate through the first Lagrangian point L1 is 3.0 × 10?5 M /yr. A flow with a radius of 0.14–0.16 (in units of orbital separation) is formed in the vicinity of L1. This flow forms an accretion disk with a radius close to 23 R and a thickness of about 10 R . The accretion disk is surrounded by an outer envelope that extends beyond the computational domain. A spiral shock forms at the outer boundary of the disk at orbital phase 0.25. Geometrically, the disk is toruslike, while the outer envelope is cylinder-like. In this model, which has low temperatures inside the computational domain, no jetlike structures form in the disk. It is possible that the jetlike structure in β Lyr arises due to the interaction of radiative wind from the accretor with the flow from L1. In the model considered, a hot region exists over the poles of the accretor at a height of about 0.21. The amount of matter lost by the system is close to 10% of the mass flowing through L1; i.e., the mass transfer in the system is almost conservative. For a mass-transfer rate of 3.0 × 10?5 M /yr, the orbital period varies by 40.4 s/yr. This means that the observed variation of the orbital period of 19 s/yr should correspond to a mass-transfer rate close to 1.0 × 10?5 M /yr.  相似文献   

3.
We carried out spectroscopy of the binary SSCyg in the Hα, Hβ, and Hγ lines in its active state in August and December 2006. We have estimated the parameters of the main flow elements contributing to the spectra. Profile variations during the orbital period are analyzed, and a Doppler tomogram computed for the Hα line. We consider the evolution of the line profiles with the development of the outburst. A phenomenological model explaining the observed outburst features is suggested. In this model, the main elements of the flow determining the shape of the spectral lines are the accretion disk, a toroidal shell formed in the inner parts of the disk, an expanding spherical shell around the accreting star, a region in front of the bow shock that forms due to the orbital motion of the disk in the circumbinary envelope, and the surface of the donor star near the inner Lagrange point, L1, which is heated by radiation from the accretor.  相似文献   

4.
This paper continues a series of studies on three-dimensional hydrodynamical modeling of mass transfer in the binary system β Lyr. The model takes into account the stellar wind from the donor star, which outflows at a rate of , as demonstrated by radio observations. This stellar wind should appreciably influence the formation of the envelope in the binary. Computations have shown that the interaction of the matter flow from the Lagrangian point L1 and the accretor wind leads to the formation of an optically and geometrically thick gaseous envelope around the accretor. The matter flow meets the accretor wind, spreads out, accumulates over the outer edge of the wind, and forms a geometrically thick envelope (disk). The wind flows freely at the center of the disk, over the accretor poles. Jet-like structures arise beyond the wind-propagation region, above the thick accretion disk. The matter flowing from the outer edge of the disk interacts with the donor wind, leading to the formation of a standing shock between L1 and the outer edge of the disk, in the direction corresponding to orbital phase 0.25. This shock is able to explain the origin of the X-ray radiation from the binary β Lyr.  相似文献   

5.
We present results of two-dimensional hydrodynamical simulations of mass transfer in the close binary system β Lyr for various radii of the accreting star and coefficients describing the interaction of the gaseous flow and the main component (primary). We take the stellar wind of the donor star into account and consider various assumptions about the radiative cooling of the gaseous flow. Our calculations show that the initial radius of the flow corresponding to our adopted mass-transfer rate through the inner Lagrange point (L1) of (1–4) × 10?5M/yr is large: 0.22–0.29 (in units of the orbital separation). In all the models, the secondary loses mass through both the inner and outer (L1 and L2) Lagrange points, which makes the mass transfer in the system nonconservative. Calculations for various values of the primary radius show a strong dependence on the coefficient fv that models the flow-primary interaction. When the radius of the primary is 0.5, there is a strong interaction between the gas flow from L1 and the flow reflected from the primary surface. For other values of the primary radius (0.1 and 0.2), the flow does not interact directly with the primary. The flow passes close to the primary and forms an accretion disk whose size is comparable to that of the Roche lobe and a dense circum-binary envelope surrounding both the disk and the binary components. The density in the disk varies from 1012 to 1014 cm?3, and is 1010–1012 cm?3 in the circum-binary envelope. The temperature in the accretion disk ranges from 30000 to 120000 K, while that in the circum-binary envelope is 4000–18000 K. When radiative cooling is taken into account explicitly, the calculations reveal the presence of a spiral shock in the accretion disk. The stellar wind blowing from the secondary strongly interacts with the accretion disk, circum-binary envelope, and flow from L2. When radiative cooling is taken into account explicitly, this wind disrupts the accretion disk.  相似文献   

6.
Three-dimensional (3D) numerical models of close binaries are used to study the structure and dynamics of common envelopes formed due to periodic ejections of matter from the accretion disk through the vicinity of the Lagrange point L3. The results are used to estimate the physical parameters of the envelope, including its 3D matter distribution, and the matter-flow configuration and dynamics. Possible observational manifestations of such envelopes are estimated. We present the envelope’s radialvelocity distributions at various phases and times, as well as model light curves taking into account extinction in the envelope. The envelope becomes optically thick for systems with high mass-exchange rates, ? > 10?8 M /year, and has a significant influence on the binary’s observed features. The uneven phase distributions of the matter and density variations due to periodic injections of matter into the envelope are important for interpretations of observations of close binary stars.  相似文献   

7.
We suggest a new mechanism for the superoutbursts in SU UMa binaries, in which the increase in the accretion rate resulting in a superoutburst is associated with the formation of a spiral “precessional” wave in the inner parts of the disk, where gas-dynamical perturbations are negligible. The existence of such waves was suggested by us previously. The results of three-dimensional gas-dynamical simulations have shown that a considerable increase in the accretion rate (by up to an order of magnitude) is associated with the formation of the precessional wave. The features of the precessional spiral wave can explain both the energy release in the superoutburst and all its observational manifestations. One distinguishing feature of superoutbursts in SU UMa-type stars is the formation of a “superhump” in the light curve. Our model reproduces well both the formation of a superhump and its observational features, including its period, which is up to 3–7% longer than the orbital period, and the detectability of the superhump independent of the orbital inclination of the binary.  相似文献   

8.
Effects due to the interaction of the steam from the inner Lagrangian point with the accretion disk in a cataclysmic variable star are considered. The results of three-dimensional gas-dynamical numerical simulations confirm that the disk thickness in the vicinity of the interaction with the stream is minimum when the component-mass ratio is 0.6. As a consequence, some of the matter from the stream does not collide with the outer edge of the accretion disk, and continues its motion unperturbed toward the accretor. This part of the stream subsequent interacts (collides) with a thickening of the accretion disk due to the presence of a precessional wave in the disk, leading to the appearance of an additional zone of heating at the disk surface. This additional zone of enhanced luminosity (hot spot) is a direct observational manifestation of the precessional wave in the accretion disk.  相似文献   

9.
We have modeled the mass transfer in the three semidetached binaries U Cep, RZ Sct, and V373 Cas taking into account radiative cooling both implicitly and explicitly. The systems have asynchronously rotating components and high mass-transfer rates of the order of 10?6M/yr; they are undergoing various stages of their evolution. An accreting star rotates asynchronously if added angular momentum is redistributed over the entire star over a time that exceeds the synchronization time. Calculations have indicated that, in the model considered, mass transfer through the point L1 is unable to desynchronize the donor star. The formation of an accretion disk and outer envelope depends on the component-mass ratio of the binary. If this ratio is of the order of unity, the flow makes a direct impact with the atmosphere of the accreting star, resulting in the formation of a small accretion disk and a relatively dense outer envelope. This is true of the disks in U Cep and V373 Cas. When the component-mass ratio substantially exceeds unity (the case in RZ Sct), the flow forms a large, dense accretion disk and less dense outer envelope. Taking into account radiative cooling both implicitly and explicitly, we show that a series of shocks forms in the envelopes of these systems.  相似文献   

10.
Sytov  A. Yu.  Fateeva  A. M. 《Astronomy Reports》2019,63(12):1045-1055

Results of three-dimensional numerical simulations of the gas dynamics of the envelope of the young T Tauri binary star UZ Tau E are considered. The flow structure in the circumstellar envelope of the system is analyzed. It is shown that a regime with the impulsive accretion of matter from the circumstellar disk is realized in the binary system, in which there is a periodic transfer of matter to the accretion disk of the primary component through the accretion disk of the secondary.

  相似文献   

11.
We have synthesized Doppler tomograms of gas flows in the binary system IP Peg using the results of three-dimensional gas-dynamical computations. Gas-dynamical modeling in combination with Doppler tomography enables identification of the key elements of flows in Doppler maps without solution of an ill-posed inverse problem. A comparison of the synthetic tomograms with observations shows that, in the quiescent state of the system, the most luminous components are (1) the shock wave induced by interaction between the circumbinary envelope and the stream from the Lagrange point L 1 (the “hot line”) and (2) the gas condensation at the apogee of the quasi-elliptical disk. Both the single spiral shock wave arm in the gas-dynamical solution and the stream from L 1 contribute little to the luminosity. In the active state of the system, when the stream from L 1 does not play an appreciable role and the disk dominates, both areas of enhanced luminosity in the observational tomograms are associated with the two arms of the spiral shock wave in the disk.  相似文献   

12.
We present an algorithm for synthesizing the light curve of a close binary consisting of a normal star (a red dwarf that fills its Roche lobe) and a spherical star (a white dwarf). The spherical component is surrounded by an elliptical accretion disk with a complex shape: it is geometrically thin near the spherical star and geometrically thick at the edge of the disk. An additional complication is presented by the presence of a one-or two-armed spiral pattern at the inner surface of the disk. The maximum height of the spiral arm above the disk surface is located at ~9 R d , and the height decreases exponentially as the arm approaches the inner regions of the disk. Shielding of the inner hot parts of the disk by the crests of the spirals results in the formation of “steps” in out-of-eclipse parts of the orbital light curves. The algorithm takes into account the presence of a “hot line” by the lateral surface of the disk, making it possible to model binary systems in both quiescence and outburst. In the latter case, the hot line degenerates into a small bulge at the outer lateral surface of the disk, which can be considered an analog of a hot spot. The algorithm was applied to the orbital light curve of the cataclysmic binary IP Peg during its October 30, 2000, outburst. To explain the variations of the out-of-eclipse brightness of the system during the outburst, it is necessary to include the presence of a one-armed spiral wave at the inner surface of the disk, close to the periastron of the elliptical disk. We have obtained the parameters of IP Peg during the outburst for various models of the system.  相似文献   

13.
Three-dimensional numerical hydrodynamical modeling of a radiative wind and accretion disk in a close binary system with a compact object is carried out, using the massive X-ray binary LMC X-3 as an example. This system contains a precessing disk, and may have relativistic jets. These computations show that an accretion disk with a radius of about 0.20 (in units of the component separation) forms from the radiative wind from the donor when the action of the wind on the central source is taken into account, when the accretion rate is equal to the observed value (about 3.0 × 10?8 M /year, which corresponds to the case when the donor overflows its Roche lobe by nearly 1%). It is assumed that the speed of the donor wind at infinity is about 2200 km/s. The disk that forms is geometrically thick and nearly cylindrical in shape, with a low-density tunnel at its center extending from the accretor through the disk along the rotational axis. We have also modeled a flare in the disk due to short-term variations in the supply of material through the Lagrange point L1, whose brightnesses and durations are able to explain flares in cataclysmic variables and X-ray binaries. The accretion disk is not formed when the donor underfills its Roche lobe by 0.5%, which corresponds to an accretion rate onto the compact object of 2.0 × 10?9 M /year. In place of a disk, an accretion envelope with a radius of about 0.03 forms, within which gas moves along very steep spiral trajectories before falling onto the compact object. As in the accretion-disk case, a tunnel forms along the rotational axis of the accretion envelope; a shock forms behind the accretor, where flares occur in a compact region a small distance from the accretor at a rate of about six flares per orbital period, with amplitudes of about 10 m or more. The flare durations are two to four minutes, and the energies of individual particles at the flare maximum are about 100–150 keV. These flares appear to be analogous to the flares observed in gamma-ray and X-ray burst sources. We accordingly propose a model in which these phenomena are associated with massive, close X-ray binary systems with component-mass ratios exceeding unity, in which the donor does not fill its Roche lobe. Although no accretion disk forms around the compact object, an accretion region develops near the accretor, where the gamma-ray and X-ray flares occur.  相似文献   

14.
We present the results of three-dimensional numerical simulations of flow structures in binary systems with spiral shock waves. Variations of the mass-transfer rate perturb the equilibrium state of the accretion disk; consequently, a condensation (blob) behind the shock breaks away from the shock front and moves through the disk with variable speed. Our computations indicate that the blob is a long-lived formation, whose mean parameters do not vary substantially on timescales of several tens of orbital periods of the system. The presence of the spiral shocks maintains the compact blob in the disk: it prevents the blob from spreading due to the differential motion of matter in the disk, and dissipative spreading on this timescale is negligible. A number of cataclysmic variables display periodic or quasi-periodic photometric variations in their light curves with characteristic periods ~0.1–0.2P orb, where P orb is the orbital period. The blobs formed in systems with spiral shock waves are examined as a possible origin for these variations. The qualitative (and, in part, quantitative) agreement between our computations and observations of IP Peg and EX Dra provides evidence for the efficacy of the proposed model.  相似文献   

15.
Three-dimensional hydrodynamical modeling of the formation of the accretion disk in the SS 433 binary system is carried out with various types of cooling and numerical grids. These computations show that a thick accretion disk with a height of 0.25–0.30 (in units of the component separation) is formed around the compact object, from a flow with a large radius (0.2–0.3 in the same units) that forms in the vicinity of the inner Lagrangian point. This disk has the form of a flattened torus. The number of orbits of a particle of gas in the disk is 100–150, testifying to a minimal influence of numerical viscosity in these computations. The computations also show that the stream flowing from L1 is nearly conservative, and spirals in the disk are not formed due to the influence of the donor gravitation.  相似文献   

16.
High resolution observations in the region of the Hα, HeII λ 4686, and Hγ lines in the spectrum of the symbiotic binary Z And were performed during a small-amplitude flare at the end of 2002. The profiles of the hydrogen lines were double-peaked, and suggest that the lines may be emitted mainly by an optically thin accretion disk. Since the Hα line is strongly contaminated by emission from the envelope, the Hγ line is used to investigate the properties of the accretion disk. The Hα line has broad wings, believed to be determined mostly by radiation damping, although the high-velocity stellar wind from the compact object in the system may also contribute. The Hγ line has a broad emission component, assumed to be emitted mainly from the inner part of the accretion disk. The HeIIλ 4686 line also has a broad emission component, but is believed to arise in a region of high-velocity stellar wind. The outer radius of the accretion disk can be calculated from the shift between the peaks. Assuming that the orbital inclination can range from 47° to 76°, we estimate the outer radius to be 20–50 R. The behavior of the observed lines can be interpreted in the model proposed for the line spectrum during the first large 2000–2002 flare of this binary.  相似文献   

17.
We present a qualitative analysis of possible changes in the structure of accretion disks that occur in the transition from hot to cool disks. We suggest that an additional spiral-density wave can exist in the inner parts of the disk, where gas-dynamical perturbations are negligible. We consider the formation of this wave and its parameters. The results of a three-dimensional gas-dynamical simulation of a cool accretion disk are presented; these results confirm the possibility of the formation of a new, “precessional,” spiral wave in the inner regions of a cool accretion disk. Possible observational manifestations of such a wave are discussed.  相似文献   

18.
We present three-dimensional hydrodynamical modeling of mass transfer in the close binary system β Lyr taking into account explicitly radiative cooling and the stellar wind of the accretor. Our computations show that flow forces wind out from the orbital plane, where an accretion disk with a radius of 0.4–0.5 and a height of about 0.15–0.17 (in units of orbital separation) is formed. Gas motions directed upward from the orbital plane are initiated in the region of interaction of the flow from L1 and the accretor wind (x = 0.91, y = ?0.17); i.e., a jetlike structure forms. This structure has the shape of a gas pillar above the orbital plane, where gas moves with the velocity of stellar wind. The number density of the gas in this structure is about 1014 cm?3, and its temperature is 20 000–45 000 K. At heights of about 0.15–0.20 above the orbital plane, in the region between the jetlike structure and the disk, two spiral shocks form. It is possible that the emission lines observed in the spectrum of β Lyr binary originate in this region.  相似文献   

19.
We analyze heating and cooling processes in accretion disks in binaries. For realistic parameters of the accretion disks in close binaries (\(\dot M \simeq 10^{ - 12} - 10^7 M_ \odot /yr\) and α?10?1–10?2), the gas temperature in the outer parts of the disk is from ~104 to ~106 K. Our previous gas-dynamical studies of mass transfer in close binaries indicate that, for hot disks (with temperatures for the outer parts of the disk of several hundred thousand K), the interaction between the stream from the inner Lagrange point and the disk is shockless. To study the morphology of the interaction between the stream and a cool accretion disk, we carried out three-dimensional modeling of the flow structure in a binary for the case when the gas temperature in the outer parts of the forming disk does not exceed 13 600 K. The flow pattern indicates that the interaction is again shockless. The computations provide evidence that, as is the case for hot disks, the zone of enhanced energy release (the “hot line”) is located beyond the disk and originates due to the interaction between the circumdisk halo and the stream.  相似文献   

20.
We present a “combined” model taking into account visual manifestations of the interaction between the gas flow and the accretion disk in a close binary system in the form of a “hot line” and a “hot spot.” The binary consists of a red dwarf that fills its Roche lobe and a compact spherical star (a white dwarf or neutron star) surrounded with a thick ellipsoidal accretion disk of a complex shape. The disk thickness is not large near the compact star but increases according to a parabolic law towards its outer edge. The oblique collision of the gaseous flow with matter of the cool, rotating disk, whose outer edge has a temperature <10 000 K, creates an extended region of enhanced energy release. In the combined model, this region is represented with a hot line that coincides with the optically opaque part of the flow and is located outside the disk, together with a hot spot at the outer surface of the disk, on the leeward side of the flow. The synthetic light curves for the combinedmodel and a hot-line model demonstrate that both models are able to fairly accurately reproduce the shapes of both classical and atypical light curves of cataclysmic variables in quiescence. Our determination of the parameters of the cataclysmic variable OY Car from an analysis of its light curves using the two models shows that the basic characteristics of the close binary, such as the component mass ratio q = M 1/M 2, orbital inclination i, effective temperatures of the red dwarf (T 2) and white dwarf (T 1), and orientation of the disk α e , remain the same within the errors. The parameters describing the size of the slightly elliptical disk and the radiation flux from the disk differ by several percent (∼ 2–8%). A more significant difference is detected in the parameters of the hot line, due to the different shape and alignment of the flow and the presence of an additional radiation source—the hot spot—on the disk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号