首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study, based in the Haushi‐Huqf area of central east Oman, aims to characterize the controls on facies distribution and geometries of some of the best preserved examples of Lower Cretaceous tidal flat facies within the Tethyan epeiric platform. Field, petrographic and geochemical data were acquired from the Barremian–Aptian Jurf and Qishn formations that crop out in a 500 × 1000 m2 butte, thus allowing for pseudo three‐dimensional quantitative data acquisition of the dimensions and spatial distributions of discontinuity surfaces and sedimentary bodies. The interpretation presented here suggests that the main processes impacting sedimentation in the Lower Cretaceous peritidal environment of the Haushi‐Huqf were transport and erosion processes related to storm waves and currents. The vertical evolution of the carbonate system is organized into six types of metre‐scale depositional sequences, from subtidal dominated sequences to supratidal‐capped sequences, which are bounded by regional discontinuity surfaces. At subaerial exposure and submarine erosion surfaces associated with a base level shift, sedimentary horizons along the entire depositional profile are cut by scours possibly created by storm events. Chemostratigraphy allows correlation between the Haushi‐Huqf and the age‐equivalent sections logged in the interior of the platform in Oman. The correlation suggests that the change from subtidal to intertidal depositional sequences during the late highstand is coeval with the development of rudist dominated shoals on the shelf. This study is the first to discuss the controls on Lower Cretaceous peritidal carbonate cyclicity of the Arabian epeiric platform. The results presented here also offer a unique quantitative dataset of the distribution and dimensions of peritidal carbonate shoals and storm scours in a regional sequence stratigraphic context.  相似文献   

2.
The lateral continuity and facies heterogeneities of metre‐scale cycles in a greenhouse Lower Jurassic (Sinemurian) carbonate ramp from the northern Iberian Basin (Spain) was evaluated from extensive field analysis carried out on a well‐exposed 12 km long outcrop. Eleven high‐frequency continuous cycles and their bounding surfaces are traceable laterally through the entire outcrop. However, three of these cycles are found to split laterally into discontinuous cycles of more limited distribution (up to 3 to 5 km of lateral extent). The continuous and discontinuous cycles have a similar field expression in one‐dimensional logs. As a consequence, the number of cycles that can be differentiated is variable along the logged sections (i.e. from 11 to 16). Cycles have variable facies heterogeneities and sedimentary trends depending on the environment of formation: shallowing‐upward and symmetrical cycles occur in protected lagoon–tidal flat areas and in the open‐marine, high‐energy domain. These cycles show significant facies heterogeneities, which were controlled mainly by lateral migration of a mosaic of facies over an irregular topography. Deepening‐upward and aggradational cycles are generated in low‐energy, sub wave‐base, open‐marine areas. Facies are laterally homogeneous, reflecting low potential for carbonate accumulation and inability to fill the created accommodation space in this low‐relief and relatively deep area. Cycle boundaries are generated by stages of rapid accommodation gain, involving the flooding of the carbonate ramp; they are more likely to originate from regional tectonic pulses (related to the extensional tectonics operating in the northern Iberian Basin) rather than greenhouse low‐amplitude eustacy. Discontinuous cycles tend to occur in thickened areas and are interpreted as originating from the infill of wedge‐shaped accommodation space resulting from differential subsidence (i.e. local tectonic pulses). In conclusion, where thickness variations occur in extensional settings lateral continuity of cycles should not be expected. In less well‐exposed, or in one‐dimensional sections and in wells, it would not be possible to distinguish continuous from discontinuous cycles, or to understand such two‐dimensional heterogeneities. Identification of unique cycle‐forming mechanisms or attempting cyclostratigraphic long‐distance correlation of cycles is unrealistic without a detailed analysis of the architecture of cycles in laterally continuous outcrops.  相似文献   

3.
赵秧秧  高抒 《沉积学报》2015,33(1):79-90
以江苏如东潮滩为研究区,采用沉积动力学垂向二维概念模型来模拟正常天气和台风期间潮滩沉积的空间分布特征,探讨台风风暴潮对潮滩正常沉积层序的改造作用.模拟结果表明,在涨落潮时间-流速对称特征明显的如东海岸,潮汐作用使潮滩沉积呈显著的分带性,且剖面形态向“双凸形”演化,两个“凸点”分别位于平均高潮位和平均低潮位附近.在台风期间风暴增水效应下,开边界悬沙浓度差异将导致潮滩冲淤和沉积分布格局的变化,潮上带和潮间带上部均堆积泥质沉积物,潮间带中下部在风暴过程中普遍遭受不同程度的砂质沉积物侵蚀或之后堆积泥质沉积物,在沉积层序中形成风暴冲刷面.因此,潮滩的风暴沉积记录存在于潮间带上部或更高部位.以此模型为基础,可进一步综合考虑极浅水边界层水动力结构、沉积物粒度分布变化、波-流联合作用、台风降水、互花米草等生物活动、潮沟摆动及人工围垦等因素,从而建立风暴事件在沉积层序中的时间序列,更好地解译沉积记录中的古环境信息.  相似文献   

4.
Although lags of bones and teeth are commonly cited criteria for marine unconformities, the consistency of the association of vertebrate fossils and discontinuity surfaces, as well as the taphonomic (postmortem) controls on this relationship, are poorly understood. A field test across fluvial, paralic, and shallow marine facies in the Campanian Two Medicine and Judith River formations of Montana indicates that the distribution of vertebrate skeletal concentrations is poorly correlated with the inferred durations of erosional and omissional hiatuses. Instead, vertebrate concentrations associated with discontinuities of all durations tend to be patchy and closely track the abundance of fossil material in underlying and lateral facies. Based on the analysis of 83 measured sections, we found first that erosional bases of channels and minor scours within channels yield vertebrate lags; tidally influenced fluvial deposits are more productive than are "upland" fluvial deposits. Second, erosional shoreface ravinements and their correlative transgressive marine flooding surfaces (fourth-order sequence boundaries) have well-developed vertebrate lags only along segments that cut across older shoreface deposits. Third, a nonerosional, widely traceable discontinuity, which is interpreted as the nonmarine extension of a 75.4-Ma third-order transgressive surface, is completely lacking in vertebrate concentrations. Despite being unfossiliferous itself, this discontinuity does mark a regional change in the richness of the vertebrate fossil record, with overlying beds characterized by a much greater abundance of skeletal material. Fourth, a laterally extensive set of erosional surfaces, embedded within multistory fluvial sandstone sheets, is the nonmarine extension of an 80-Ma third-order sequence boundary in the marine basin and lacks vertebrate concentrations. The strong dependence of vertebrate lag development on preexisting local sources of skeletal material rather than on the magnitude of the erosional vacuity or the duration of the hiatus contrasts with skeletal concentrations of invertebrates in marine successions, where exhumation is generally much less important than the production of new elements during the hiatus. These findings provide a guide to prospecting productive fossil horizons in terrestrial records and underscore fundamental differences in the ways in which bioclastic material accumulates in terrestrial and shallow marine settings, the qualities of paleobiologic data derived from such concentrations, and the relative reliabilities of skeletal material as cues to stratigraphically significant discontinuities.  相似文献   

5.
Eighteen coastal-plain depositional sequences that can be correlated to shallow- to deep-water clinoforms in the Eocene Central Basin of Spitsbergen were studied in 1 × 15 km scale mountainside exposures. The overall mud-prone (>300 m thick) coastal-plain succession is divided by prominent fluvial erosion surfaces into vertically stacked depositional sequences, 7–44 m thick. The erosion surfaces are overlain by fluvial conglomerates and coarse-grained sandstones. The fluvial deposits show tidal influence at their seaward ends. The fluvial deposits pass upwards into macrotidal tide-dominated estuarine deposits, with coarse-grained river-dominated facies followed further seawards by high- and low-sinuosity tidal channels, upper-flow-regime tidal flats, and tidal sand bar facies associations. Laterally, marginal sandy to muddy tidal flat and marsh deposits occur. The fluvial/estuarine sequences are interpreted as having accumulated as a series of incised valley fills because: (i) the basal fluvial erosion surfaces, with at least 16 m of local erosional relief, are regional incisions; (ii) the basal fluvial deposits exhibit a significant basinward facies shift; (iii) the regional erosion surfaces can be correlated with rooted horizons in the interfluve areas; and (iv) the estuarine deposits onlap the valley walls in a landward direction. The coastal-plain deposits represent the topset to clinoforms that formed during progradational infilling of the Eocene Central Basin. Despite large-scale progradation, the sequences are volumetrically dominated by lowstand fluvial deposits and especially by transgressive estuarine deposits. The transgressive deposits are overlain by highstand units in only about 30% of the sequences. The depositional system remained an estuary even during highstand conditions, as evidenced by the continued bedload convergence in the inner-estuarine tidal channels.  相似文献   

6.
Recent developments in seismic, magnetotelluric and geochemical analytical techniques have significantly increased our capacity to explore the mantle lithosphere to depths of several hundred kilometres, to map its structures, and through geological interpretations, to assess its potential as a diamond reservoir. Several independent teleseismic techniques provide a synergistic approach in which one technique compensates for inadequacies in another. Shear wave anisotropy and discontinuity studies using single seismic stations define vertical mantle stratigraphic columns. For example, beneath the central Slave craton seismic discontinuities at depths of 38, 110, 140 and 190 km appear to bound two distinct anisotropic layers. Tomographic (3-D) inversions of seismic wave travel-times and 2-D inversions of surface or scattered waves use arrays of stations and provide lateral coverage. In combination, and by correlation with electrical conductivity and xenolith petrology studies, these techniques provide maps of key physical properties within parts of the cratons known to host diamonds. Beneath the Slave craton, the discontinuity at 38 km is the base of the crust; the boundaries at 110 and 140 km appear to bound a layer of depleted harzburgite that is interpreted to contain graphite. To date, only some of these techniques have been applied to the Slave and Kaapvaal cratons so that the origin and geological history of the currently mapped mantle structures are not, as yet, generally agreed.  相似文献   

7.
Sedimentological, palaeontological and geochemical data provide detailed evidence of a marine-to-lagoon environmental succession around the Campanian-Maastrichtian boundary in the Ibero-Armorican domain. This regression is recorded by the succession of several environments of the south-central Pyrenees basin: open marine mixed shelf, marine restricted mixed shelf (both rudist-rich), tidal flat, lagoon and fluvial dominated. The tidal flat setting belongs to the Fumanya Member here described, which is the base of the Posa and Massana formations (Tremp Group). The Fumanya Member is 5 m thick, is built up of marly limestones and was an elongated tidal mudflat (100 km long, 25 km wide) developed in a foreland trough and was separated from the Atlantic Ocean by an island-barrier system. In the lagoon environment, marginal marine waters and continental fresh waters alternated as documented by geochemistry and fossil molluscs. The Fumanya Member is a dinosaur megatracksite, reporting the roaming activity only of sauropods in tidal flats, a likely secure area against predators. Feeding activity of these herbivores took place in the lagoonal-lacustrine environments of the Posa Formation above the Fumanya Member.  相似文献   

8.
豫西太原组、山西组中潮道沉积的类型和特征   总被引:5,自引:1,他引:5  
豫西太原组中的潮道为陆表海滨岸潮道类型,其特点为:向上变细的层序,冲刷切割下伏的灰岩层,具大型板状、槽状交错层理和双向交错层理,潮道曲流砂坝发育。山西组下段的潮道为障壁后潮道,位于障壁砂坝后的潮坪区;潮道砂岩泥质杂基较高,正粒序,砂体自海向陆分叉尖灭;潮坪、潮道等亚环境组合影响了其上发育的煤层的厚度变化。山西组上段的潮道为下三角洲平原潮道类型,多位于分流河口,砂岩为正粒序,双(单)粘土层和潮汐周期层序发育。  相似文献   

9.
Application of sedimentological, geochemical and discriminant analysis techniques to the engineering geological investigation of damsites assists in understanding the variation of rock types, stratal correlation, porosity, folding and faulting, through studying the history of depositional and diagenetic environments.

Factor analysis (Rao & Naqvi, 1977) resulted in the proposal of a tidal depositional model consisting of subtidal, shoal, bar, intertidal and supratidal carbonate environments, and channels and dune‐and‐flat terrigenous environments. Discriminant analysis has now been employed to extend the paleo‐environmental model laterally. Samples (142) from four new drill holes were examined, and the data compared with the earlier data by a discriminant analysis technique. The results confirm our pre‐existing model of a prograding tidal complex.

Regional correlation of depositional environments of strata shows an anticlinal structure. Faulting in the sequence is indicated by secondary dolomitisation, breccia‐tion and stfatal discontinuities. The secondary dolomites replaced both limestones and sandstones in the sequence. The amount of porosity is related to depositional facies and dolomitisation. It is possible to understand the hydrologic regime with the aid of regional structure, depositional and diagenetic facies, and porosity.

Because this factor and discriminant analysis technique intensively uses information from each length of drill core, the possibility exists of more confident interpretation of new data from less extensive drilling, with consequent saving in cost.  相似文献   

10.
ERNESTO SCHWARZ 《Sedimentology》2012,59(5):1478-1508
The interpretation of sharp‐based shallow‐marine sandstone bodies encased in offshore mudstones, particularly transgressive units, has been a subject of recent debate. This contribution provides a multiple‐dataset approach and new identification criteria which could help in the recognition of transgressive offshore sandstone bodies worldwide. This study integrates sedimentology, ichnology, taphonomy and palaeoecology of Mulichinco Formation strata in the central Neuquén Basin (Argentina) in order to describe and interpret sharp‐based sandstone bodies developed in ramp‐type marine settings. These bodies are sandwiched between finer‐grained siliciclastics beneath and thin carbonates above. The underlying sediments comprise progradational successions from offshore mudstones to offshore transition muddy sandstones, grading occasionally into lower shoreface sandstones. The surfaces capping the regressive siliciclastics are flat and regionally extensive, and are demarcated by skeletal concentrations and a Glossifungites suite; they are also marked by sandstone rip‐up clasts, with encrustations and borings on all sides. These surfaces are interpreted as composite discontinuities, cut during a relative sea‐level fall and remodelled during the initial transgression. The overlying transgressive sandstone bodies are 3 to 7 m thick, >4 km long and about three times longer than wide; they are composed of fine‐grained sandstones with little lateral change in grain size. Cross‐stratification and/or cross‐lamination are common, typically with smaller‐scale structures and finer grain size towards the top. Large‐scale, low‐angle (5° to 8°) inclined stratification is also common, dipping at ca 30° with respect to body elongation and dominant currents. These sandstone bodies are interpreted as offshore sand ridges, probably developed under the influence of tidal currents. Intense burrowing is typical at the top of each unit, suggesting an abandonment stage. Final deactivation favoured colonization by epibenthic‐dominated communities and the formation of skeletal‐rich limestones during the latest transgressive conditions. As partial reworking of pre‐existing ridges occurred during this stage, the Mulichinco sandstone bodies are considered the remnants of transgressive offshore sand units.  相似文献   

11.
Open‐coast tidal flats are hybrid depositional systems resulting from the interaction of waves and tides. Modern examples have been recognized, but few cases have been described in ancient rock successions. An example of an ancient open‐coast tidal flat, the depositional architecture of the Lagarto and Palmares formations (Cambrian–Ordovician of the Sergipano Belt, north‐eastern Brazil) is presented here. Detailed field analyses of outcrops allowed the development of a conceptual architectural model for a coastal depositional environment that is substantially different from classical wave‐dominated or tide‐dominated coastal models. This architectural model is dominated by storm wave, low orbital velocity wave and tidal current beds, which vary in their characteristics and distribution. In a landward direction, the storm deposits decrease in abundance, dimension (thickness and spacing) and grain size, and vary from accretionary through scour and drape to anisotropic hummocky cross‐stratification beds. Low orbital wave deposits are more common in the medium and upper portion of the tidal flat. Tidal deposits, which are characterized by mudstone interbedded with sandstone strata, are dominant in the landward portion of the tidal flat. Hummocky cross‐stratification beds in the rock record are believed, in general, to represent storm deposits in palaeoenvironments below the fair‐weather wave base. However, in this model of an open‐coast tidal flat, hummocky cross‐stratification beds were found in very shallow waters above the fair‐weather wave base. Indeed, this depositional environment was characterized by: (i) fair‐weather waves and tides that lacked sufficient energy to rework the storm deposits; (ii) an absence of biological communities that could disrupt the storm deposits; and (iii) high aggradation rates linked to an active foreland basin, which contributed definitively to the rapid burial and preservation of these hummocky cross‐stratification deposits.  相似文献   

12.
The first sandstone unit of the Esdolomada Member of the Roda Formation (hereafter referred to as ‘Esdolomada 1’) was formed by a laterally‐migrating, shelf tidal bar. This interpretation is based on detailed mapping of the bedding surfaces on the digital terrain model of the outcrop built from light detection and ranging data and outcrop photomosaics combined with vertical measured sections. The Esdolomada 1 sandbody migrated laterally (i.e. transverse to the tidal currents) towards the south‐west along slightly inclined (1.6° to 4.6°) master bedding surfaces. The locally dominant tidal current flowed to the north‐west. This current direction is indicated by the presence of stacked sets of high‐angle (average 21°) cross‐stratification formed by dunes that migrated in this direction, apparently in an approximately coast‐parallel direction. The tidal bar contains sets and cosets of medium‐grained cross‐stratified sandstone that stack to reach a thickness of about 5·5 m. Individual cross‐bed sets average about 50 cm thick (with a range of 10 to 70 cm) and have lengths of ca 130 to 250 m in a direction perpendicular to the palaeocurrent. Set thickness decreases in the direction of migration, towards the south‐west, and the degree of bioturbation increases, so that the cross‐bedded sandstones gradually change into highly bioturbated finer‐grained and thinner‐bedded sandstones lacking any cross‐stratification. The rate of thinning of individual dune sets as they are traced down any obliquely‐accreting master surface is some 40 cm per 100 m (0·004) for the older, thicker sandstones, whereas the younger, thinner beds thin at a rate of 15 cm over 100 m (0·0015). The tidal bar has a sharp base and top and is encased in finer‐grained bioturbated, marine sandstones. The Esdolomada bar crest was oriented north‐west to south‐east, parallel to the tidal palaeocurrents and to the nearby palaeoshoreline, but built by lateral accretion towards the south‐west. Lateral outbuilding generated a flat‐topped bar with a measured width of about 1700 m, and a preserved height of 5·5 m. The bar, disconnected from a genetically related south‐westward prograding delta some 2 km to the north‐east, developed during the transgressive phase of a sedimentary cycle. The tidal bar was most probably initiated as a delta‐attached bar at the toesets of the delta front and during transgression evolved into a detached tidal bar.  相似文献   

13.
The Eifelian sedimentary record in the epeiric Baltic Basin contains an extensive brecciated interval known as the Narva Breccia. During recent decades, the origin of this breccia has been attributed to (1) palaeoseismicity, (2) extraterrestrial impact event or (3) diagenetic collapse. Our studies show the presence of two different breccia types that form 11 stratigraphic horizons and contain several laterally and stratigraphically unrelated breccias. The occurrence of Type‐1 and Type‐2 breccias, together with carbonate sabkha and carbonate inter‐ to supratidal tidal flat deposits on the basin margins, indicates synsedimentary brecciation formed in a sabkha environment. Type‐2 breccia could also originate from wave‐cycling loading.  相似文献   

14.
《Sedimentology》2018,65(4):1067-1096
Submarine landslides, including the basal shear surfaces along which they fail, and their subsequent infill, are commonly observed in modern seabed and seismic reflection data sets; their resultant relief impacts sediment routing and storage patterns on continental margins. Here, three stacked submarine landslides are documented from the Permian Ecca Group, Laingsburg depocentre, Karoo Basin, South Africa, including two superimposed lateral margins. The stratigraphic framework includes measured sections and correlated surfaces along a 3 km long, 150 m high outcrop. Two stacked 2·0 to 4·5 km wide and 90 m and 60 m deep erosion surfaces are recognized, with lateral gradients of 8° and 4°, respectively. The aim of this study was to understand the evolution of a submarine landslide complex, including: evolution of basal shear surfaces/zones; variation of infill confinement; and location of the submarine landslides in the context of basin‐scale sedimentation and degradation rates. Three stages of formation are identified: (i) failure of submarine landslide 1, with deposition of unconfined remobilized deposits; (ii) failure of submarine landslide 2, forming basal shear surface/zone 1, with infill of remobilized deposits and weakly confined turbidites; and (iii) failure of submarine landslide 3, forming basal shear surface/zone 2, with infill of remobilized deposits and confined turbidites, transitioning stratigraphically to unconfined deposits. The expression of basal shear varies laterally, from metres thick zones in silt‐rich strata to sharp stepped surfaces in sand‐rich strata. Faulting and rotation of overlying bedding suggest that the shear surfaces/zones were dynamic. Stacking of landslides resulted from multi‐phase slope failure, increasing down‐dip topography and confinement of infilling deposits. The failure slope was probably a low supply tilted basin margin evidenced by megaclast entrainment from underlying basin‐floor successions and the lack of channel systems. This study develops a generic model of landslide infill, as a function of sedimentation and degradation rates, which can be applied globally.  相似文献   

15.
《Sedimentology》2018,65(2):360-399
Sedimentary gaps are a major obstacle in the reconstruction of a carbonate platform's history. In order to improve the understanding of the early diagenesis and the succession of events occurring during the formation of discontinuity surfaces in limestones, secondary ion mass spectrometry was used for the first time to measure the δ 18O and δ 13C signatures of 11 early cement and fabric stages in several discontinuity surfaces from the Jurassic carbonate platform of the Paris Basin, France. Pendant cements show a high variability in δ 18O, which was impossible to detect by the less precise microdrilling method. The morphology of a given cement can be produced in various environments, and dogtooth cements especially can precipitate in marine phreatic and meteoric phreatic to vadose environments. Marine dogtooth cements and micritic microbially induced fabrics precipitated directly as low‐magnesium calcite in marine waters, as attested to by the preservation of their initial δ 18O and δ 13C signals. Five discontinuity types are recognized based on high‐resolution geochemical analyses, and their palaeoenvironmental history can be reconstructed. Two exposure surfaces with non‐ferroan pendant or meniscus cements formed in the oxidizing vadose zone. A hardground displays marine fibrous cements and non‐ferroan dogtooth cements that formed in a subtidal environment in oxidizing water. Two composite surfaces have undergone both marine and subaerial lithification. Composite surface 1 displays non‐luminescent ferroan dogtooth cements that precipitated in reduced conditions in seawater, followed by brown‐luminescent dogtooth cements characteristic of a meteoric phreatic environment. Composite surface 2 exhibits microbially induced fabrics that formed in marine water with abundant organic matter. The latter discontinuity, initially formed in a subtidal environment, was subsequently exposed to meteoric conditions, as evidenced by ferroan geopetal cements. A high‐resolution ion microprobe study is essential to precisely document the successive diagenetic environments that have affected carbonate rocks and discontinuities with a polygenic and intricate history.  相似文献   

16.
The upper portion of the Virgelle Member (Upper Cretaceous Milk River Formation) at Writing-on-Stone Provincial Park of southern Alberta preserves evidence of tidal processes along an otherwise wave-dominated, progradational shoreline in the Cretaceous Interior Seaway of North America. The upper Virgelle Member is underlain by offshore transition to lower shoreface deposits of the Telegraph Creek Member and the lower Virgelle Member, respectively, and is overlain by the non-marine shales and sandstones of the Deadhorse Coulee Member. The sediments of the upper Virgelle Member were deposited along a prograding shoreline and are interpreted here as those of a tidal-inlet complex. Most inlet sections consist of an erosional base overlain by a shale-pebble conglomerate, followed by cross-bedded sandstones which become finer-grained and decrease in scale upwards. Indicators of tidal processes include palaeocurrent distributions, mud couplets, tidal bundles, re-activation surfaces and herringbone cross-beds. The sequence through the tidal-inlet complex can be differentiated, according to prevalent palaeoflow directions and sedimentary structures, as ebb-dominated, flood-dominated, or mixed-tidal influence. Ebb-dominated sections commonly contain lateral accretion surfaces whereas flood-dominated sections contain tidal-ramp deposits. Back-barrier lagoon deposits are dominated by sandstones of an extensive flood-tidal delta with only thin shales preserved locally at the top of the inlet complex. Deposits of ebb-tidal deltas are absent, presumably due to the effective sediment dispersal by waves and wave-induced longshore currents acting on the regionally wave-dominated shoreline.  相似文献   

17.
Sedimentation on the open-coast tidal flats of south-western Korea is controlled by seasonal variation in the intensity of onshore-directed winds and waves. As a result, an environmental oscillation takes place between tide-dominated conditions in summer and wave-dominated conditions in winter. In summer, thick muddy deposits, including sporadic storm deposits, accumulate in response to low wave energy, weak currents, and intense solar insolation that promotes consolidation of the mud at low tide. Bioturbation is minimal because of rapid sedimentation and soft substrate. During the autumn, the summer mud deposits experience erosion due to increasingly strong onshore winds and waves, until only small mud patches and mud pebbles remain. The concentration of ebb runoff between the mud patches produces small, ephemeral tidal creeks. In winter, storm waves occur frequently (ca 10 days a month) and dominate sedimentation in the intertidal zone, producing extensive wave-generated parallel lamination and short-wavelength (0·3–2 m) hummocky cross-stratification. The prevalence of strong onshore winds decreases in spring, allowing longer and more frequent intervals of calm weather, during which time muddy sediments are deposited by tidal processes. Over the long term, winter storm waves dominate sedimentation and the preserved deposits consist of amalgamated storm beds that resemble those generally associated with shorefaces. This raises the question of how many ancient ‘shorefaces’ are, in fact, open-coast tidal flats.  相似文献   

18.
The Bridport Sand Formation is an intensely bioturbated sandstone that represents part of a mixed siliciclastic‐carbonate shallow‐marine depositional system. At outcrop and in subsurface cores, conventional facies analysis was combined with ichnofabric analysis to identify facies successions bounded by a hierarchy of key stratigraphic surfaces. The geometry of these surfaces and the lateral relationships between the facies successions that they bound have been constrained locally using 3D seismic data. Facies analysis suggests that the Bridport Sand Formation represents progradation of a low‐energy, siliciclastic shoreface dominated by storm‐event beds reworked by bioturbation. The shoreface sandstones form the upper part of a thick (up to 200 m), steep (2–3°), mud‐dominated slope that extends into the underlying Down Cliff Clay. Clinoform surfaces representing the shoreface‐slope system are grouped into progradational sets. Each set contains clinoform surfaces arranged in a downstepping, offlapping manner that indicates forced‐regressive progradation, which was punctuated by flooding surfaces that are expressed in core and well‐log data. In proximal locations, progradational shoreface sandstones (corresponding to a clinoform set) are truncated by conglomerate lags containing clasts of bored, reworked shoreface sandstones, which are interpreted as marking sequence boundaries. In medial locations, progradational clinoform sets are overlain across an erosion surface by thin (<5 m) bioclastic limestones that record siliciclastic‐sediment starvation during transgression. Near the basin margins, these limestones are locally thick (>10 m) and overlie conglomerate lags at sequence boundaries. Sequence boundaries are thus interpreted as being amalgamated with overlying transgressive surfaces, to form composite erosion surfaces. In distal locations, oolitic ironstones that formed under conditions of extended physical reworking overlie composite sequence boundaries and transgressive surfaces. Over most of the Wessex Basin, clinoform sets (corresponding to high‐frequency sequences) are laterally offset, thus defining a low‐frequency sequence architecture characterized by high net siliciclastic sediment input and low net accommodation. Aggradational stacking of high‐frequency sequences occurs in fault‐bounded depocentres which had higher rates of localized tectonic subsidence.  相似文献   

19.
Deltas are commonly classified according to their plan‐view morphology as either river‐dominated, tide‐dominated or wave‐dominated. However, most deltas form under the mixed influence of these processes, commonly with laterally varying process regimes. It has also become clear that there is a mismatch between the plan‐view morphology and internal facies composition in some deltas. Combined outcrop and subsurface data from the Eocene Battfjellet Formation, Spitsbergen, provide an example of ancient shelf deltas that formed under mixed influence. Internally, these shelf deltas are characterized by wave‐dominated facies that are normally associated with strike‐extensive, nearly linear shoreline sandstones. However, the formation comprises partially overlapping sandstone bodies of limited lateral extent (<20 km in any direction). This stacking pattern is attributed to frequent autogenic lobe switching that caused localized and rapid transgressions. Such processes typify fluvial‐dominated deltas and occur less commonly in wave‐dominated ones. Thus, there is an apparent mismatch between inferred plan‐view morphology and internal facies composition. It is argued that the Battfjellet deltas were flood‐dominated and prograded mainly during periods of high fluvial discharge. However, reworking of the fluvial‐flood facies by fair‐weather and storm waves, as well as longshore currents, resulted in a wave‐dominated facies character. Delta lobes undergoing auto‐retreat were particularly prone to reworking by basinal processes, including tidal currents. It is suggested that repeated delta progradation from inner shelf settings towards the outer shelf and shelf edge was aided by high sediment supply rather than relative falls in sea‐level as previously suggested. This interpretation is supported by: (i) the lack of major facies dislocations and extensive sub‐aerial unconformities; and (ii) an overall relative rise in sea‐level as evidenced by an overall low‐angle (0·8 to 1·2°) ascending shoreline trajectory. The latter results from the combined effect of basin subsidence, eustatic highstand and sediment compaction.  相似文献   

20.
Current models of alluvial to coastal plain stratigraphy are concept‐driven and focus on relative sea‐level as an allogenic control. These models are tested herein using data from a large (ca 100 km long and 300 m thick), continuous outcrop belt (Upper Cretaceous Blackhawk Formation, central Utah, USA). Many channelized fluvial sandbodies in the Blackhawk Formation have a multilateral and multistorey internal character, and they generally increase in size and abundance (from ca 10% to ca 30% of the strata) from base to top of the formation. These regional, low‐resolution trends exhibit much local variation, but are interpreted to reflect progressively decreasing tectonic subsidence in the upper Blackhawk Formation and overlying Castlegate Sandstone. The trend may also incorporate progressively more frequent channel avulsion during deposition of the lower Blackhawk Formation. Laterally extensive coal zones formed on the coastal plain during shallow‐marine transgressions, and define the high‐resolution stratigraphic framework of the lower Blackhawk Formation. Large (up to 25 m thick and 1 to 6 km wide), multistorey, multilateral, fluvial channel‐complex sandbodies that overlie composite erosion surfaces occur at distinct stratigraphic levels, and are interpreted as fluvial incised valley fills. Low amplitude (<30 m) relative sea‐level variations are interpreted as the dominant control on stratigraphic architecture in the lower Blackhawk Formation, which was deposited up to 50 km inland from the coeval shoreline. In contrast, the high‐resolution stratigraphy of the upper Blackhawk Formation is poorly defined, and channelized fluvial sandbodies are poorly organized. Vertical and laterally offset stacking of a small proportion (<10%) of sandbodies produced ‘clusters’ that are not confined by ‘master’ erosion surfaces. Avulsion is interpreted to dominate the stratigraphic architecture of the upper Blackhawk Formation. This data‐driven analysis indicates that alluvial to coastal plain stratigraphic architecture reflects a combination of various allogenic controls and autogenic behaviours. The relative sea‐level control emphasized in sequence stratigraphic models is only rarely dominant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号