首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Levant Rift system is an elongated series of structural basins that extends for more than 1000 km from the northern Red Sea to southern Anatolia. The system consists of three major segments, the Jordan Rift in the south, El Gharb–Kara-Su Rift in the north, and the Lebanese Fault splay in between. The rifted parts of this structural system are accompanied by intensively uplifted margins that mirror-image the basinal pattern, namely, the deeper the basin—the higher its margins, and vice versa. Uplifts also occur along the fault splay section. The Jordan Rift comprises axial basins that diminish in size from the south northwards, and are separated from each other by shallow threshold zones along the axis of the rift, where the margins are also subdued. The Lebanese Fault splay consists of five faults that emerge from the northern edge of the Jordan Rift and trend like a fan between the north and the northeast. One of these faults connects the Jordan and El Gharb–Kara-Su rifts. The Levant Rift and its uplifted margins started to develop in the middle-late Miocene, and most of the structural development occurred in the Plio-Pleistocene.The Levant Rift system is characterized by its oblique displacement, and evidence for both dip-slip and strike-slip displacement was measured on its faults. Earthquakes also indicate that same mixed pattern, some of them show strike-slip offset, and others normal. It is generally conceded that the amount of normal offset along the boundary faults of the Rift system reaches 8–10 km, but the lateral displacement is disputed, and offsets ranging from 11 to 107 km were suggested. Assessment of the available data led us to suggest that the sinistral offset along the Levant Rift system is approximately 10–20 km. The similarity between the vertical and the lateral displacements, the basin and threshold structural pattern of the Rift, model experiments in oblique rifting, as well as the significant tectonic resemblance to the Red Sea and the East African rifts, indicate that the Levant Rift is the product of continental breakup, and it is probably an emerging oceanic spreading center.  相似文献   

2.
黑龙江汤原断陷第三纪地层层序及时代   总被引:11,自引:0,他引:11  
依据黑龙江汤原断陷30口井的岩性及古生物资料,建立了汤原断陷古近纪、新近纪地层层序。依据孢粉、藻类、植物和介形类化石建立19个生物化石组合,讨论了各组的时代及其与邻区的对比。依据汤参3井(25.0-100.0m)和互6井(138.5-237.5m)岩性及孢粉组合将道台桥组引入汤原断陷。汤原断陷地层层序为古新统乌云组,始新统新安村组、达连河组,渐新统宝泉岭组,中新统富锦组,上新统道台桥组。  相似文献   

3.
攀西裂谷的力学成因机制和模型实验   总被引:1,自引:0,他引:1  
裂谷是在引张力作用下产生的,并根据裂谷切割深度确定其类型。据世界上多数裂谷资料证实,它们均切穿了岩石圈。当然,也有切割不深的裂谷(只切穿沉积盖层)。从断块学说观点看来,裂谷的形成是受断裂体系控制的,以地幔上涌为动力,具全球规模,延伸数百至数千公里的狭长断陷带。  相似文献   

4.
The Mt Isa Rift Event is a Palaeoproterozoic intracontinental extension event that defines the beginning of sedimentation into the Isa Superbasin in the Western Fold Belt, Mt Isa terrane. In the mildly deformed Fiery Creek Dome region, on the northwest flanks of the Mt Isa Rift, elements of the Mt Isa Rift Event rift architecture are preserved without being intensely overprinted by later deformation. In this region two discrete generations of northwest‐dipping normal faults have been identified. Early generation normal faults were active during the deposition of fluvial and immature conglomerate and sandstone of the Bigie Formation. Renewed rifting and the development of late‐generation normal faults occurred during deposition of shallow‐marine sandstone and siltstone of the lower Gunpowder Creek Formation. Differential uplift between tilt blocks formed an array of spatially and temporally discontinuous synrift unconformities on the crests of uplifted tilt blocks. Applying the domino model yields ~28% crustal extension for the entire Mt Isa Rift Event. Northwest‐striking transverse faults facilitated differential displacement along normal faults and formed boundaries to normal fault segments, creating smaller depositional compartments along half‐graben axes. Three large domes were formed during laccolith emplacement. These domes produced palaeogeographical highs that divided the region into sub‐basins and were a source for the coarse fluvial synrift sequences deposited during the early Mt Isa Rift Event. The basin architecture in the Fiery Creek Dome region is consistent with northwest‐southeast‐directed extension.  相似文献   

5.
论中国东北大陆裂谷系的形成与演化   总被引:19,自引:0,他引:19       下载免费PDF全文
刘嘉麒 《地质科学》1989,7(3):209-216
自中生代末期以来,东北地区形成了以松辽地堑为主体,联合下辽河裂谷、伊通-依兰裂谷、抚顺-密山裂谷以及邻近断陷盆地的大陆裂谷系,并向南北两端延伸,在亚洲东部构成一条大的裂谷带。这个大陆裂谷系的形成和发展是由中央向两侧展开的,与板块俯冲、弧后扩张密切相关。  相似文献   

6.
东北依兰—伊通地堑方正断陷方正组的建立及其意义   总被引:5,自引:0,他引:5  
依兰—伊通地堑方正断陷方参 2井 2 10 4.0— 3 45 0 .0 m井段为一套红色碎屑岩 ,产有孢粉化石 Cicatrico-sisporites,Lygodiumsporites,Appendicisporites,Concavissimisporites,Gleicheniidites,Cyathidites,Cibotiumspora,Foraminisporis,Taxodiaceaepollenites,Inaperturopollenites,Triporopollenites和 Tricolporopollenites等。依据岩性及孢粉资料 ,在方正断陷建立方正组 ,并认为方正组时代为晚白垩世早期——赛诺曼期。通过与邻区松辽盆地泉头组、阜新盆地孙家湾组、延吉盆地龙井组等对比 ,认为东北地区这一套红层沉积具有广泛分布的特点 ,它是干热气候事件的产物。  相似文献   

7.
攀西裂谷的多期活动性及其深部地质意义   总被引:1,自引:0,他引:1  
攀西裂谷具有明显的长期、继承和多期活动性特点,为一“上叠裂谷”,其基底在晋宁期就已存在裂谷系。是海西—印支期时,随着攀西由板内—低纬度被动陆缘—中纬度活动陆缘—板内的变化,裂谷活动和地幔涌流特点也有所不同。攀西裂谷的演化提供了一个深断裂诱发地幔涌流,并随板块飘移而移动的典型例证。这种壳、幔关系可能正是地槽多旋回活动的主因。自第三纪以来,攀西浅、深部地壳应力场明显不一致,这种现象有可能是不同构造学说结合的纽带。  相似文献   

8.
We challenge some of the long-standing beliefs related to the Permian Oslo Rift structure, often referred to as a case example/type locality for continental rifting. The crustal structure of the Oslo Rift was long presumed to be thinned Proterozoic crust overlying a Permian high-density layer, interpreted as magmatic underplating. New data support an alternative view of the crustal structure in the Oslo Rift region. The Bouguer gravity high in the region shows a strong asymmetry: a steep, westward-facing gradient to the west of the rift, and a much gentler eastern gradient. We present a 3D density model based on petrophysical and seismic information, which accounts for the Bouguer gravity high using an eastward extension of old Precambrian structures, without invoking a prominent magmatic underplated structure. Reactivation of old pre-rift structures appears to be an important feature, affecting the evolution and location of the Permo-Carboniferous Oslo Rift.  相似文献   

9.
The 1.9–1.8 Ga Bergslagen Supracrustal Series comprises: an Early Volcanic Stage represented by the Lower Leptite Group, an Initial Rift Stage by the Middle Leptite Group, a Rift Stage by the Upper Leptite-hälleflinta and Slate Group, metabasites and the Granite-Granophyre Suite, and a Post-rift Stage by conglomerate beds, remobilized granite-granophyres and the Hyttsjö Gabbro-Tonalite Suite. The formation and subsequent alteration of iron, manganese and sulfide skarn ores in the Supracrustal Series involve: (1) late Initial Rift Stage exhalative-sedimentary processes possibly related to ascending granitic magma, (2) early Rift Stage exhalative-sedimentary and seafloor hydrothermal processes related to basic volcanism and intrusion and subvolcanic granite intrusion, (3) late Rift Stage hydrothermal metasomatic alteration and mineralization around subvolcanic granites, (4) Post-rift Stage deformation and metamorphism, (5) Post-rift Stage post-deformation recrystallization and skarn formation related to Hyttsjö diorites, and (6) post-Supracrustal Series metamorphic modifications.  相似文献   

10.
红海是地球上最年轻的大洋,其板块构造活动正处于威尔逊旋回的幼年期。红海南北两端分别连接着威尔逊旋回的胚胎期和终结期,即东非大裂谷和地中海。这一独特的地理位置和构造部位使其成为板块构造理论研究的圣地。本文通过对已有的地质、地球物理和地球化学资料进行综合分析,了解了红海地区的地形、重磁异常和沿脊的玄武岩地球化学组成等地质构造特征,探讨了红海裂谷的洋壳分布、地幔源区不均一性以及扩张演化历史等问题。红海地形中间深、南北两端浅,可以分为北、中北、中南、南等四段。重磁异常的条带主要出现在中南段,其他段不明显,因而限制了以往对红海扩张历史的认识。目前认为红海全段存在洋壳,红海两岸的沿岸悬崖是共轭扩张陆缘,呈向南开口的喇叭型扩张,而非对应红海岸线的梭子型。红海裂谷沿脊的地幔源区具有明显的不均一性,南段玄武岩显示E-MORB特征,表现为阿法尔地幔柱的影响。红海的发育经历了裂谷前火山作用(31~29Ma)、大陆张裂(29~13Ma)和洋底扩张(<13Ma)三个主要阶段。红海裂谷的形成演化与非洲大陆的裂解、阿法尔地幔柱的活动、新特提斯洋的闭合等密切相关,了解红海的地球动力学过程将为揭示区域大地构造演化以及板块运动规律提供依据。  相似文献   

11.
The Red Sea Rift has been an object of comprehensive studies by several generations of geologists and geophysicists. Many publications and open-file reports provide insights into the geological history of this rift. Paleogene and Cretaceous rocks, which are considered to be prerift, are locally exposed at the margins of the Red Sea Rift. At the same time, some evidence indicates that at least some of these rocks are related to the early stage of the evolution of the Red Sea Rift. The available geological data suggest that the Red Sea region started its active evolution in the Cretaceous. As follows from lithostratigraphic data, the Cretaceous-Paleogene trough that predated the Oligocene-Quaternary rift covered this region completely or partially. The pre-Oligocene magmatism and geological evidence show that the Cretaceous-Paleogene trough was of the rift type. The Cretaceous-Eocene and Oligocene-Quaternary phases of rifting were separated by an epoch of uplifting and denudation documented by the erosion surface and unconformity.  相似文献   

12.
The stress fields in the Tunka Rift at the southwestern flank of the Baikal Rift Zone are reconstructed and analyzed on the basis of a detailed study of fracturing. The variation of these fields is of a systematic character and is caused by a complex morphological and fault-block structure of the studied territory. The rift was formed under conditions of oblique (relative to its axis) regional NW-SE extension against the background of three ancient tectonic boundaries (Sayan, Baikal, and Tuva-Mongolian) oriented in different directions. Such a geological history resulted in the development of several en echelon arranged local basins and interbasinal uplifted blocks, the strike-slip component of faulting, and the mosaic distribution of various stress fields with variable orientation of their principal vectors. The opening of basins was promoted by stress fields of a lower hierarchical rank with a near-meridional tension axis. The stress field in the western Tunka Rift near the Mondy and Turan basins is substantially complicated because the transform movements, which are responsible for the opening of the N-S-trending rift basins in Mongolia, become important as Lake Hövsgöl is approached. It is concluded that, for the most part, the Tunka Rift has not undergone multistage variation of its stress state since the Oligocene, the exception being a compression phase in the late Miocene and early Pliocene, which could be related to continental collision of the Eurasian and Indian plates. Later on, the Tunka Rift continued its tectonic evolution in the transtensional regime.  相似文献   

13.
A tectonic and sedimentary facies model is proposed to explain progressive evolution of the late Proterozoic to early Paleozoic Adelaide Rift (Geosyncline) of southern Australia. Tectonic and stratigraphic similarities are noted between the Adelaide Rift and many post Permian rifts and passive continental margins. Also the time span of the pre oceaniccrust accretion stage of the rifting process may be of the same order of magnitude, both in the Adelaide Rift and in post-Permian passive margins. These observations suggest that the underlying cause of the rifting process and the resultant crustal response have not changed significantly since late Precambrian times. More specifically the so-called “breakup unconformity”, observed in stratigraphic sequences beneath many present day passive continental margins, has been shown by various authors to correlate in time with earliest oceanic crust accretion, and it often separates underlying non-marine or paralic from fully marine shelf strata. In the Adelaide Rift, the unconformable Precambrian—Cambrian boundary is proposed as the analogue of this breakup unconformity, thereby explaining the apparently sudden influx of largely marine metazoans in Cambrian strata immediately above this unconformity.  相似文献   

14.
The Lambert Rift, which is a large intracontinental rift zone in East Antarctica, developed over a long period of geological time, beginning from the Late Paleozoic, and its evolution was accompanied by magmatic activity. The latest manifestation of magmatism is eruption of alkaline olivine–leucite basalts on the western side of the Lambert Rift; Rb–Sr dating referred its time to the Middle Eocene, although its genesis remained vague. In order to solve this problem, we found geochronometer minerals in basaltic samples and 68 apatite grains appeared to be suitable for analysis. Their ages and ages of host basalts, determined by the U–Pb local method on the SIMS SHRIMP-II, were significantly different (323 ± 31 Ma) from those assumed earlier. This age corresponds to the earliest stage of crustal extension in East Antarctica and to most of Gondwana. The new data crucially change the ideas about the evolution of Lambert Rift and demonstrate the ambiguity of К–Ar dates of the alkali effusive formed under long-term rifting.  相似文献   

15.
A review of seismological data on the crustal structure of the East African Rift zone is presented. The only refraction line is that along the Gregory Rift, which indicates a 7.5 km/sec refractor which is presumed to be the Moho. The bulk of data is provided by surface-wave dispersion studies. Some preliminary measurements of crustal and sub-Moho velocities using the University of Durham array at Kaptagat in Kenya are included.

There is now a growing body of evidence that the crust is generally of shield type over the whole rift zone. The exception is along the axis of the Gregory Rift, where a low-velocity Moho and some crustal modification is apparent. This is presumably the result of magma intrusions and suggests some crustal separation along this section of the rift. Sub-Moho velocities are probably normal outside the rifts themselves, though anomalously low upper-mantle velocities are to be associated with rifting. There is firm evidence for thinning of the lithosphere along the eastern branch of the rift. A cross-section of the Gregory Rift which is consistent with the current data is presented.  相似文献   


16.
《Quaternary Science Reviews》2007,26(13-14):1771-1789
The Neogene geological history of East Africa is characterised by the doming and extension in the course of development of the East African Rift System with its eastern and western branches. In the centre of the Western Rift Rise Rwanda is situated on Proterozoic basement rocks exposed in the strongly uplifted eastern rift shoulder of the Kivu–Nile Rift segment, where clastic sedimentation is largely restricted to the rift axis itself. A small, volcanically and tectonically controlled depository in northwestern Rwanda preserved the only Neogene sediments known from the extremely uplifted rift shoulder. Those (?)Pliocene to Pleistocene/Holocene fluvio-lacustrine muds and sands of the Palaeo-Nyabarongo River record the influence of Virunga volcanism on the major drainage reversal that affected East Africa in the Plio-/Pleistocene, when the originally rift-parallel upper Nile drainage system became diverted to the East in order to enter the Nile system via Lake Victoria. Sedimentary facies development, heavy mineral distributions and palaeobiological controls, including hominid artefacts, signal a short time interval of <300–350 ka to complete this major event for the sediment supply system of the Kivu–Nile Rift segment.  相似文献   

17.
我国若干裂谷构造特征及其成矿作用   总被引:5,自引:0,他引:5  
从基底构造、深大断裂、岩相古地理、岩浆活动、古地磁特征和裂谷型层控矿床比较等6个方面论证泰岭裂谷的存在,以古地磁成果为主导,探讨了秦岭裂谷的发生发展演化,到加里东末期裂谷曾锁闭,海西印支期再复合,从而有秦岭裂谷型层控铅锌矿床的形成,直到 印支末期裂谷两侧板块才碰撞对接在一起,文章最后论述了裂谷构造与成矿关系,我国若干裂谷构造特征与世界大陆裂谷的比较。  相似文献   

18.
张峤  纪飞 《地质力学学报》2021,27(5):809-820
特拉裂谷是西南极裂谷系统在新生代发生张裂作用的最后地区,因此成为研究西南极裂谷系统构造活动的关键。文章利用中国南极科考采集的以及SDLS国际共享的地震数据,结合多个钻探计划的钻井等基础资料,统一了西罗斯海地区地震反射界面和地震层序。将研究区的断层组合样式分为同沉积断层、层间断层和负花状断层三类,并进一步划分了区内新生代断层活动的期次,圈定了特拉裂谷的影响范围。研究发现,每期断层活动具有明显的继承性,活动时间由北部阿黛尔盆地向南部特拉裂谷越来越新,呈递变性,这是裂谷作用从北向南逐渐传递的结果。为了更加全面地揭示研究区的综合地球物理特征,利用基于弹性板模型下的Fan小波相关技术获得了研究区有效弹性厚度的空间变化特征。结果显示,横贯南极山脉前缘的异常低值条带与晚新生代的裂谷活动和伴生的岩浆作用有关,并指示了西罗斯海的拉张区域。   相似文献   

19.
Peridotite xenoliths from the Pello tuff cone in the Rift Valley of northern Tanzania, bear witness to upper mantle veining and metasomatism. Veins of katungite composition, with an asthenospheric signature, have imposed K, Fe, Ti, OH and REE metasomatism upon previously depleted peridotite. Chemical and mineralogical gradients are present in the peridotite wall rocks, and hydrous phases developed in the peridotite are generally lower in Ti and Fe, but higher in Mg and Cr, than those in the veins. The metasomatism has reduced the density of affected peridotite by up to 4.5%, supporting earlier geophysical models for low-density mantle beneath the Rift Valley. Age constraints for the metasomatically-induced density decrease permit correlation with Recent faulting in the Rift Valley, but not with the major upwarp of the Kenya Dome in the late Tertiary.  相似文献   

20.
The Cambro-Ordovician Jaibaras Rift is a NE–SW trending elongated feature, controlled by the Transbrasiliano lineament, locally known as Sobral-Pedro II shear zone (SPIISZ). An integrated study of geophysical data (gammaspectrometry, magnetometry and gravimetry) was undertaken in the Jaibaras Rift area, between Ceará Central (CCD) and Médio Coreaú domains (MCD), northwest Borborema Province. Geophysical data were interpreted qualitatively and quantitatively in order to understand the tectono-magmatic relations and rift formation based on the main geophysical lineaments, source geometry and depth, and separation of geophysical domains. In addition, a 2D gravity model was generated. The results show a structural partition characterized by NE–SW lineaments and E–W inflexions, where CCD presents a relatively mild magnetic field, whilst the MCD field is more disturbed. The Jaibaras Rift is characterized by positive magnetic and gravity anomalies. The SPIISZ, which corresponds to the SE fault edge of the Jaibaras Rift, is marked by strong magnetic dipoles and strong gravity gradients in the profile, showing the deep character of the Transbrasiliano lineament in the region. The Café-Ipueiras fault, at the NW edge of the rift, is well marked in gravity profiles, but displays low contrast of the magnetic field. Interpretation of the gravimetric anomaly map allowed to recognizing the main NE–SW axis, with alternation of maxima and minima in MCD. A regional gravity gradient reveals significant lateral density variation between the MCD and CCD perpendicular to the SPIISZ, emphasizing it as a main continental suture zone between crustal blocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号