首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Silicon is a key element whose major role in the control of the cycle of carbon in the ocean has been recently revealed. This is first illustrated through the resolution of the ‘opal paradox’ in the modern Southern Ocean. Second, the ‘silica hypothesis’ explains why, during the Last Glacial Maximum, the atmospheric concentration of CO2 was about 40 % below that of the interglacial period. Increased deliveries of wind-borne silica to the surface ocean as well as of riverine inputs favoured the dominance of diatoms over coccolithophorids, resulting in a net emission decrease of CO2 by coccolithophorids from the ocean surface to the atmosphere. To cite this article: P. Tréguer, C. R. Geoscience 334 (2002) 3–11  相似文献   

2.
Tree-ring stable carbon isotope ratios (δ13C) often display a decline over the industrial period (post-AD1850) that is only partly explained by changes in the isotopic ratio of carbon dioxide (CO2) and may represent a response to increased atmospheric concentrations of CO2 (ca). If this is not addressed, reconstructions using long tree-ring stable isotope chronologies calibrated using the modern period, for which meteorological records are available, may be compromised. We propose a correction procedure that attempts to calculate the δ13C values that would have been obtained under pre-industrial conditions. The correction procedure uses nonlinear (loess) regression but the magnitude of the adjustment made is restricted by two logical constraints based on the physiological response of trees: first, that a unit increase in ca cannot result in more than the same unit increase in the internal concentration of CO2 (ci), and second, that increases in water-use efficiency as a result of an increase in ca are limited to maintaining a constant ci/ca ratio. The first constraint allows retention of a falling trend in δ13C, which exceeds that which could logically be attributed to a passive response to rising ca. The second constraint ensures that any increase in δ13C, reflecting a change in water-use efficiency beyond maintenance of a constant ci/ca, is not removed. The procedure is tested using ‘pseudoproxies’, to demonstrate the effect of the correction on time-series with different shapes, and data from three sites in Finland and Norway. Two of the time-series retain a significant trend after correction, and in all three cases the correction improves the correlation with local meteorological measurements.  相似文献   

3.
《Applied Geochemistry》2006,21(4):547-562
Reducing the concentration of dissolved organic C (DOC) in water is one of the main challenges in the process of artificial groundwater recharge. At the Tuusula waterworks in southern Finland, surface water is artificially recharged into an esker by pond infiltration and an equal amount of groundwater is daily pumped from the aquifer. This groundwater study was conducted to consider the role of redox processes in the decomposition of DOC. The isotopic composition of dissolved inorganic C (δ13CDIC) in the recharged water was used as a tracer for redox reactions. The isotopic composition of O and H in water was determined in order to calculate mixing ratios between the local groundwater and the infiltrated surface water. Three distinct processes in the reduction of the DOC content were traced using isotopic methods and concentration analyses of DIC and DOC: (1) the decomposition of DOC, (2) adsorption of DOC on mineral matter, and (3) the dilution of artificially recharged water by mixing with local groundwater. The largest decrease (44%) in the DOC content occurred during the early stage of subsurface flow, within 350 m of the infiltration ponds. The reduction of DOC was accompanied by an equal increase in DIC and a significant drop in δ13CDIC. This change is attributed to the oxidative decomposition of DOC. A further 23% decrease in DOC is attributed to adsorption and a final drop of 14% to dilution with local groundwater.  相似文献   

4.
Zou  Lin  Dong  Lin  Ning  Meng  Huang  Kangjun  Peng  Yongbo  Qin  Shujian  Yuan  Honglin  Shen  Bing 《中国地球化学学报》2019,38(4):481-496

The continent is the second largest carbon sink on Earth’s surface. With the diversification of vascular land plants in the late Paleozoic, terrestrial organic carbon burial is represented by massive coal formation, while the development of soil profiles would account for both organic and inorganic carbon burial. As compared with soil organic carbon, inorganic carbon burial, collectively known as the soil carbonate, would have a greater impact on the long-term carbon cycle. Soil carbonate would have multiple carbon sources, including dissolution of host calcareous rocks, dissolved inorganic carbon from freshwater, and oxidation of organic matter, but the host calcareous rock dissolution would not cause atmospheric CO2 drawdown. Thus, to evaluate the potential effect of soil carbonate formation on the atmospheric pCO2 level, different carbon sources of soil carbonate should be quantitatively differentiated. In this study, we analyzed the carbon and magnesium isotopes of pedogenic calcite veins developed in a heavily weathered outcrop, consisting of limestone of the early Paleogene Guanzhuang Group in North China. Based on the C and Mg isotope data, we developed a numerical model to quantify the carbon source of calcite veins. The modeling results indicate that 4–37 wt% of carbon in these calcite veins was derived from atmospheric CO2. The low contribution from atmospheric CO2 might be attributed to the host limestone that might have diluted the atmospheric CO2 sink. Nevertheless, taking this value into consideration, it is estimated that soil carbonate formation would lower 1 ppm atmospheric CO2 within 2000 years, i.e., soil carbonate alone would sequester all atmospheric CO2 within 1 million years. Finally, our study suggests the C–Mg isotope system might be a better tool in quantifying the carbon source of soil carbonate.

  相似文献   

5.
2030年前实现碳达峰、2060年前实现碳中和(简称“双碳”)是我国对国际社会的庄严承诺,已被纳入生态文明建设的总体布局。生态系统碳汇是实现“双碳”目标的重要手段,也是林业和草原实现高质量发展的必然要求。国际有关机构对全球森林、草地和湿地生态系统的碳储量和碳循环进行了评估。自1990年以来,附件一国家(指《联合国气候变化框架公约》附件一列出的经济合作发展组织中所有发达国家和经济转型国家)对本国的碳排放和碳汇进行估算,编制了年度温室气体清单; 我国也编制了5次国家温室气体清单。这些工作对我国开展应对气候变化的研究提供了基础。提出了如下建议: 在编制“双碳” 路线图和时间表时,既要考虑我国生态系统碳汇与能源和工业领域碳排放在区域空间分布和时间维度上的差异性,也要考虑生态系统同时所具有的碳汇和碳排放的特殊性; 生态系统碳汇是碳达峰的非选项,是碳中和的必选项; 生态系统碳汇要遵循国家实现“双碳”目标的基本原则,要将生态系统碳汇作为国家生态建设和保护工程的主要目标,提高碳汇计量和监测能力,完善市场和融资机制。  相似文献   

6.
δ13CPDB compositions for 39 samples of dissolved organic carbon (DOC) from the Gulf of Mexico-Caribbean Sea-Atlantic Ocean system, the South Pacific and Ross Sea are reported. Deep water values are similar with a mean of ?21.8%. attesting to the homogeneity of the oceanic DOC pool. In Antarctic waters, a 5%. difference between DOC and particulate organic carbon (POC), with POC having values similar to modern plankton (δ13CPDB approx ?27%.) supports the idea of the transient nature of POC as compared to DOC.Total, lipid, acid hydrolyzed, amino acid and residue fractions of POC are about 5, 3, 7, 5 and 3%. respectively, more negative in 2000 m water as compared to surface water samples from the Gulf of Mexico.  相似文献   

7.
8.
9.
Weathering of ancient organic matter contributes significantly to biogeochemical carbon cycles over geological times. The principle role of microorganisms in this process is well recognized. However, information is lacking on the contribution of individual groups of microorganisms and on the effect of labile carbon sources to the degradation process. Therefore, we investigated the contribution of fungi, Gram-positive and Gram-negative bacteria in the degradation process using a column experiment. Investigations were performed on low metamorphic black slates. All columns contained freshly crushed, sieved (0.63-2 mm), not autoclaved black slates. Two columns were inoculated with the lignite-degrading fungus Schizophyllum commune and received a culture medium containing 13C labeled glucose, two columns received only this culture medium and two control columns received only water.The total mass balance was calculated from all carbon added to the slate and the CO2 and DOC losses. Phospholipid fatty acids (PLFA) were extracted to investigate microbial communities. We used both the compound specific 14C and 13C signal of the PLFA to quantify carbon uptake from black slates and the glucose of the culture medium, respectively.The total carbon loss in these columns exceeded the amount of added carbon by approximately 60%, indicating that black slate carbon has been used. PLFA associated with Gram-positive bacteria dominated the indigenous community and took up 22% of carbon from black slate carbon, whereas PLFA of Gram-negative bacteria used only 8% of carbon from the slates. PLFA of Gram-negative bacteria and fungi were both mostly activated by the glucose addition. The added Schizophyllum did not establish well in the columns and was overgrown by the indigenous microbial community. Our results suggest that especially Gram-positive bacteria are able to live on and degrade black slate material. They also benefit from easy degradable carbon from the nutrient broth. In natural environments priming due to root exudates might consequently enhance weathering.  相似文献   

10.
In the Arabian Sea, temporal contiguity of highly oligotrophic and eutrophic periods, along with high water temperatures, may result in unique features of bacteriaorganic matter coupling, nutrient cycling and sedimentation, which are unlike those in the classical oligotrophic and eutrophic waters. Bacteria-phytoplankton interactions are suggested to influence phytoplankton aggregation and its timing. It is also hypothesized that, within aggregates, hydrolytic ectoenzyme activity, together with condensation reactions between the hydrolysis products, produce molecular species which are not readily degraded by pelagic bacteria. Accumulation of a reservoir of such slow-to-degrade dissolved organic carbon (DOC) is proposed to be a carbon flux and energy buffer, which moderates the response of bacteria to the dramatic variations in primary production in the Arabian Sea. Use of the slow-to-degrade DOC pool during the intermonsoon could temporarily render the Arabian Sea net-heterotrophic and a source of CO2 to the atmosphere. Stored DOC is also suggested to balance the observed deficit between mesopelagic carbon demand and the sinking particulate organic carbon supply. Knowledge of the significance of bacteria in carbon storage and cycling in the Arabian Sea is needed to understand the response of the ocean’s biogeochemical state to strong physical forcing and climate change.  相似文献   

11.
Methane hydrate in the global organic carbon cycle   总被引:1,自引:0,他引:1  
The global occurrence of methane hydrate in outer continental margins and in polar regions, and the magnitude of the amount of methane sequestered in methane hydrate suggest that methane hydrate is an important component in the global organic carbon cycle. Various versions of this cycle have emphasized the importance of methane hydrate, and in the latest version the role of methane hydrate is considered to be analogous to the workings of an electrical circuit. In this circuit the methane hydrate is a condenser and the consequences of methane hydrate dissociation are depicted as a resistor and inductor, reflecting temperature change and changes in earth surface history. These consequences may have implications for global change including global climate change.
Terra Nova, 14, 302–306, 2002  相似文献   

12.
《Atmósfera》2014,27(2):165-172
In Mexico, approximately 7650 wildfires occur annually, affecting 263 115 hectares of land. In addition to their impact on land degradation, wildfires cause deforestation, damage to ecosystems and promote land use change; apart from being the source of emissions of toxic substances to the environment (i.e., hydrogen cyanide, black carbon and organic carbon). Black carbon is a short-lived greenhouse pollutant that also promotes snow and ice melting and decreased rainfall; it has an estimated global warming potential close to 5000.1 We present an estimate of the black carbon and organic carbon emissions from wildfires in Mexico from 2000 to 2012 using selected emission factors from the literature and activity data from local agencies. The results show average emissions of 5955 Mg/yr for black carbon and 62 085 Mg/yr for organic carbon. Black carbon emissions are estimated to be 14 888 Gg CO2 equivalent (CO2 eq) per year on average. With proper management of wildfires, such emissions can be mitigated. Moreover, improved air quality, conservation of ecosystems, improvement of visibility and maintenance of land use are a subset of the related co-benefits. Mitigating forest organic carbon emissions, which are ten times higher than black carbon emissions, would also prevent the morbidity and mortality impacts of toxic organic compounds in the environment.  相似文献   

13.
Water samples from the Wujiang River, a typical karst river system, were analyzed for major ion concentrations and δ^34S values of dissolved sulfate in order to identify the sources of sulfate, quantify the sulfate export flux and understand the role of sulfur cycling in chemical weathering rate of carbonate. Spatial variations in sulfate concentration and sulfur isotopic composition of tributaries over the catchment area are obvious, allowing to decipher S sources between rocks and atmosphere. According to the variations in sulfate concentration and isotopic composition, it is inferred that sulfate ions in the upper-reach river waters may have three sources, rain water, sulfate resultant from oxidation of pyrite in coal, and sulfate from sulfide deposits. In the lower reaches, the S isotopic composition of the samples lies mainly on a mixing trend between evaporite sulfate and rainwater sulfate, the contribution of sulfate from oxidation of pyrite being lesser. A pronounced seasonal variation in both content and isotopic composition of sulfate characterizes the Wujiang River. The average sulfate concentration of the waters is 0.65 mmol/L in winter, 0.17 mmol/L higher than that in summer. River water δ^34S values range from -15.7‰ to 18.9‰ in winter, while the δ^34S values of river waters in summer vary to a lesser extent than in winter, from -11.5‰ to 8.3‰. The δ^34S values of the main stream range from -6.7‰ to -3.9‰ in summer, averaging 3‰ lower than in winter. This indicates that in summer, when the discharge increases, the contribution of a source enriched in light isotopes to the atmosphere or the oxidation of pyrite in coal is more important.  相似文献   

14.
《Applied Geochemistry》2002,17(4):337-352
Organic C burial rates and C–S relationships were investigated in the Holocene sediment sequences of 3 shallow polymictic coastal lagoons in the southern Baltic Sea to better understand the biogeochemical cycling of C and S in these environmental systems. The results show that these lagoons may have a considerable influence on the environmental status of the southern Baltic Sea area in having the potential to act as a temporary sink or source for heavy metals. High organic C accumulation rates (Corg-AR) can be observed in the sediments due to a high organic matter supply from land and a high productivity of the water bodies as a result of eutrophication. However, organic C burial does not increase as a result of increasing sediment accumulation rates (SAR). Even when high sedimentation rates do occur, there appears to be a thorough recycling and resuspension of the sediment enhancing the biological decay of organic matter before burial or the removal of organic matter from the system by transport. That is why high SAR in the coastal lagoons do not enhance pyrite formation, and thereby permanent fixing of heavy metals in the sediments, to the extent that could be expected from their magnitude. Initially there is a high potential for a temporary binding of heavy metals, but the latter are likely to be subject to mobilization and redistribution within the sediments and the water column. The patterns of burial of organic and mineral matter are different from those observed in the present-day Baltic Proper, implying possible important links in deposition between the central and coastal areas of the Baltic Sea and implications for C cycling in the ecosystem of the Baltic Sea.  相似文献   

15.
Refractory compounds are responsible for the long-term sequestration of organic matter in soil. The aim of this study is to assess the storage of refractory compounds, i.e. compounds with long turnover times, across size separates in arable soils. The contents and distribution of organic carbon (OC) and nitrogen (N) in size fractions were examined for two contrasting treatment types from long-term agroecosystem experiments, i.e. C-depleted and fertilized plots. The soil organic carbon (SOC) pool of the C-depleted plots is considered to be relatively enriched in refractory compounds compared with the SOC in the fertilized counterparts. In two of the three long-term experiments, the relative retention of OC in separates <20 μm was considerably higher than in separates 2000–20 μm (OC contents in depleted plots compared with fertilized plots). Highest residual contents of OC were found in fractions <6 μm. In the third experiment, additionally to the very fine fractions, separates 250–20 μm retained a high proportion of OC. The behavior of N was analogous to that of OC: the highest relative residues in the depleted plots were found in fine separates. These results indicate that in the investigated arable soils, C and N compounds associated with fine separates are most stable. Refractory OC in arable soils may be largely stored in fine particle-size fractions.  相似文献   

16.
姜禾禾 《岩石学报》2022,38(5):1302-1312
在百万年时间尺度上,大气、海洋中的二氧化碳浓度(PCO2,二氧化碳分压)和长期变化主要受岩浆-变质脱碳作用和硅酸盐风化作用(消耗二氧化碳)控制。因此,地球表层主要构造活动带的构造-岩浆活动对长期碳循环具有重要的驱动作用。本文在总结已发表文献的基础上,系统评估了大陆弧,尤其是晚白垩世大陆弧的岩浆作用和剥蚀作用的碳通量,并以此为依据探讨了大陆弧演化对于全球长期碳循环的影响。大陆弧岩浆作用以周期性(几十万年至一百百万年)岩浆爆发(magmatic flare-ups)为特征。在一个周期内,大规模岩浆喷发会导致CO2排放量大幅度增加,促进温室效应。但同时,大规模的岩浆作用又会导致地壳增厚和和地表抬升,从而促进剥蚀作用、提高化学风化通量,进而增加CO2消耗量。对于单个的大陆弧来说,在其演化的不同阶段对于碳循环扮演着不同的角色:演化早期由于岩浆作用起主导作用,表现为净碳源;而在岩浆作用减弱或停止后,由于剥蚀作用的持续进行,表现为净碳汇。因此,从长周期和全球尺度上讲,大陆弧岩浆活动表现的“碳源属性”受到化学风化作...  相似文献   

17.
The abundance of C in carbonaceous and ordinary chondrites decreases exponentially with increasing shock pressure as inferred from the petrologic shock classification of Scott et al. [Scott, E.R.D., Keil, K., Stoffler, D., 1992. Shock metamorphism of carbonaceous chondrites. Geochim. Cosmochim. Acta 56, 4281-4293] and Stoffler et al. [Stoffler, D., Keil, K., Scott, E.R.D., 1991. Shock metamorphism of ordinary chondrites. Geochim. Cosmochim. Acta 55, 3845-3867]. This confirms the experimental results of Tyburczy et al. [Tyburczy, J.A., Frisch, B., Ahrens, T.J., 1986. Shock-induced volatile loss from a carbonaceous chondrite: implications for planetary accretion. Earth Planet. Sci. Lett. 80, 201-207] on shock-induced devolatization of the Murchison meteorite showing that carbonaceous chondrites appear to be completely devolatilized at impact velocities greater than 2 km s-1. Both of these results suggest that C incorporation would have been most efficient in the early stages of accretion, and that the primordial C content of the Earth was between 10(24) and 10(25) g C (1-10% efficiency of incorporation). This estimate agrees well with the value of 3-7 x 10(24) g C based on the atmospheric abundance of 36Ar and the chondritic C/36Ar (Marty and Jambon, 1987). Several observations suggest that C likely was incorporated into the Earth's core during accretion. (1) Graphite and carbides are commonly present in iron meteorites, and those iron meteorites with Widmanstatten patterns reflecting the slowest cooling rates (mostly Group I and IIIb) contain the highest C abundances. The C abundance-cooling rate correlation is consistent with dissolution of C into Fe-Ni liquids that segregated to form the cores of the iron meteorite parent bodies. (2) The carbon isotopic composition of graphite in iron meteorites exhibits a uniform value of -5% [Deines, P., Wickman, F.E. 1973. The isotopic composition of 'graphitic' carbon from iron meteorites and some remarks on the troilitic sulfur of iron meteorites. Geochim. Cosmochim. Acta 37, 1295-1319; Deines, P., Wickman, F.E., 1975. A contribution to the stable carbon isotope geochemistry of iron meteorites. Geochim. Cosmochim. Acta 39, 547-557] identical to the mode in the distribution found in diamonds, carbonatites and oceanic basalts [Mattey, D.P., 1987. Carbon isotopes in the mantle. Terra Cognita 7, 31-37]. (3) The room pressure solubility of C in molten iron is 4.3 wt% C. Phase equilibria confirm that the Fe-C eutectic persists to 12 GPa, and thermochemical calculations for the Fe-C-S system by Wood [Wood, B.J., 1993. Carbon in the core. Earth Planet. Sci. Lett. 117, 593-607] predict that C is soluble in Fe liquids at core pressures. The abundance of 36Ar in chondrites decreases exponentially with increasing shock pressure as observed for C. It is well known that noble gases are positively correlated and physically associated with C in meteorites [e.g. Otting, W., Zahringer J., 1967. Total carbon content and primordial rare gases in chondrites. Geochim. Cosmochim. Acta 31, 1949-1960; Reynolds, J.H., Frick, U., Niel, J.M., Phinney, D.L., 1978. Rare-gas-rich separates from carbonaceous chondrites. Geochim. Cosmochim. Acta, 42, 1775-1797]. This suggests a mechanism by which primordial He and other noble gases may have incorporated into the Earth during accretion. The abundance of He in the primordial Earth required to sustain the modern He flux for 4 Ga (assuming a planetary 3 He/4 He; Reynolds et al. [Reynolds, J.H., Frick, U., Niel, J.M., Phinney, D.L., 1978. Rare-gas-rich separates from carbonaceous chondrites. Geochim. Cosmochim. Acta 42, 1775-1797] is calculated to be > or = 10(-8) cm3 g-1. This minimum estimate is consistent with a 1-10% efficiency of noble gas retention during accretion and the observed abundance of He in carbonaceous chondrites (10(-5) to 10(-4) cm3 g-1 excluding spallogenic contributions).  相似文献   

18.
The carbon isotopic ratios obtained from Athabasca bitumen, asphaltene and maltene have the same value δ13C = ?29.6 per ml. The corresponding values in the Cold Lake deposits are ?30.6, ?30.0 and ?31.6 per ml. The ratios determined for methane collected from the oil sand and its fractions are about 15 per ml lower than the above values. It appears that the Athabasca and Cold Lake Reservoirs have similar histories.  相似文献   

19.
Measurements of the C12C13 ratio on two generations of calcite and the matrix from a single specimen are given and discussed. This ratio has also been determined for four examples of graphite and limestone occurring together. The formation of the graphite is briefly discussed in relation to the C12C13 ratios.  相似文献   

20.
桂江流域岩溶碳汇特征   总被引:5,自引:2,他引:3  
为研究岩溶区碳汇动态变化特征,使用德国Merck公司生产的碱度计每月定期对桂江流域14个岩溶大泉和16条地下河出口水中HCO3-含量进行了现场测定。结果表明桂江流域枯水期(11月至次年2月)地下水中HCO3-含量平均为223.62mg/L,平水期(3月、9月)为222.11mg/L,丰水期(4月至8月)为210.19mg/L,枯水期和平水期的HCO3-平均含量比丰水期高13.43mg/L和11.92mg/L。尽管丰水期的HCO3-平均含量不及枯水期和平水期,但其平均流量最大,是平水期的2倍,枯水期的2.8倍,因此其岩溶碳汇量也最大,是平水期的4.7倍,是枯水期的2.7倍。在碳汇构成上,丰水期的岩溶碳汇量占年总碳汇量的63.13%,而平水期和枯水期只分别占年总碳汇量的13.35%和23.51%。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号