首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We analyse the angular momentum evolution from the red giant branch (RGB) to the horizontal branch (HB) and along the HB. Using rotation velocities for stars in the globular cluster M13, we find that the required angular momentum for the fast rotators is up to 1–3 orders of magnitude (depending on some assumptions) larger than that of the Sun. Planets of masses up to 5 times Jupiter's mass and up to an initial orbital separation of ~2 au are sufficient to spin-up the RGB progenitors of most of these fast rotators. Other stars have been spun-up by brown dwarfs or low-mass main-sequence stars. Our results show that the fast rotating HB stars have been probably spun-up by planets, brown dwarfs or low-mass main-sequence stars while they evolved on the RGB. We argue that the angular momentum considerations presented in this paper further support the 'planet second parameter' model. In this model, the 'second parameter' process, which determines the distribution of stars on the HB, is interaction with low-mass companions, in most cases with gas-giant planets, and in a minority of cases with brown dwarfs or low-mass main-sequence stars. The masses and initial orbital separations of the planets (or brown dwarfs or low-mass main-sequence stars) form a rich spectrum of different physical parameters, which manifests itself in the rich varieties of HB morphologies observed in the different globular clusters.  相似文献   

2.
The Sculptor dwarf spheroidal galaxy has a giant branch with a significant spread in colour, symptomatic of an intrinsic age–metallicity spread. We present here a detailed study of the Sculptor giant branch and horizontal branch (HB) morphology, combining new near-infrared photometry from the Cambridge Infrared Survey Instrument (CIRSI), with optical data from the European Southern Observatory Wide Field Imager. For a Sculptor-like old and generally metal-poor system, the position of red giant branch (RGB) and asymptotic giant branch (AGB) stars on the colour–magnitude diagram (CMD) is mainly metallicity dependent. The advantage of using optical–near-infrared colours is that the position of the RGB locus is much more sensitive to metallicity than with optical colours alone. In contrast the HB morphology is strongly dependent on both metallicity and age. Therefore a detailed study of both the RGB in optical–near-infrared colours and the HB can help break the age–metallicity degeneracy. Our measured photometric width of the Sculptor giant branch corresponds to a range in metallicity of 0.75 dex. We detect the RGB and AGB bumps in both the near-infrared and the optical luminosity functions, and derive from them a mean metallicity of  [M/H]=−1.3 ± 0.1  . From isochrone fitting we derive a mean metallicity of  [Fe/H]=−1.42  with a dispersion of 0.2 dex. These photometric estimators are for the first time consistent with individual metallicity measurements derived from spectroscopic observations. No spatial gradient is detected in the RGB morphology within a radius of 13 arcmin, twice the core radius. On the other hand, a significant gradient is observed in the HB morphology index, confirming the 'second parameter problem' present in this galaxy. These observations are consistent with an early extended period of star formation continuing in time for a few Gyr.  相似文献   

3.
We perform an evolutionary multivariate analysis of a sample of 54 Galactic globular clusters with high-quality colour–magnitude diagrams and well-determined ages. The four parameters adopted for the analysis are: metallicity, age, maximum temperature on the horizontal branch and absolute V magnitude. Our cladistic analysis breaks the sample into three novel groups. An a posteriori kinematical analysis puts groups 1 and 2 in the halo, and group 3 in the thick disc. The halo and disc clusters separately follow a luminosity–metallicity relation of much weaker slope than galaxies. This property is used to propose a new criterion for distinguishing halo and disc clusters. A comparison of the distinct properties of the two halo groups with those of Galactic halo field stars indicates that the clusters of group 1 originated in the inner halo, while those of group 2 formed in the outer halo of the Galaxy. The inner halo clusters were presumably initially the most massive one, which allowed the formation of more strongly helium-enriched second generation stars, thus explaining the presence of Cepheids and of very hot horizontal-branch stars exclusively in this group. We thus conclude that the 'second parameter' is linked to the environment in which globular clusters form, the inner halo favouring the formation of the most massive clusters which subsequently become more strongly self-enriched than their counterparts of the galactic outer halo and disc.  相似文献   

4.
With the high signal-to-noise ratio spectra, we obtained Si abundances of 22 extrasolar planet host stars, and discussed some constraints on the planet formation. Using our silicon abundance results and other authors’ Si abundance studies about planets-harboring stars, we investigated the correlation between the dynamical properties and the silicon abundance. We propose a hypothesis that higher primordial metallicity in the host stars’ birth cloud with higher abundance of Si will make the cloud more sticky to bypass the time scale restriction in planet formation and easier to form the planets.  相似文献   

5.
We investigate the populations of main-sequence stars within 25 pc that have debris discs and/or giant planets detected by Doppler shift. The metallicity distribution of the debris sample is a very close match to that of stars in general, but differs with >99 per cent confidence from the giant planet sample, which favours stars of above average metallicity. This result is not due to differences in age of the two samples. The formation of debris-generating planetesimals at tens of au thus appears independent of the metal fraction of the primordial disc, in contrast to the growth and migration history of giant planets within a few au. The data generally fit a core accumulation model, with outer planetesimals forming eventually even from a disc low in solids, while inner planets require fast core growth for gas to still be present to make an atmosphere.  相似文献   

6.
1 INTRODUCTION In the past years, we were thrilled to the reports of discoveries of many planets around stars.These planetary systems outside the solar system (if exist) provide not only an independenttest of the formation theory of the solar system but also a chance to search for extraterrestriallife in the universe. Many studies have been made to identify the particularities of these stars,among which spectroscopic studies (e.g. Gonzalez et al. 2001; Santos et al. 2001; Zhao etaL. 2001…  相似文献   

7.
We argue that all transient searches for planets in globular clusters have a very low detection probability. Planets of low-metallicity stars typically do not reside at small orbital separations. The dependence of planetary system properties on metallicity is clearly seen when the quantity   I e ≡ M p[ a (1 − e )]2  is considered;   M p, a   and e are the planet mass, semimajor axis and eccentricity, respectively. In high-metallicity systems, there is a concentration of systems at high and low values of I e , with a low-populated gap near   I e ∼ 0.3 M J au2  , where M J is Jupiter's mass. In low-metallicity systems, the concentration is only at the higher range of I e , with a tail to low values of I e . Therefore, it is still possible that planets exist around main-sequence stars in globular clusters, although at small numbers because of the low metallicity, and at orbital periods of ≳10 d. We discuss the implications of our conclusions on the role that companions can play in the evolution of their parent stars in globular clusters, for example, influencing the distribution of horizontal branch stars on the Hertzsprung–Russell diagram of some globular clusters, and in forming low-mass white dwarfs.  相似文献   

8.
The aim of this paper is to determinate the fundamental parameters of six exoplanet host(EH) stars and their planets. Because techniques for detecting exoplanets yield properties of the planet only as a function of the properties of the host star, we must accurately determine the parameters of the EH stars first. For this reason, we constructed a grid of stellar models including diffusion and rotation-induced extra-mixing with given ranges of input parameters(i.e. mass, metallicity and initial rotation rate). In addition to the commonly used observational constraints such as the effective temperature Teff, luminosity L and metallicity [Fe/H], we added two observational constraints, the lithium abundance log N(Li) and the rotational period Prot.These two additional observed parameters can set further constraints on the model due to their correlations with mass, age and other stellar properties. Hence, our estimations of the fundamental parameters for these EH stars and their planets have a higher precision than previous works. Therefore, the combination of rotational period and lithium helps us to obtain more accurate parameters for stars, leading to an improvement in knowledge about the physical state of EH stars and their planets.  相似文献   

9.
By considering the physical and orbital characteristics of G type stars and their exoplanets, we examine the association between stellar mass and its metallicity that follows a power law. Similar relationship is also obtained in case of single and multiplanetary stellar systems suggesting that, \(\hbox {Sun}^{\prime }\)s present mass is about 1% higher than the estimated value for its metallicity. Further, for all the stellar systems with exoplanets, association between the planetary mass and the stellar metallicity is investigated, that suggests planetary mass is independent of stellar metallicity. Interestingly, in case of multiplanetary systems, planetary mass is linearly dependent on the stellar absolute metallicity, that suggests, metal rich stars produce massive (\(\ge \)1 Jupiter mass) planets compared to metal poor stars. This study also suggests that there is a solar system planetary missing mass of \({\sim }\)0.8 Jupiter mass. It is argued that probably 80% of missing mass is accreted onto the Sun and about 20% of missing mass might have been blown off to the outer solar system (beyond the present Kuiper belt) during early history of solar system formation. We find that, in case of single planetary systems, planetary mass is independent of stellar metallicity with an implication of their non-origin in the host star’s protoplanetary disk and probably are captured from the space. Final investigation of dependency of the orbital distances of planets on the host stars metallicity reveals that inward migration of planets is dominant in case of single planetary systems supporting the result that most of the planets in single planetary systems are captured from the space.  相似文献   

10.
Planets orbiting a planetesimal circumstellar disc can migrate inward from their initial positions because of dynamical friction between planets and planetesimals. The migration rate depends on the disc mass and on its time evolution. Planets that are embedded in long-lived planetesimal discs, having total mass of 10−4– 0.01 M , can migrate inward a large distance and can survive only if the inner disc is truncated or as a result of tidal interaction with the star. In this case the semimajor axis, a , of the planetary orbit is less than 0.1 au. Orbits with larger a are obtained for smaller values of the disc mass or for a rapid evolution (depletion) of the disc. This model may explain not only several of the orbital features of the giant planets that have been discovered in recent years orbiting nearby stars, but also the metallicity enhancement found in several stars associated with short-period planets.  相似文献   

11.
We explore whether the rest-frame near-ultraviolet spectral region, observable in high-redshift galaxies via optical spectroscopy, contains sufficient information to allow the degeneracy between age and metallicity to be lifted. We do this by first testing the ability of evolutionary synthesis models to reclaim the correct metallicity when fitted to the near-ultraviolet spectra of F stars of known (subsolar and supersolar) metallicity. F stars are of particular interest because the rest-frame near-ultraviolet spectra of the oldest known elliptical galaxies at   z > 1  appear to be dominated by F stars near to the main-sequence turn-off.
We find that, in the case of the F stars, where the Hubble Space Telescope ultraviolet spectra have a high signal-to-noise ratio, fitting models in which the metallicity is allowed to vary as a free parameter is rather successful at deriving the correct metallicity. As a result, the estimated turn-off ages of these stars yielded by model-fitting are well constrained. Encouraged by this we have fitted these same variable-metallicity models to the deep, optical spectra of the   z ≃ 1.5 mJy  radio galaxies 53W091 and 53W069 obtained with the Keck telescope. While the age and metallicity are not so easily constrained for these galaxies, we find that even when metallicity is allowed as a free parameter, the best estimates of their ages are still ≥3 Gyr, with ages younger than 2 Gyr now strongly excluded. Furthermore, we find that a search of the entire parameter space of metallicity and star formation history using MOPED leads to the same conclusion. Our results therefore continue to argue strongly against an Einstein–de Sitter universe, and favour a Λ-dominated universe in which star formation in at least these particular elliptical galaxies was completed somewhere in the redshift range   z = 3–5  .  相似文献   

12.
Metallicity, planetary formation and migration   总被引:1,自引:0,他引:1  
Recent observations show a clear correlation between the probability of hosting a planet and the metallicity of the parent star. As radial velocity surveys are biased, however, towards detecting planets with short orbital periods, the probability–metallicity correlation could merely reflect a dependence of migration rates on metallicity. We investigated the possibility, but find no basis to suggest that the migration process is sensitive to the metallicity. The indication is, therefore, that a higher metallicity results in a higher probability for planet  formation .  相似文献   

13.
Possessing multiple stellar populations has been accepted as a common feature of globular clusters(GCs). Different stellar populations manifest themselves with different chemical features,e.g. the well-known O-Na anti-correlation. Generally, the first(primordial) population has O and Na abundances consistent with those of field stars with similar metallicity; while the second(polluted) population is identified by their Na overabundance and O deficiency. The fraction of the populations is an important constraint on the GC formation scenario. Several methods have been proposed for the classification of GC populations. Here we examine a criterion derived based on the distribution of Galactic field stars, which relies on Na abundance as a function of [Fe/H], to distinguish first and second stellar populations in GCs. By comparing the first population fractions of 17 GCs estimated by the field star criterion with those in the literature derived by methods related to individual GCs, we find that the field star criterion tends to overestimate the first population fractions. The population separation methods,which are related to an individual GC sample, are recommended because the diversity of GCs can be taken into consideration. Currently, more caution should be exercised if one wants to regard field stars as a reference for the identification of a GC population. However, further study on the connection between field stars and GCs populations is still needed.  相似文献   

14.
We show that there is a relationship between the age excess, defined as the difference between the stellar isochrone and chromospheric ages, and the metallicity as measured by the index [Fe/H] for late-type dwarfs. The chromospheric age tends to be lower than the isochrone age for metal-poor stars, and the opposite occurs for metal-rich objects. We suggest that this could be an effect of neglecting the metallicity dependence of the calibrated chromospheric emission–age relation. We propose a correction to account for this dependence. We also investigate the metallicity distributions of these stars, and show that there are distinct trends according to the chromospheric activity level. Inactive stars have a metallicity distribution which resembles the metallicity distribution of solar neighbourhood stars, while active stars appear to be concentrated in an activity strip on the log  R 'HK × [Fe/H] diagram. We provide some explanations for these trends, and show that the chromospheric emission–age relation probably has different slopes on the two sides of the Vaughan–Preston gap.  相似文献   

15.
We review and discuss horizontal branch (HB) stars in a broad astrophysical context, including both variable and non-variable stars. A reassessment of the Oosterhoff dichotomy is presented, which provides unprecedented detail regarding its origin and systematics. We show that the Oosterhoff dichotomy and the distribution of globular clusters in the HB morphology-metallicity plane both exclude, with high statistical significance, the possibility that the Galactic halo may have formed from the accretion of dwarf galaxies resembling present-day Milky Way satellites such as Fornax, Sagittarius, and the LMC—an argument which, due to its strong reliance on the ancient RR Lyrae stars, is essentially independent of the chemical evolution of these systems after the very earliest epochs in the Galaxy’s history. Convenient analytical fits to isochrones in the HB type–[Fe/H] plane are also provided. In this sense, a rediscussion of the second-parameter problem is also presented, focusing on the cases of NGC 288/NGC 362, M13/M3, the extreme outer-halo globular clusters with predominantly red HBs, and the metal-rich globular clusters NGC 6388 and NGC 6441. The recently revived possibility that the helium abundance may play an important role as a second parameter is also addressed, and possible constraints on this scenario discussed. We critically discuss the possibility that the observed properties of HB stars in NGC 6388 and NGC 6441 might be accounted for if these clusters possess a relatively minor population of helium-enriched stars. A technique is proposed to estimate the HB types of extragalactic globular clusters on the basis of integrated far-UV photometry. The importance of bright type II Cepheids as tracers of faint blue HB stars in distant systems is also emphasized. The relationship between the absolute V magnitude of the HB at the RR Lyrae level and metallicity, as obtained on the basis of trigonometric parallax measurements for the star RR Lyr, is also revisited. Taking into due account the evolutionary status of RR Lyr, the derived relation implies a true distance modulus to the LMC of (mM)0=18.44±0.11. Techniques providing discrepant slopes and zero points for the M V (RRL)–[Fe/H] relation are briefly discussed. We provide a convenient analytical fit to theoretical model predictions for the period change rates of RR Lyrae stars in globular clusters, and compare the model results with the available data. Finally, the conductive opacities used in evolutionary calculations of low-mass stars are also investigated. M. Catelan is John Simon Guggenheim Memorial Foundation Fellow.  相似文献   

16.
It is commonly assumed that high-mass X-ray binary (HMXB) populations are little affected by metallicity. However, the massive stars making up their progenitor systems depend on metallicity in a number of ways, not least through their winds. We present simulations, well-matched to the observed sample of Galactic HMXBs, which demonstrate that both the number and the mean period of HMXB progenitors can vary with metallicity, with the number increasing by about a factor of 3 between solar and Small Magellanic Cloud (SMC) metallicity. However, the SMC population itself cannot be explained simply by metallicity effects; it requires both that the HMXBs observed therein primarily sample the older end of the HMXB population and that the star formation rate at the time of their formation was very large.  相似文献   

17.
We present a new analysis of the expected magnetospheric radio emission from extrasolar giant planets (EGPs) for a distance limited sample of the nearest known extrasolar planets. Using recent results on the correlation between stellar X-ray flux and mass-loss rates from nearby stars, we estimate the expected mass-loss rates of the host stars of extrasolar planets that lie within 20 pc of the Earth. We find that some of the host stars have mass-loss rates that are more than 100 times that of the Sun and, given the expected dependence of the planetary magnetospheric radio flux on stellar wind properties, this has a very substantial effect. Using these results and extrapolations of the likely magnetic properties of the extrasolar planets, we infer their likely radio properties.
We compile a list of the most promising radio targets and conclude that the planets orbiting Tau Bootes, Gliese 86, Upsilon Andromeda and HD 1237 (as well as HD 179949) are the most promising candidates, with expected flux levels that should be detectable in the near future with upcoming telescope arrays. The expected emission peak from these candidate radio emitting planets is typically ∼40–50 MHz. We also discuss a range of observational considerations for detecting EGPs.  相似文献   

18.
The analysis of the kinematics of solar neighbourhood stars shows that the low- and high-metallicity tails of the thin disc are populated by objects which orbital properties suggest an origin in the outer and inner Galactic disc, respectively. Signatures of radial migration are identified in various recent samples, and are shown to be responsible for the high-metallicity dispersion in the age–metallicity distribution. Most importantly, it is shown that the population of low-metallicity wanderers of the thin disc (−0.7 < [Fe/H] < −0.3 dex) is also responsible for the apparent hiatus in metallicity with the thick disc (which terminal metallicity is about −0.2 dex). It implies that the thin disc at the solar circle has started to form stars at about this same metallicity. This is also consistent with the fact that 'transition' objects, which have α-element abundance intermediate between that of the thick and thin discs, are found in the range [−0.4, −0.2] dex. Once the metal-poor thin disc stars are recognized for what they are – wanderers from the outer thin disc – the parenthood between the two discs can be identified on stars genuinely formed at the solar circle through an evolutionary sequence in [α/Fe] and [Fe/H]. Another consequence is that stars that can be considered as truly resulting of the chemical evolution at the solar circle have a metallicity restricted to about [−0.2, +0.2] dex, confirming an old idea that most chemical evolution in the Milky Way have preceded the thin disc formation.  相似文献   

19.
Spectroscopic studies of stars with and without planetary systems have concluded that planet hosts are more metal‐rich. This enrichment is also seen in the other chemical elements studied and is likely to be primordial in nature. Interesting trends of different chemical elements begin to appear as the number of extrasolar planets continues to grow. I present our current knowledge concerning the observed abundance trends of chemical elements in planet hosts and their possible implications. In most cases the abundance trends of planet host stars are identical to those of the comparison sample. However, some exceptions (such as Li) have been reported too. No clear correlation was found between orbital parameters of planets and host star metallicity. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
We carry out analyses on stellar and planetary properties of multiple exoplanetary systems in the currently available sample. With regards to the stars, we study their temperature, distance from the Sun, and metallicity distributions, finding that the stars that harbour multiple exoplanets tend to have subsolar metallicities, in contrast to metal-rich Hot Jupiter hosts; while non-Hot Jupiter single planet hosts form an intermediate group between these two, with approximately solar metallicities. With regards to the planetary systems, we select those with four or more planets and analyse their configurations in terms of stability (via Hill radii), compactness, and size variations. We find that most planetary pairs are stable, and that the compactness correlates to the size variation: More compact systems have more similarly sized planets and vice versa. We also investigate the spectral energy distributions of the stars hosting multiple exoplanetary systems, seeking infra-red excesses that could indicate the presence of debris disks. These disks would be leftovers from the planetary formation process, and could be considered as analogues of the Solar System’s Asteroid or Kuiper belts. We identify potential candidates for disks that are good targets for far infra-red follow-up observations to confirm their existence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号