首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
马里亚纳海沟弧前广泛发育来源于深部地幔楔、由泥火山作用形成的碎屑蛇纹岩,并且在泥火山顶部海底有非生物成因甲烷渗漏和无光合作用的自养生物群,是地球科学界的研究热点。在弧陆碰撞形成的台湾利吉混杂岩带发育有蛇纹岩角砾碎屑岩,一直有构造成因、沉积成因与构造沉积复合成因的争议。本次研究对台湾利吉蛇纹岩角砾碎屑岩的岩石学和地球化学进行了研究,蛇纹岩角砾碎屑岩呈层状或巨砾发育于台东利吉村附近的混杂岩泥质基质中,蛇纹岩角砾碎屑岩的角砾和粉砂质-泥质基质均由蛇纹岩组成,角砾呈次棱角状至次圆状,显示沉积成因特征。蛇纹岩角砾碎屑岩的Al2O3-MgO-CaO位于与蛇绿岩套有关的变质橄榄岩范围内,且偏低的Al2O3和CaO含量表明,其来源于活动大陆边缘俯冲带上盘的弧前环境。此外,蛇纹岩角砾富集As、Sb和Pb元素,暗示具有俯冲带上驮板块地幔楔蛇纹岩的特征,并富集来自俯冲板片的中低温流体。因此,利吉蛇纹岩角砾碎屑岩很可能来自俯冲带上盘地幔楔,由北吕宋火山岛弧弧前基底形成的蛇纹岩通过泥火山作用喷出海底,最后经弧陆碰撞进入台湾利吉混杂岩带。  相似文献   

2.
Classification,formation, and transport mechanisms of mud clasts   总被引:2,自引:0,他引:2  
Mud clasts are common in non-marine to marine sedimentary records, however, why lack a widely accepted classification scheme? We propose that it is the relative balance of volumetric abundance, sorting, roundness, and grain size that controls the texture and fabric of mud clasts. Nine distinct types of mud clasts are identified in the study based on quantitatified properties, and fall into two groups coarse-grained and fine-grained. The generation of mud clasts can be assigned to failure, erosion, and/or bioturbation of muddy sediment. These clasts are transported within fluid flows including Newtonian fluids, non-Newtonian fluids, and Bingham plastics (gravity flow and turbidity flow), showing various physical characteristics depended upon the density and viscosity of flows. Newtonian flows with less density and viscosity commonly form mud clasts with mature textures. In non-Newtonian (gravity-driven) flows, mud clasts are normally transported in laminar flows with high density and viscosity, developing matrix-supported mud clasts with immature textures. The study of classification, formation, and transport mechanisms of mud clasts has implications for identifying and interpreting sedimentary environments.  相似文献   

3.
We report sediment-infill volcanic breccia from the Neoarchean Shimoga greenstone belt of western Dharwar Craton which is associated with rhyolites, chlorite schists and pyroclastic rocks. The pyroclastic rocks of Yalavadahalli area of Shimoga greenstone belt host volcanogenic Pb–Cu–Zn mineralization. The sediment-infill volcanic breccia is clast-supported and comprises angular to sub-angular felsic volcanic clasts embedded in a dolomitic matrix that infilled the spaces in between the framework of volcanic clasts. The volcanic clasts are essentially composed of alkali feldspar and quartz with accessory biotite and opaques. These clasts have geochemical characteristics consistent with that of the associated potassic rhyolites from Daginkatte Formation. The rare earth elements (REE) and high field strength element (HFSE) compositions of the sediment-infill volcanic breccia and associated mafic and felsic volcanic rocks suggest an active continental margin setting for their generation. Origin, transport and deposition of these rhyolitic clasts and their aggregation with infiltrated carbonate sediments may be attributed to pyroclastic volcanism, short distance transportation of felsic volcanic clasts and their deposition in a shallow marine shelf in an active continental margin tectonic setting where the rhyolitic clasts were cemented by carbonate material. This unique rock type, marked by close association of pyroclastic volcanic rocks and shallow marine shelf sediments, suggest shorter distance between the ridge and shelf in the Neoarchean plate tectonic scenario.  相似文献   

4.
滇西北衙地区热水岩溶作用及其伴生的地质灾害   总被引:12,自引:0,他引:12  
报道了滇西北衙地区新发现的热水角砾岩及其显示的热水岩溶与伴生地质灾害的特征。北衙地区热水角砾岩和热水岩溶可分为 4种类型和层次,即①地表相爆发-沉积作用形成的沉积凝灰-角砾岩、热水沉积鲕状灰岩与钙华胶结角砾岩;②与近地表洞穴沉积和垮塌作用有关的热水沉积砾岩和汽爆射流角砾岩;③与热水通道相蚀裂和爆破角砾化作用有关的网络状灰岩角砾岩筒和热水隐爆角砾岩筒;④深部相热水浸煮-蚀变灰岩。除深部相浸煮蚀变作用外,其余 3种热水岩溶作用都可伴生和引起地质灾害。万洞山-五里排一带呈席状覆盖于第三系河湖相的砂砾岩和粘土沉积之上的灰岩质热水角砾岩为一套从陈家庄角砾岩筒滑覆过来的热水角砾岩滑体,其可能是造成金沙江古河道淤塞并使古金沙江改道和形成大拐弯的主要原因。  相似文献   

5.
The Trooper Creek Formation is a mineralised submarine volcano‐sedimentary sequence in the Cambro‐Ordovician Seventy Mile Range Group, Queensland. Most of the Trooper Creek Formation accumulated in a below‐storm‐wave‐base setting. However, microbialites and fossiliferous quartz‐hematite ± magnetite lenses provide evidence for local shoaling to above fairweather wave‐base (typically 5–15 m). The microbialites comprise biogenic (oncolites, stromatolites) and volcanogenic (pumice, shards, crystal fragments) components. Microstructural elements of the bioherms and biostromes include upwardly branching stromatolites, which suggest that photosynthetic microorganisms were important in constructing the microbialites. Because the microbialites are restricted to a thin stratigraphic interval in the Trooper Creek area, shallow‐water environments are interpreted to have been spatially and temporarily restricted. The circumstances that led to local shoaling are recorded by the enclosing volcanic and sedimentary lithofacies. The microbialites are hosted by felsic syneruptive pumiceous turbidites and water‐settled fall deposits generated by explosive eruptions. The microbialite host rocks overlie a thick association (≤?300 m) of andesitic lithofacies that includes four main facies: coherent andesite and associated autoclastic breccia and peperite; graded andesitic scoria breccia (scoriaceous sediment gravity‐flow deposits); fluidal clast‐rich andesitic breccia (water‐settled fall and sediment gravity‐flow deposits); and cross‐stratified andesitic sandstone and breccia (traction‐current deposits). The latter three facies consist of poorly vesicular blocky fragments, scoriaceous clasts (10–90%), and up to 10% fluidally shaped clasts. The fluidal clasts are interpreted as volcanic bombs. Clast shapes and textures in the andesitic volcaniclastic facies association imply that fragmentation occurred through a combination of fire fountaining and Strombolian activity, and a large proportion of the pyroclasts disintegrated due to quenching and impacts. Rapid syneruptive, near‐vent aggradation of bombs, scoria, and quench‐fragmented clasts probably led to temporary shoaling, so that subsequent felsic volcaniclastic facies and microbialites were deposited in shallow water. When subsidence outpaced aggradation, the depositional setting at Trooper Creek returned to being relatively deep marine.  相似文献   

6.
This paper discusses the nature and origin of subsurface sediment mobilization processes in deep marine clay-rich environments. In the studied area of the southern Barbados accretionary prism, new geophysical acquisitions have emphasized the spectacular widespread development of mud volcanoes that are well-developed along ramp anticlines and along sigmoidal rises with trends that are oblique to the axes of the main folds of the accretionary wedge. On some active mud volcanoes, heat-flow measurements show high positive anomalies related to high fluxes of mud transfer. The mobilized solid fraction expelled by the mud volcanoes does not originate from a unique source bed but from various formations pierced by the mud conduits and is driven by the water phase. The area studied also exhibits trends of structures corresponding to sub-circular massive local uplifts of deformed but well-preserved stratified sediments (turbidites and hemipelagics). No piercing shale diapirs have been encountered in this area. Some of these local uplift structures are complicated by the development of collapses, calderas, and superimposed mud volcanoes. Mud volcanism corresponds fundamentally to fluid displacement (water and gas), whereas massive sedimentary uplift corresponds to large vertical displacements of stratified solid levels but for which the deep cause could be partly the intrusion of mud plugs. Both are dynamic phenomena controlled by the development of overpressure at depth, contributing to sedimentary mobilizations.  相似文献   

7.
Unconsolidated mud clast breccia facies in the hominin-bearing (Homo naledi) Rising Star Cave, Cradle of Humankind, South Africa, are interpreted to have formed through a process termed sedimentary autobrecciation in this study. This process, by which most of the angular mud clast breccia deposits are thought to have formed autochthonously to para-autochthonously via a combination of erosion, desiccation, diagenesis and microbial alteration of laminated mud deposits, is thought to have taken place under relatively dry (i.e. non-flooded) conditions inside the cave. Subsequently, gravitational slumping and collapse was the dominant mechanism that produced the mud clast breccia deposits, which commonly accumulate into debris aprons. The mud clast breccia is typically associated with (micro) mammal fossils and is a common facies throughout the cave system, occurring in lithified and unlithified form. This facies has not been described from other cave localities in the Cradle of Humankind. Additionally, sedimentary autobrecciation took place during the deposition of some of the fossils within the Rising Star Cave, including the abundant Homo naledi skeletal remains found in the Dinaledi Subsystem. Reworking of the mud clast breccia deposits occurs in some chambers as they slump towards floor drains, resulting in the repositioning of fossils embedded in the breccias as evidenced by cross-cutting manganese staining lines on some Homo naledi fossil remains. The formation of the unlithified mud clast breccia deposits is a slow process, with first order formation rates estimated to be ca 8 × 10−4 mm year−1. The slow formation of the unlithified mud clast breccia facies sediments and lack of laminated mud facies within these deposits, indicates that conditions in the Dinaledi Chamber were probably stable and dry for at least the last ca 300 ka, meaning that this study excludes Homo naledi being actively transported by fluvial mechanisms during the time their remains entered the cave.  相似文献   

8.
The Cablac Limestone, widely recorded in Timor, has its type area on Cablac Mountain where it was regarded as a Lower Miocene shallow-marine carbonate-platform succession. The Bahaman-like facies placed in the Cablac Limestone are now known to belong to the Upper Triassic–Lower Jurassic rather than the Lower Miocene. On the northern slopes of Cablac Mountain, a crush breccia, formerly regarded as the basal conglomerate of the formation, is now considered to have developed along a high-angle fault separating Banda Terrane units of Asian affinity from an overthrust limestone stack containing units belonging to the Gondwana and Australian-Margin Megasequences. The Cablac breccia includes rock fragments that were probably derived locally from these tectonostratigraphic units after terrane emplacement and overthrusting. Clasts include peloid and oolitic limestones of the Upper Triassic–Lower Jurassic derived from the Gondwana Megasequence, deep-water carbonate pelagites of the Cretaceous and Paleogene derived from the Australian-Margin Megasequence, Upper Oligocene–Lower Miocene (Te Letter Stage) shallow-water limestone derived from the Banda Terrane, and a younger Neogene calcarenite containing clasts of mixed tectonostratigraphic affinity. There is no evidence for significant sedimentary or tectonic transport of clasts that form the breccia. The clast types and the present understanding of the geological history of Timor suggest that the crush breccia formed late in the Plio-Pleistocene uplift history of Timor. It is not the basal conglomerate of the Cablac Limestone. However, the clasts of an Upper Oligocene–Lower Miocene limestone found in the breccia suggest that a shallow-marine limestone unit of this age either outcrops in the region and has not been detected in the field, or has been eroded completely during late Neogene uplift. The clasts are similar in age and lithology to an Upper Oligocene–Lower Miocene formation that unconformably overlies a metamorphic complex in the Booi region of West Timor, similar to the Lolotoi Metamorphic Complex (Banda Terrane) that is juxtaposed against the crush breccia of Cablac Mountain. The Cablac Limestone at its type area includes a mixed assemblage of carbonate rock units ranging in age from Triassic to Plio-Pleistocene and representing diverse facies. As a formation, the name “Cablac Limestone” should be discarded for a Cenozoic unit. The Upper Oligocene–Lower Miocene shallow-water limestone unit that is typified by outcrops in the Booi region of West Timor, and that has contributed to clasts in the Cablac breccia, is informally named the Booi limestone. It is considered part of the allochthonous Banda Terrane of Asian affinity and represents the only shallow-marine Lower Miocene unit known from Timor. The only other Miocene sedimentary unit known from Timor includes carbonate pelagites – designated the Kolbano beds – probably deposited on an Australian continental terrace at water depths between 1000 and 3000 m. On the northeastern edge of Cablac Mountain, oolitic limestone and associated units of the Gondwana Megasequence, the Kolbano beds of the Australian-Margin Megasequence, and the Booi limestone and associated metasediments of the Banda Terrane were juxtaposed by a Plio-Pleistocene high-angle fault along which the Cablac crush breccia formed.  相似文献   

9.
The Cablac Limestone, widely recorded in Timor, has its type area on Cablac Mountain where it was regarded as a Lower Miocene shallow-marine carbonate-platform succession. The Bahaman-like facies placed in the Cablac Limestone are now known to belong to the Upper Triassic–Lower Jurassic rather than the Lower Miocene. On the northern slopes of Cablac Mountain, a crush breccia, formerly regarded as the basal conglomerate of the formation, is now considered to have developed along a high-angle fault separating Banda Terrane units of Asian affinity from an overthrust limestone stack containing units belonging to the Gondwana and Australian-Margin Megasequences. The Cablac breccia includes rock fragments that were probably derived locally from these tectonostratigraphic units after terrane emplacement and overthrusting. Clasts include peloid and oolitic limestones of the Upper Triassic–Lower Jurassic derived from the Gondwana Megasequence, deep-water carbonate pelagites of the Cretaceous and Paleogene derived from the Australian-Margin Megasequence, Upper Oligocene–Lower Miocene (Te Letter Stage) shallow-water limestone derived from the Banda Terrane, and a younger Neogene calcarenite containing clasts of mixed tectonostratigraphic affinity. There is no evidence for significant sedimentary or tectonic transport of clasts that form the breccia. The clast types and the present understanding of the geological history of Timor suggest that the crush breccia formed late in the Plio-Pleistocene uplift history of Timor. It is not the basal conglomerate of the Cablac Limestone. However, the clasts of an Upper Oligocene–Lower Miocene limestone found in the breccia suggest that a shallow-marine limestone unit of this age either outcrops in the region and has not been detected in the field, or has been eroded completely during late Neogene uplift. The clasts are similar in age and lithology to an Upper Oligocene–Lower Miocene formation that unconformably overlies a metamorphic complex in the Booi region of West Timor, similar to the Lolotoi Metamorphic Complex (Banda Terrane) that is juxtaposed against the crush breccia of Cablac Mountain. The Cablac Limestone at its type area includes a mixed assemblage of carbonate rock units ranging in age from Triassic to Plio-Pleistocene and representing diverse facies. As a formation, the name “Cablac Limestone” should be discarded for a Cenozoic unit. The Upper Oligocene–Lower Miocene shallow-water limestone unit that is typified by outcrops in the Booi region of West Timor, and that has contributed to clasts in the Cablac breccia, is informally named the Booi limestone. It is considered part of the allochthonous Banda Terrane of Asian affinity and represents the only shallow-marine Lower Miocene unit known from Timor. The only other Miocene sedimentary unit known from Timor includes carbonate pelagites – designated the Kolbano beds – probably deposited on an Australian continental terrace at water depths between 1000 and 3000 m. On the northeastern edge of Cablac Mountain, oolitic limestone and associated units of the Gondwana Megasequence, the Kolbano beds of the Australian-Margin Megasequence, and the Booi limestone and associated metasediments of the Banda Terrane were juxtaposed by a Plio-Pleistocene high-angle fault along which the Cablac crush breccia formed.  相似文献   

10.
Appel  Fedo  Moorbath  & Myers 《地学学报》1998,10(2):57-62
A low-strain domain has been identified in the metamorphosed, mostly highly deformed volcanic and sedimentary rocks of the early Archaean Isua supracrustal belt. This domain contains well-preserved volcanic and sedimentary features, including basaltic pillow lavas, pillow breccia, heterogeneous volcanic breccia, amygdules in metabasalt, and polymict conglomerate dominated by recrystallized chert and volcanic clasts. The low-strain domain is bounded by highly deformed rocks mostly derived from basalt, chert, and banded iron formation. These discoveries demonstrate that some primary features have escaped the pervasive metasomatism dominant in other parts of the belt and, furthermore, strengthen the characterization of the Isua supracrustals as a typical greenstone belt.  相似文献   

11.
The locations and information about the sizes of 61 mud volcanoes on the Italian mainland and Sicily, plus an area of mud diapirism in the Italian Adriatic Sea, are presented. Data about the emission products are also provided. The majority of these mud volcanoes are found where thick sedimentary sequences occur within a zone of tectonic compression associated with local plate tectonic activity: the movement of the Adriatic microplate between the converging African and Eurasian plates. The principal gas emitted by these mud volcanoes is methane, which probably originates from deep within the sediments. Other mud volcanoes, associated with igneous volcanism, produce mainly carbon dioxide. The mud diapirs in the Adriatic Sea are thought to form as a result of the mobilization of shallow gassy sediments. It has been shown that radon emissions from mud volcanoes are indicators of forthcoming earthquake events. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
Laterally continuous mass-flow deposits are an important feature of the HYC stratiform sediment-hosted Zn–Pb–Ag deposit, which reveal more about the HYC mineralising system than has been previously recognised. Mass flow deposits are interbedded with sheet-like mineralised lenses in a carbonaceous dolomitic siltstone host rock. Sedimentological processes of mass-flow deposit emplacement are proposed that constrain stratiform mineralisation to the top metre of the sediment pile, based on mass-flow geometry and detailed clast petrology. Four distinct sedimentary facies are identified within the mass-flow units: framework-supported polymictic boulder breccia; matrix-supported pebble breccia; and gravel-rich and sand-rich graded turbidite beds. The boulder breccias are weakly reverse graded and show rapid lateral transition into the other facies, all of which are distal manifestations of the same sedimentary events. The flow geometry and relationships between these facies are interpreted to reflect mass-flow initiation as clast-rich debris flows, with transformation via the elutriation of fines into a subsequent turbulent flow from which the turbidite and matrix-supported breccia facies were deposited. All the mass-flow facies contain clasts of the common and minor components of the in-situ laminated base-metal mineralised siltstone. Texturally these are identical to their in-situ counterparts, and are clearly distinct from other sulphidic clasts that are of unequivocal replacement origin. In the boulder breccias, intraclasts may be the dominant clast type and the matrix may contain abundant fine-grained sphalerite and pyrite. Dark coloured sphaleritic and pyritic breccia matrices are distinct from pale carbonate-siliclastic matrices, are associated with high abundance of sulphidic clasts, and systematically occupy the lower part of breccia units. Consequently, clasts that resemble in-situ ore facies are confirmed as genuine intraclasts that were incorporated into erosive mass flows prior to complete consolidation. Disaggregation and assimilation of sulphidic sediment in the flow contributed to the sulphide component of the dark breccia matrices. The presence of laminated sulphidic intraclasts in the mass-flow facies constrains mineralisation at HYC to the uppermost part of the seafloor sediment pile, where this material was susceptible to erosion by incoming clast-rich mass flows.Editorial handling: N. White  相似文献   

13.
This paper describes an unusual occurrence of igneous material as clasts in dyke and pipe breccias associated with late Caledonian minor intrusions. It is shown that the clasts were in a plastic condition when incorporated into the breccia rock. These igneous clasts were derived from magma disrupted at depth and then transported into the fluidized breccia columns where they were mixed with large numbers of clasts derived from the quartzite wall-rocks. Textures and planar fabrics developed during collapse of the fluidized system are described and shown to be separable from the later compaction associated with extensive pressure solution of the fine matrix. Most Caledonian breccia pipes lack igneous clasts and it is considered that this group of breccias represent the rarely-preserved boundary zone between active magma and breccia systems.  相似文献   

14.
冷水坑矿田具有浅部斑岩型矿体与深部层状矿体的复杂组合,深部层状矿体赋存于上侏罗统打鼓顶组晶屑凝灰岩所夹的(铁锰)碳酸岩角砾岩层中。从(铁锰)碳酸岩角砾岩的基本地质特征入手,论述和分析了(铁锰)碳酸岩角砾岩的主要物质成分组成、分布、产状及与矿体关系等特点,结合矿物X-射线粉晶分析、碳-氧同位素和氢-氧同位素佐证,认为(铁锰)碳酸岩角砾岩为深水湖泊相火山-沉积成因,与层状矿体形成密切相关,后期斑岩岩浆就位及其流体活动对早期火山沉积碳酸岩层叠加改造,从而形成了与斑岩具有成因联系的层状富铅锌银矿床。  相似文献   

15.
尹锋  陈鸣 《岩石学报》2022,38(3):901-912
撞击角砾岩是陨石撞击过程形成的特有岩石种类,是研究撞击成坑过程、陨石坑定年、矿物岩石冲击变质的理想对象。岫岩陨石坑是一个直径1800m的简单陨石坑,坑内有大量松散堆积的撞击角砾岩。本研究通过光学显微镜、费氏台、电子探针、X射线荧光光谱仪、电感耦合等离子质谱仪等分析测试手段,主要研究了岫岩陨石坑撞击角砾岩的岩相学和冲击变质特征,并在此基础上讨论了撞击角砾岩的形成过程和陨石坑的形貌特征。岫岩陨石坑内产出有三种撞击角砾岩,分别是来自上部的玄武质角砾岩和复成分岩屑角砾岩,以及底部的含熔体角砾岩。组成玄武质角砾岩和复成分岩屑角砾岩的碎屑受到的冲击程度较低,仅有少量石英发育面状变形页理,指示不超过20GPa的冲击压力。而组成含熔体角砾岩的碎屑受到了很强的冲击,发育了熔融硅酸盐玻璃、石英面状变形页理、柯石英、二氧化硅玻璃、击变长石玻璃、莱氏石等冲击变质特征,指示的峰值压力超过50GPa。本研究证实了含熔体角砾岩通常产出在简单陨石坑底部,由瞬间坑的坑缘和坑壁垮塌的岩石碎屑与坑底的冲击熔体混合形成。岫岩坑的真实深度是495m,真实深度与直径的比值为0.275,符合简单陨石坑的尺寸特征。陨石坑内的撞击角砾岩中心厚度为188m,与直径之比为0.104,略低于其它简单坑,可能是受丘陵地貌影响导致改造阶段垮塌到坑内的岩石角砾偏少。  相似文献   

16.
深部流体中氢的油气成藏效应初探   总被引:13,自引:3,他引:13  
杨雷  金之钧 《地学前缘》2001,8(4):337-341
深部流体对含油气盆地内油气成藏的影响已不断得到认识 ,人们在越来越多的油气田中发现了深部流体参与油气成藏的证据。氢是深部流体中重要的还原组分 ,许多沉积盆地都有氢异常的报道。深部来源的氢至少可能通过两种途径进入沉积盆地内 :一种是地球深部的氢直接通过深部脱气进入沉积盆地 ,通道为切穿盆地基底的深大断裂或伴随的火山活动 ;另一种来源是超基性岩的次生蚀变 ,如橄榄岩的蛇纹石化也可以放出氢。氢与沉积盆地内的有机质发生作用将会大大提高烃类的产率。加氢反应和合成反应是两种不同的机制。模拟实验表明在沉积盆地中存在加氢反应的条件 ,加氢反应可能是含油气盆地中广泛存在的一种生烃机制。在中国东部地区裂谷型盆地广泛地分布 ,并具有众多切穿基底的深大断裂 ,研究证实存在相当多的无机成因天然气 ,这预示着研究深部流体中氢的成藏效应不仅具有理论意义 ,而且也具有重要的现实意义。  相似文献   

17.
New drill core data are provided which support earlier interpretations that the Kalkkop structure, a 600–630 m wide, near-circular feature south-southwest of Graaff-Reinet in the Eastern Cape Province of South Africa, is a meteorite impact crater. Shock metamorphosed clasts in suevitic crater fill and Re---Os isotope data of this breccia indicate the presence of a minor (0.05%) meteoritic component in the suevite. The new data come from a 1992 borehole, which transected the complete crater fill and extended from about 160 to 380 m depth into the sedimentary basement belonging to the Koonap Formation of the Beaufort Group (Karoo Supergroup). Dyke breccias were found in the otherwise coherent Beaufort Group sediments forming the floor to the Kalkkop Crater. Mostly narrow zones of different breccia types, including injections of lithic impact breccia, a possible pseudotachylite veinlet and cataclasite occur predominantly in an approximately 65 m wide zone below the crater floor, with a few other cataclasite occurrences found lower down in the basement. Stratigraphical crater constraints provide information for the depth-diameter scaling and breccia volumes associated with such small, bowl-shaped impact craters formed in sedimentary targets.U---Th series dating of limestone samples from near the top and the bottom of the crater sediment fill constraints the age of the Kalkkop impact event to about 250 ± 50 ka, similar to the age of the Pretoria Saltpan impact crater, also located in South Africa. The variety of different breccia types (polymict and monomict impact breccias; local formations of pseudotachylitic and cataclastic breccias) observed in the crater fill of the Kalkkop Crater indicates the need to carefully distinguish different breccia types in order to assess the respective importance of each formation.  相似文献   

18.
陕西双王含金角砾岩地质特征及成因初探   总被引:3,自引:0,他引:3  
双王金矿含金角砾岩为水力压裂成因角砾岩。认为该水压角砾岩体是深源富碱含金流体在泥盆系一套热水沉积的富钠质岩系中发生水力压裂作用形成的。早期共轴递进挤压使能干性的富钠质岩系与非能干性的富泥质岩系发生构造透镜石香肠化;晚期的非共轴递进剪切使早期在透镜体中心形成的构造裂隙由剪性转化为张性,并产生巨大的压力降使深部的流体在富钠质岩系中沿裂隙发生水力压裂作用,从而形成双王水力压裂含金角砾岩。  相似文献   

19.
陆相深水重力流水道的类型细分及其沉积模式是制约其油气勘探开发的重要因素,但研究程度低。通过对鄂尔多斯盆地南缘瑶曲铁路桥剖面三叠系延长组实测、水道形态参数统计及岩相、粒度等分析,开展了湖相重力流水道的沉积特征、沉积过程及沉积模式研究。结果表明:(1)研究区内可识别出4期复合水道,主要为洪水重力流成因。根据其内部单一水道及单砂体形态特征、岩相组成,将其细分为沉积型和过渡型两类。(2)剖面下部2期复合水道为沉积型,以悬浮载荷成因岩相为主,常见块状净细砂岩、薄层泥岩岩相组合和鲍马序列岩相组合;上部2期复合水道为过渡型,岩相以底床载荷与悬浮载荷共存为特征,自下而上以交错层理细砂岩或叠瓦状泥砾细砂岩与含泥砾/泥岩撕裂屑块状细砂岩、平行层理粗粉砂岩及薄层泥岩的岩相组合为特征。(3)结合单一水道规模及其相互关系,建立了区内过渡、沉积型重力流水道的半定量沉积模式。过渡型水道内部侵蚀与沉积作用共存,单一水道宽度小、宽厚比低,呈透镜状,水道间切割性强,砂体横向稳定性较低,表现出不定向叠加、侧向拼接样式;沉积型水道内部由沉积作用主导,单一水道宽度较大、宽厚比较高,呈似板状—透镜状,砂体横向稳定性较高,表现出稳定的垂向加积样式。  相似文献   

20.
卞青竹  胡森  林杨挺 《地质科学》2018,(3):1186-1197
林东陨石发现于我国内蒙古地区,被划分为LL5-6型普通球粒陨石角砾岩。本项工作对林东陨石开展了深入的岩石矿物学分析,提出将其重新划分为表土角砾岩的新观点。林东陨石主要由大至厘米级的角砾、以及微米大小的细粒基质两部分构成。不同角砾之间,表现出明显差异的岩石结构,反映了不同程度的热变质,岩石类型变化范围为4~6型。角砾以岩屑为主,还含有残余球粒和粗粒的矿物碎屑。不同岩石类型角砾的橄榄石Fa值(29.7 mol%~30.5 mol%)、低钙辉石Fs值(24.9 mol%~26.1 mol%)、以及铁纹石的Co含量(2.38%~2.51%)等,表明这些角砾均为低铁低金属的LL化学群,判断其来自同一小行星母体。林东陨石的细粒基质主要由微米大小的矿物碎屑固结而成,颗粒之间有较多的孔隙,整体较为松散。细粒基质的化学组成与岩石角砾中的矿物颗粒相同,应当是后者的机械粉碎产物。据此推测林东陨石的母体是一颗LL群小行星,表面经历了长期的小天体碰撞,形成各种岩屑和微细矿物晶屑,然后固结成林东陨石表土角砾岩。林东陨石的发现为研究小行星表面的演化历史,以及太阳风辐射等太空风化提供了珍贵样品,并为我国小行星探测提供可供对照的对象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号