首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Damage and parameters of the earthquakes of October 14, 1800, September 18, 1826, and July 7, 1842, in Santiago de Cuba, in southeastern Cuba, have been studied. A quantitative re-evaluation of the size of the events is not feasible due to a lack of data. Hence, we have reinterpreted existing data to establish likely intensities and determine the epicentral region of occurrence. Available data do not permit accurate depth determinations. Intensities estimated from contemporary documentary sources give maximum values of 8, 8–9 and 8 (MSK scale), respectively. These seismic shocks were located in the Southeastern Seismotectonic Province of Cuba, Plate Boundary Zone Caribbean—North Atmerican. The earthquakes are associated with the Oriente fault system.  相似文献   

2.
With the help of aerial photographs, satellite photographs and imageries, contour maps, geological and geomorphological information (personal correspondence and unpublished works), geophysical regional data, and field work, it has been possible to map a network of fractures, alignments, and faults in 26 areas (distinguishing them quantitatively and hierarchically). Links with known regional structures were also studied. Interpretation of the linear relief elements confirms the very different density, dimensions, strikes, and function of the fracturation and also, from a microtectonic perspective, explains the activity of some active faults better. It has confirmed some previous results and improved on others; for example, the Oriente fault which is the most active in Cuba with two segments (Western: Cabo Cruz—Santiago de Cuba; Eastern: Santiago de Cuba—Punta de Maisí, the Western fault being the most active); the Nortecubana fault, forming the northern limit of the Cuban megablock, and divided into three segments; and the Cauto—Nipe fault, forming the limit of the neotectonic units, presenting two segments with three seismoactive knots.  相似文献   

3.
Cyclic mobility is a mechanism of ground failure due to lateral spreading of soils during an earthquake that usually occurs in soft or medium stiff saturated soils. The simplified procedures developed by the researchers give a factor of safety for judging the cyclic mobility potential. However, the simplified procedures do not take into account the uncertainty in the parameters required to estimate the cyclic stresses in the soil. In this study, a reliability framework based on the simplified procedure, considering the parameter uncertainty, has been proposed for computing the probability of cyclic mobility of clay deposits for a metro city of India, i.e., Mumbai city (latitudes 18°53′N–19°19′N and longitudes 72°47′E–72°58′E). Extensive geotechnical borehole data from 1028 boreholes across 50 locations in the city area of 390 km2 and laboratory test data are collected and analyzed thoroughly. A correlation between undrained shear strength (Su) and other parameters such as natural water content (w), SPT N value, liquid limit (LL) and plasticity index (PI) has been established for Mumbai city and has been used in the proposed approach. The sensitivity analysis of the proposed approach predicts that Su has significant influence in the evaluation of the cyclic mobility. Cyclic mobility hazard maps are prepared using the geo-statistical analysis tool in GIS, and it shows that the clayey soils at few locations have a 60–90 % probability of cyclic mobility for a moment magnitude (M w) of an earthquake of 7.5. These hazard maps can be used by the geotechnical engineers for the cyclic mobility hazard assessment of Mumbai city.  相似文献   

4.
The San Ramón Fault is an active west-vergent thrust fault system located along the eastern border of the city of Santiago, at the foot of the main Andes Cordillera. This is a kilometric crustal-scale structure recently recognized that represents a potential source for geological hazards. In this work, we provide new seismological evidences and strong ground-motion modeling from hypothetic kinematic rupture scenarios, to improve seismic hazard assessment in the Metropolitan area of Central Chile. Firstly, we focused on the study of crustal seismicity that we relate to brittle deformation associated with different seismogenic fringes in the main Andes in front of Santiago. We used a classical hypocentral location technique with an improved 1D crustal velocity model, to relocate crustal seismicity recorded between 2000 and 2011 by the National Seismological Service, University of Chile. This analysis includes waveform modeling of seismic events from local broadband stations deployed in the main Andean range, such as San José de Maipo, El Yeso, Las Melosas and Farellones. We selected events located near the stations, whose hypocenters were localized under the recording sites, with angles of incidence at the receiver <5° and S–P travel times <2 s. Our results evidence that seismic activity clustered around 10 km depth under San José de Maipo and Farellones stations. Because of their identical waveforms, such events are interpreted like repeating earthquakes or multiplets and therefore providing first evidence for seismic tectonic activity consistent with the crustal-scale structural model proposed for the San Ramón Fault system in the area (Armijo et al. in Tectonics 29(2):TC2007, 2010). We also analyzed the ground-motion variability generated by an M w 6.9 earthquake rupture scenario by using a kinematic fractal k ?2 composite source model. The main goal was to model broadband strong ground motion in the near-fault region and to analyze the variability of ground-motion parameters computed at various receivers. Several kinematic rupture scenarios were computed by changing physical source parameters. The study focused on statistical analysis of horizontal peak ground acceleration (PGAH) and ground velocity (PGVH). We compared the numerically predicted ground-motion parameters with empirical ground-motion predictive relationships from Kanno et al. (Bull Seismol Soc Am 96:879–897, 2006). In general, the synthetic PGAH and PGVH are in good agreement with the ones empirically predicted at various source distances. However, the mean PGAH at intermediate and large distances attenuates faster than the empirical mean curve. The largest mean values for both, PGAH and PGVH, were observed near the SW corner within the area of the fault plane projected to the surface, which coincides rather well with published hanging-wall effects suggesting that ground motions are amplified there.  相似文献   

5.
Site classification studies play a vital role in earthquake hazard assessment since in situ ground conditions substantially affect the characteristics of incoming seismic waves during earthquakes. Flat areas along the coast and rivers generally consist of thick layers of soft clay and sand. Such deposits amplify certain frequencies of ground motion, thereby attributing to an increase in the damage due to an earthquake. Hence, site classification studies have been carried out using shear-wave velocity, ground response, and corresponding amplification at 83 locations in Pondicherry, a coastal city in India. The present study is aimed at estimating the shear-wave velocity through multichannel analysis of surface waves and to compute the average shear-wave velocity (V S 30 ), stiffness, and N values using empirical relations. Further, site-response studies (horizontal-to-vertical spectral ratio) were conducted to estimate the ground-response frequencies and corresponding amplifications through Nakamura technique. From the results, the study area was classified into three types, i.e., C-class: with V S 30 in the range of 360–760 m/s, D-class: with V S 30 in the range of 180–360 m/s, and E-class: with V S 30  < 180 m/s following the National Earthquake Hazard Reduction Programme norms (BSSC in NEHRP recommended provisions for seismic regulations for new buildings and other structures (FEMA 450), part 1: provisions. Building Seismic Safety Council for the Federal Emergency Management Agency, Washington, 2003). Finally, a site classification map for Pondicherry region has been prepared, which can be used in urban planning and strengthening of existing structures against future earthquakes.  相似文献   

6.
ABSTRACT

The La Tinta mélange is a small but singular ultramafic mélange sheet that crops out in eastern Cuba. It is composed of dolerite-derived amphibolite blocks embedded in a serpentinite matrix. The amphibolite blocks have mid-ocean ridge basalt (MORB)-like composition showing little if any imprint of subduction zone component, similar to most forearc and MOR basalts worldwide. Relict Cr-spinel and olivine mineral chemistry of the serpentinized ultramafic matrix suggest a forearc position for these rocks. These characteristics, together with a hornblende 40Ar/39Ar age of 123.2 ± 2.2 Ma from one of the amphibolite blocks, suggest that the protoliths of the amphibolite blocks correspond to forearc basalt (FAB)-related rocks that formed during the earlier stage of subduction initiation of the Early Cretaceous Caribbean arc. We propose that the La Tinta amphibolites correspond to fragments of sills and dikes of hypoabyssal rocks formed in the earlier stages of a subduction initiation scenario in the Pacific realm (ca. 136 Ma). The forearc dolerite-derived amphibolites formed by partial melting of upwelling fertile asthenosphere at the beginning of subduction of the Proto-Caribbean (Atlantic) slab, with no interaction with slab-derived fluids/melts. This magmatic episode probably correlates with Early Cretaceous basic rocks described in Hispaniola (Gaspar Hernandez serpentinized peridotite-tectonite). The dikes and sills cooled and metamorphosed due to hydration at low pressure (ca. 3.8 kbar) and medium to high temperature (up to 720ºC) and reached ca. 500ºC at ca. 123 Ma. At this cooling stage, serpentinite formed after hydration of the ultramafic upper mantle. This process might have been favoured by faulting during extension of the forearc, indicating an early stage of dike and sill fragmentation and serpentinite mélanges formation; however, full development of the mélange likely took place during tectonic emplacement (obduction) onto the thrust belt of eastern Cuba during the latest Cretaceous.  相似文献   

7.
The Surat City, which is the second most populated city in the state of Gujarat in western India, warrants site-specific seismic hazard assessment due to its rapid urbanization and proximity to major seismogenic zones. This study reports results of microtremor investigations at 72 single stations and 4 arrays in an area of 325 km2 spanning the city. The resonant frequencies, associated peak amplification values and liquefaction vulnerability indices were deduced from the horizontal to vertical spectral ratios. Ground amplification (AHVSR) in the range of 3.0–5.0 was observed in the 2.0–4.0-Hz frequency band at most of the sites. A secondary AHVSR between 2.0 and 3.0 is also observed in the 6.0–7.0-Hz frequency band at a few sites. Locales that are most susceptible to liquefaction are identified based on their vulnerability index (K g) exceeding the value of 10. The shear wave velocities (V s) ≥ 500 m/s inferred from array measurements occur at 38 m depth in the western part and ~16 m depth in the eastern part of city. The response spectra estimated from strong motion data recorded at an accelerograph site in Surat from three earthquakes of M w ≥ 3.2 that occurred in Kachchh, Saurashtra and Narmada regions are in accordance with our inferences of characteristic site frequencies and amplification. Our results, in agreement with the damage scenario during the 2001 Bhuj earthquake, provide valuable inputs for site-specific seismic hazard evaluation of the Surat City.  相似文献   

8.
Lavas from Santiago Island attest to a complex magmatic history, in which heterogeneous mantle source(s) and the interactions of advecting magmas with thick metasomatised oceanic lithosphere played an important role in the observed isotopic and trace element signatures. Young (<3.3 Ma) primitive lavas from Santiago Island are characterised by pronounced negative K anomalies and trace element systematics indicating that during partial melting DK>DCe. These features suggest equilibration with an oceanic lithospheric mantle containing K-rich hydrous mineral assemblages, consistent with the occurrence of amphibole + phlogopite in associated metasomatised lherzolite xenoliths, where orthopyroxene is partially replaced by newly formed olivine + (CO2 + spinel + carbonate inclusion-rich) clinopyroxene. Metasomatism induced a decrease in $ a ^{{{\text{melt}}}}_{{{\text{SiO}}_{{\text{2}}} }} $ and Ti/Eu ratios, as well as an increase in fO 2 , Ca/Sc and Sr/Sm in the Santiago magmas, suggesting a carbonatitic composition for the metasomatic agent. Santiago primitive lavas are highly enriched in incompatible elements and show a moderate range in isotopic compositions (87Sr/86Sr?=?0.70318–0.70391, 143Nd/144Nd?=?0.51261–0.51287, 176Hf/177Hf?=?0.28284–0.28297). Elemental and isotopic signatures suggest the involvement of HIMU and EM1-type mantle end-members, in agreement with the overall isotopic characteristics of the southern Cape Verde Islands. The overall geochemical characteristics of lavas from Santiago Island allow us to consider the EM1-like end-member as resulting from the involvement of subcontinental lithospheric mantle in the genesis of magmas on Santiago.  相似文献   

9.
Antakya city is at risk because of strong earthquakes occurring in the area, and different soil conditions that can produce variation of the ground motion amplification. Microzonation of cities provides a basis for site-specific hazard analysis in urban settlements. In particular, seismic microzonation can be provided by means of detailed seismic assessment of the area, including earthquake recordings and geological studies. In this paper, we propose a preliminary microzonation map for the city of Antakya, based on the variation of the dominant periods and shear velocities of the sediments covering the area. The periods are retrieved from microtremor measurements conducted at 69 sites, using the horizontal-to-vertical spectral ratio technique. The results of microtremor analysis were compared with data obtained from refraction microtremor (ReMi) measurements at four profiles crossing the studied area. According to the classification of dominant periods, Antakya city can be divided into five zones, probably prone to different levels of seismic hazard. The shorter natural periods are in inner Antakya and both the sides of Asi River (i.e., northern and southern parts). The eastern and western parts of Antakya have maximum dominant periods. The V s 30 values were calculated by using the ReMi method along the profiles. Antakya city has V s 30 values in the range of category C of the national earthquake hazard reduction programme site classification.  相似文献   

10.
An earthquake of magnitude 6.9 (M w) occurred in the Sikkim region of India on September 18, 2011. This earthquake is recorded on strong-motion network in Uttarakhand Himalaya located about 900 km away from the epicenter of this earthquake. In this paper acceleration record from six far-field stations has been used to compute the source parameters of this earthquake. The acceleration spectra of ground motion at these far-field stations are strongly affected by both local site effects and near-site anelastic attenuation. In the present work the spectrum of S-phase recorded at these far-field stations has been corrected for anelastic attenuation at both source and site and the site amplification terms. Site amplifications at different stations and near-site shear wave attenuation factor have been computed by the technique of inversion of acceleration spectra given by Joshi et al. (Pure Appl Geophys 169:1821–1845, 2012a). For estimation of site amplification and shear wave quality factor [Q β (f)] at the recording sites, ten local events recorded at various stations between July 2011 and December 2011 have been used. The obtained source spectrum from acceleration records is compared with the theoretical source spectrum defined by Brune (J Geophys Res 76:5002, 1970) at each station for both horizontal components of the records. Iterative forward modeling of theoretical source spectrum gives the average estimate of seismic moment (M o), source radius (r o) and stress drop (Δσ) as (3.2 ± 0.8) × 1026 dyne cm, 13.3 ± 0.8 km and 59.2 ± 8.8 bars, respectively, for the Sikkim earthquake of September 18, 2011.  相似文献   

11.
Different phases of remanent magnetizations have been identified in the Cretaceous–Tertiary rocks collected from the northern margin of the Kohistan Island Arc, northern Pakistan. Among them, a magnetite-related component is recognized as the most useful one because of its relatively stable behaviour and widespread presence in the volcanics and red beds. Calculation of mean direction for this component reveal two visible groupings in terms of paleomagnetic directions (Yasin + Baris Group: D?=?341.6º, I?=?10.6º, α 95?=?23.3 º, k?=?11.7, N?=?5; Sandhi Group: D?=?28.4º, I?=??27.4º, α 95?=?32.5 º, k?=?8.96, N?=?4). The fold tests applied to both these groups are inconclusive, indicating a syn-folding to post-folding origin for this component. A set of inclinations from this study provide new insight into post-collision northward displacement of the Kohistan Arc with respect to its surrounding terranes. Reliability of the paleomagnetic declinations from this study is not fully guaranteed, but when compared with previously reported paleomagnetic directions, a systematic increase in counter-clockwise deflections towards west has been detected along this paleo-island arc. This trend of declinations is well matched with the extrusion model of Asia, where counter-clockwise rotation has been suggested for the tectonic terranes around Western Himalaya. Another important observation is a divergence in paleomagnetic declinations across the rivers, which may indicate the presence of faulted zones under the cover of flowing water. This aspect can be compared to recent geological interpretations that Kohistan may not have acted as a rigid block following its collision with India but may have been deformed through localized shears and faults.  相似文献   

12.
Urban earthquake scenario requires compilation and interpretation of topographical, geological, geotechnical, macroseismic, and instrumental data, along with identification of proper ground motion prediction and site response analysis. Within the intensive city planning and infrastructure improvement of Baku city (the capital of Azerbaijan), and due to land and water instabilities, intensified landslides, and increasing seismic activity, Absheron peninsula has turned into one of the strategic earthquake case studies, representing exposure to earthquake hazard in the region. The last strongest 25th November 2000 earthquake revealed that the peninsula was severely vulnerable to seismic events, since there was a lack of public awareness of seismic disaster and its consequences, and there were not any preventive measures which might have been derived from the scenario-based simulations and prediction of strong motion distribution over the area. In the present work, integrated analysis of seismicity, engineering geology, geomorphology, topography, and site response is used to model strong motion dynamics in terms of peak ground acceleration distribution and intensity level for Absheron peninsula along with Baku city. The strong motion scenario of the 25th November 2000 earthquake shows that the larger area of the peninsula coincides with the VIII–IX intensity level, including Baku city. The scenario distribution can be valuable in all phases of the disaster management process.  相似文献   

13.
Earthquakes cluster in space and time resulting in nonlinear damage effects. We compute earthquake interactions using the Coulomb stress transfer theory and dynamic vulnerability from the concept of ductility capacity reduction. We combine both processes in the generic multi-risk framework where risk scenarios are simulated using a variant of the Markov chain Monte Carlo method. We apply the proposed approach to the thrust fault system of northern Italy, considering earthquakes with characteristic magnitudes in the range ~[6, 6.5], different levels of tectonic loading \(\dot{\tau }\) = {10?4, 10?3, 10?2} bar/year and a generic stock of fictitious low-rise buildings with different ductility capacities μ Δ = {2, 4, 6}. We describe the process’ stochasticity by non-stationary Poisson earthquake probabilities and by binomial damage state probabilities. We find that earthquake clustering yields a tail fattening of the seismic risk curve, the effect of which is amplified by damage-dependent fragility due to clustering. The impact of clustering alone is in average more important than dynamic vulnerability, the spatial extent of the former phenomenon being greater than of the latter one.  相似文献   

14.
In this study, we tracked and analyzed the reconstruction process in Bam, Iran, after the city was struck by an earthquake with a M w of 6.6 on December 26, 2003. We adopted three approaches to comprehensively assess the city’s post-earthquake reconstruction and to shed light on the progress and sustainability of disaster recovery projects. We applied the following methodology. First, we obtained official statistics and reports that included quantitative and qualitative evaluations of the reconstruction process to evaluate the overall outcome of the government’s reconstruction projects. Second, we examined photographs taken during field surveys conducted in 2004, 2007, and 2014 to assess changes within the city. Last, we analyzed three satellite images of Bam—the first taken 3 months before the earthquake, the second immediately after the earthquake, and the third 8 years after the earthquake—to assess the progress of reconstruction work and changes in land cover and land use. The results indicated that considerable progress had been made in reconstructing some of the damaged areas. However, progress was relatively slow in severely damaged areas.  相似文献   

15.
The main shock of Bingöl earthquake (M W = 6.4) recorded by six accelerometers in the area occurred at 03:27 local time on May 1, 2003. The largest acceleration value of north–south component was recorded as 545.5 cm/s2 at the nearest station which it is 12 km away from the epicenter of earthquake. Especially, 0.15 s short period was observed when high spectral acceleration value occurred. An acceleration value greater than 50 gal was recorded at the BNG (Bingöl) station and structural damage occurred within 6.5 s was very important for the near source and strong ground motion seismology. The recorded peak acceleration values were greater than the estimated empirical acceleration values. However, the structural damage was not as high and widespread as expected. This occurrence was explained by considering the factors of earthquake source, frequency content, effective duration, effective acceleration value, local soil conditions, rupture direction and attenuation.  相似文献   

16.
Earthquakes in Kenya are common along the Kenya Rift Valley because of the slow divergent movement of the rift and hydrothermal processes in the geothermal fields. This implies slow but continuous radiation of seismic energy, which relieves stress in the subsurface rocks. On the contrary, the NW-SE trending rift/fault zones such as the Aswa-Nyangia fault zone and the Muglad-Anza-Lamu rift zone are the likely sites of major earthquakes in Kenya and the East African region. These rift/fault zones have been the sites of a number of strong earthquakes in the past such as the M w = 7.2 southern Sudan earthquake of 20 May 1990 and aftershocks of M w = 6.5 and 7.1 on 24 May 1990, the 1937 M s = 6.1 earthquake north of Lake Turkana close to the Kenya-Ethiopian border, and the 1913 M s = 6.0 Turkana earthquake, among others. Source parameters of the 20 May 1990 southern Sudan earthquake show that this earthquake consists of only one event on a fault having strike, dip, and rake of 315°, 84°, and ?3°. The fault plane is characterized by a left-lateral strike slip fault mechanism. The focal depth for this earthquake is 12.1 km, seismic moment M o = 7.65 × 1019 Nm, and moment magnitude, M w = 7.19 (?7.2). The fault rupture started 15 s earlier and lasted for 17 s along a fault plane having dimensions of ?60 km × 40 km. The average fault dislocation is 1.1 m, and the stress drop, , is 1.63 MPa. The distribution of historical earthquakes (M w ≥ 5) from southern Sudan through central Kenya generally shows a NW-SE alignment of epicenters. On a local scale in Kenya, the NW–SE alignment of epicenters is characterized by earthquakes of local magnitude M l ≤ 4.0, except the 1928 Subukia earthquake (M s = 6.9) in central Kenya. This NW–SE alignment of epicenters is consistent with the trend of the Aswa-Nyangia Fault Zone, from southern Sudan through central Kenya and further southwards into the Indian Ocean. We therefore conclude that the NW–SE trending rift/fault zones are sites of strong earthquakes likely to pose the greatest earthquake hazard in Kenya and the East African region in general.  相似文献   

17.
The main structural-lithological factors responsible for the localization of hydrothermal mineralization on a regional, as well as on a local scale in the metallogenic province of western Cuba are summarized. The supply function of regional fault structures extending towards depth is emphasized and light is thrown on the localization of hydrothermal veins in fissures of the folded San Cayetano Formation. Stress has been laid on the genetic and chronological independence of pyrite bodies and hydrothermal veins. Six mineralization stages have been defined and their general succession in the metallogenic area under consideration has been determined.
Resumen Los factores principales litológico-estructurales, que causan la predisposición de la localización de los yacimientos hidrotermales en las dimensiones regionales y locales en la region de Cuba occidental, están sumarizados. La importancia de las dislocaciones regionales para el aporte de las soluciones hidrotermales está subrayada y las causas de la localización de las vetas hidrotermales en las ac-grietas de la formacion plegada de San Cayetano están aclaradas. La independencia genética y cronológica de los cuerpos de pirita y de las vetas hidrotermales polimetálicas está discutida. Seis estados de la mineralización hidrotermal están identificados y la succesión de la validez general para toda la region metalogenética de Cuba occidental está construida.
  相似文献   

18.
We present the biostratigraphy (ammonites, brachiopods, foraminifers, and ostracodes), lithostratigraphy, sedimentology, sequence stratigraphy, magnetostratigraphy, and isotope stratigraphy of the Almonacid de la Cuba section located in the Iberian Range, central-eastern Spain. This section, which contains a continuous and expanded record of the Pliensbachian-Toarcian boundary (Early Jurassic), has been proposed as a complementary section for the Toarcian GSSP. An excellent ammonite-based biozonation has been obtained. Four ammonite assemblages characterized by the presence of Pleuroceras, Canavaria, Dactylioceras (Eodactylites), and Dactylioceras (Orthodactylites) have been distinguished. The base of the Toarcian is located at level CU35.2, based on the first occurrence of Dactylioceras. The occurrence of taxa from the NW European and the Mediterranean provinces is useful to improve the correlation between both provinces. Foraminiferal and ostracode assemblages are rich and diversified and no significant biostratigraphic events take place at the Pliensbachian-Toarcian boundary. The magnetostratigraphic data presented here are the most complete record of reversals of the earth magnetic field for the Pliensbachian-Toarcian boundary. A good record of the onset of the positive δ13C excursion reported in the Lower Toarcian of many European sections has been obtained. Average paleotemperatures measured at the latest Pliensbachian Spinatum Biochron of about 12.5°C, recorded a marked increase of the seawater temperature which started during the Toarcian, reaching average temperatures of 16.7°C at the Tenuicostatum Biochron. The obtained 87Sr/86Sr values fully agree with the LOWESS calibration curve.  相似文献   

19.
The earthquake of 6 October 1987 (M = 6.6), which occurred near the Shipunsky Cape, Kamchatka, was the largest crustal event in the vicinity of the main city of Kamchatka — Petropavlovsk-Kamchatsky — during the last three decades. It was followed by numerous aftershocks. This earthquake allowed us to test the effectiveness of the seismic hazard monitoring in Kamchatka, including the seismological, geodetic and hydrogeochemical surveys. The seismic survey provided the location and source nature of the main shock and aftershocks and the seismic environment of the main shock. The geodetic and hydrogeochemical surveys have yielded data on the response to earthquakes of the Earth's surface deformations, water level, and chemical elements concentration in the underground water. As a result, the following data were obtained:

u

  • The earthquake of 6 October had a seismic moment 4–10 E18 Nm, thrust type of faulting and the source volume of 20 × 20 × 10 km3. The maximum intensity was VI–VII (MSK-64 scale) and maximum acceleration 88 cm/s2.
  • Before this event, a relative increase in the number of the upper mantle (depth more than 100 km) moderate magnitude earthquakes during 5 years and a one-year period of seismic quiescence for small shallow earthquakes, were recognized. Significant anomalies in HCO3 and H3BO3 concentrations in the underground waters were observed in the wells a week before the main shock.
  •   相似文献   

    20.
    Babingtonite, Ca2Fe2+Fe3+[Si5O14(OH)] (Z?=?2, space group $ P\overline{1} $ ) from Yakuki mine (Japan), Grönsjöberget (Sweden), Kandivali Quarry (India), Baveno Quarry (Italy), Bråstad Mine (Norway), and Kouragahana (Japan), and manganbabingtonite, Ca2(Mn2+, Fe2+)Fe3+[Si5O14(OH)], from Iron Cap mine (USA) were studied using electron-microprobe analysis (EMPA), 57Fe Mössbauer analysis and single-crystal X-ray diffraction methods to determine the cation distribution at M1 and M2 and to analyze its effect on the crystal structure of babingtonite. Although all studied babingtonite crystals are relatively homogeneous, chemical zonation due to mainly Fe ? Mn substitution is observed in manganbabingtonite. Mössbauer spectra consist of two doublets with isomer shift (I.S.)?=?1.16–1.22 mm/s and quadrupole splitting (Q.S.)?=?2.33–2.50 mm/s and with I.S.?=?0.38–0.42 mm/s and Q.S.?=?0.82–0.90 mm/s, assigned to Fe2+ and Fe3+ at the M1 and M2 octahedral sites, respectively. The determined ratio of Fe2+/total Fe in manganbabingtonite (0.26) was smaller than that in the others (0.35–0.44) because of high Mn2+ content instead of Fe2+. The unit-cell parameters of babingtonite are a?=?7.466–7.478, b?=?11.624–11.642, c?=?6.681–6.690 Å, α?=?91.53–91.59, β?=?93.86–93.94, γ?=?104.20–104.34º, and V?=?560.2–562.3 Å3, and those of manganbabingtonite are a?=?7.4967(3), b?=?11.6632(4), c?=?6.7014(2) Å, α?=?91.602(2), β?=?93.989(2), γ?=?104.574(3)º, and V =565.09(5) Å3. Structural refinements converged to R 1 values of 1.64–3.16 %. The <M1-O> distance was lengthened due to the substitution of large octahedral cations such as Mn2+ for Fe2+. The increase of the M1-O8, M1-O8’ and M1-O13 lengths with mean ionic radii is slightly more pronounced than of the other M1-Oi lengths. The lengthened M1-O13 distance leads the positive correlation between Si5-O15-Si1 angle and M1-O13 distance. The increase of Si2-O3-Si1 and Si5-O12-Si4 angles due to the increase of mean ionic radius of M2 is also observed.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号