首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solute transport experiments using a non-reactive tracer were conducted on short, undisturbed, saturated columns of a sandy loam soil. All columns, 20 cm in diameter and 20 cm long, were collected along a transect of 35 m. Most of the soil columns had pre-existing macropores. The columns were leached at a steady flow-rate under ponding conditions. The resulting breakthrough curves (BTCs) showed a large heterogeneity. Several of the BTCs displayed early breakthrough and long tailing. All the data were interpreted in terms of dimensional time moments, the classical convection-dispersion equation (CDE) and the mobile-immobile transport model (MIM). Experimental time moments were found to vary significantly among the different BTCs. Analysis of the time moments also revealed that the variance of the field-scale BTC was several times larger than the average of the local-scale variance. The pore water velocity v and dispersion coefficient D were obtained by fitting the CDE to the local-scale BTCs, resulting in an average dispersivity of 7·4 cm. Frequency distributions for the CDE parameters v and D were equally well described by a normal or log-normal probability density function (pdf). When a log-normal pdf for D is considered, the variance of the loge transformed D values (σln D2) was found to be 2·1. For the MIM model, two additional parameters were fitted: the fraction of mobile water, θm/θ, and the first-order mass transfer coefficient, α. The MIM was more successful in describing the data than the CDE transport model. For the MIM model, the average dispersivity was about 2 cm. The MIM parameters v, D and θm/θ were best described by a log-normal pdf rather than a normal pdf. Only the parameter α was better described by a normal pdf. Mobile water fractions, θm/θ ranged from 0·01 to 0·98, with a mean of 0·43 (based on a log-normal pdf). When the CDE and MIM were applied to the data, the fitted pore water velocities, v, compared favourably with the effective pore water velocities, veff, obtained from moment analysis.  相似文献   

2.
3.
B. Lennartz  S. K. Kamra 《水文研究》1998,12(12):1939-1949
The heterogeneity of the solute flux field in the horizontal plane at the field scale has been documented in several field studies. On the other hand, little information is available on the persistence of certain solute transport scenarios over consecutive infiltration cycles. This study was initiated to analyse the recurrence of solute leaching behaviour as estimated in two soil column tests emphasizing the preferential flow phenomenon. Twenty-four small-sized soil samples were subjected to two consecutive unsaturated steady-state flow leaching experiments with bromide as tracer. Observed breakthrough curves (BTCs) were analysed by the method of moments and by the advection–dispersion equation (ADE) to classify solute behaviour. Frequency distributions of the parameters indicating the solute velocity were heavily skewed or bimodal, reflecting the broad variability of the leaching scenarios, including some with pronounced preferential solute breakthrough. Exclusion of the preferential flow columns from our calculations revealed an average amount of 37% of immobile water. The large-scale BTCs derived from assembling the individual concentration courses of each run showed similar features, such as an early bromide breakthrough. However, two distinct apices, viz. one preferential and one matrix, were observed only in the first run, whereas the concentration decrease between the peaks was missing from the second run. A change in soil structure with continuous leaching was presumed to modify the interplay of the various flow domains, thereby altering the spreading of the BTCs. Correlation analysis between parameters of both tests suggests that preferential transport conditions are likely to occur at the same locations in the field over several infiltration cycles, whereas the ‘classical’ or expected matrix flow is time variant and therefore seems to be hardly predictable. © 1998 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents a novel platform to study the dampening of water and solute transport in an experimental channel under unsteady flow conditions, where literature data are scarce. We address the question about what could be the smallest size of experimental platform that is useful for research, project studies, and teaching activities and that allows to do rational experiments characterized by small space occupation, short experimental duration, high measurement precision, high quality and reproducible experimental curves, low water and energy consumption, and the possibility to test a large variety of hydrograph scenarios. Whereas large scale hydraulic laboratories have focused their studies on sediment transport, our platform deals with solute transport. The objectives of our study are (a) building a platform that allows to do rational experiments, (b) enriching the lack of experimental data concerning water and solute transport under unsteady state conditions, and (c) studying the dampening of water and solute transport. We studied solute transport in a channel with lateral gain and lateral loss under different experimental configurations, and we show how the same lateral loss flow event can lead to different lateral loss mass repartitions under different configurations. In order to characterize water and solute dampening between the input and the output of the channel, we calculate dampening ratios based on peak coordinates of time flow curves and time mass curves and that express the decrease of peak amplitude and the increase of peak occurrence time between the input and output curves. Finally, we use a solute transport model coupling the diffusive wave equation for water transfer and the advection–diffusion equation for solute transport in order to simulate the experimental data. The simulations are quite good with a Nash–Sutcliffe efficiency NSE > 0.98 for water transfer and 0.84 < NSE < 0.97 for solute transport. This platform could serve hydrological modellers because it offers a variety of measured parameters (flow, water height, and solute concentration), at a fine time step under unsteady flow conditions.  相似文献   

5.
Runoff generation and soil loss from slopes have been studied for decades, but the relationships among runoff, soil loss and rill development are still not well understood. In this paper, rainfall simulation experiments were conducted in two neighbouring plots (scale: 1 m by 5 m) with four varying slopes (17.6%, 26.8%, 36.4% and 46.6%) and two rainfall intensities (90 and 120 mm h?1) using two loess soils. Data on rill development were extracted from the digital elevation models by means of photogrammetry. The effects of rainfall intensity and slope gradient on runoff, soil loss and rill development were different for the two soils. The runoff and soil loss from the Anthrosol surface were generally higher than those from the Calcaric Cambisol surface. Higher rainfall intensity produced less runoff and more sediment for almost each treatment. With increasing slope gradient, the values of cumulative runoff and soil loss peaked, except for the treatments with 90 mm h?1 rainfall on the slopes with Anthrosol. With rainfall duration, runoff discharge decreased for Anthrosol and increased for Calcaric Cambisol for almost all the treatments. For both soils, sediment concentration was very high at the onset of rainfall and decreased quickly. Almost all the sediment concentrations increased on the 17.6% and 26.8% slopes and peaked on the 36.4% and 46.6% slopes. Sediment concentrations were higher on the Anthrosol slopes than on the Calcaric Cambisol slopes. At 90 mm h?1 rainfall intensity, increasingly denser rills appeared on the Anthrosol slope as the slope gradient increased, while only steep slopes (36.4% and 46.6%) developed rills for the Calcaric Cambisol soil. The contributions of rill erosion ranged from 36% to 62% of the cumulative soil losses for Anthrosol, while the maximum contribution of rill erosion to the cumulative soil loss was only 37.9% for Calcaric Cambisol. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Sediment transport capacity, Tc, defined as the maximum amount of sediment that a flow can carry, is the basic concept in determining detachment and deposition processes in current process-based erosion models. Although defined conceptually and used extensively in modelling erosion, Tc was rarely measured. Recently, a series of laboratory studies designed to quantify effects of surface hydrologic conditions on erosion processes produced data sets feasible to evaluate the concept of Tc. A dual-box system, consisting of 1·8 m long sediment feeder box and a 5 m long test box, was used. Depending on the relative magnitudes of sediment delivery from feeder and test boxes, five scenarios are proposed ranging from deposition-dominated to transport-dominated sediment regimes. Results showed that at 5 per cent slope under seepage or 10 per cent slope under drainage conditions, the runoff from the feeder box caused in the additional sediment transport in the test box, indicating a transport-dominated sediment regime. At 5 per cent slope under drainage conditions, deposition occurred at low rainfall intensities. Increases in slope steepness, rainfall intensity and soil erodibility shifted the dominant erosion process from deposition to transport. Erosion process concepts from the Meyer–Wishmeier, Foster–Meyer and Rose models were compared with the experimental data, and the Rose model was found to best describe processes occurring during rain. A process-based erosion model needs to have components that can represent surface conditions and physical processes and their dynamic interactions. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
Several studies illustrate the wind and water erosion‐reducing potential of semi‐permanent microbiotic soil crusts in arid and semi‐arid desert environments. In contrast, little is hitherto known on these biological crusts on cropland soils in temperate environments where they are annually destroyed by tillage and quickly regenerate thereafter. This study attempts to fill the research gap through (a) a field survey assessing the occurrence of biological soil crusts on loess‐derived soils in central Belgium in space and time and (b) laboratory flume (2 m long) experiments simulating concentrated runoff on undisturbed topsoil samples (0.4 × 0.1 m2) quantifying the microbiotic crust effect on soil erosion rates. Three stages of microbiotic crust development on cropland soils are distinguished: (1) development of a non‐biological surface seal by raindrop impact, (2) colonization of the soil by algae and gradual development of a continuous algal mat and (3) establishment of a well‐developed microbiotic crust with moss plants as the dominant life‐form. As the silt loam soils in the study area seal quickly after tillage, microbiotic soil crusts are more or less present during a large part of the year under maize, sugar beet and wheat, representing the main cropland area. On average, the early‐successional algae‐dominated crusts of stage 2 reduce soil detachment rates by 37%, whereas the well‐developed moss mat of stage 3 causes an average reduction of 79%. Relative soil detachment rates of soil surfaces with microbiotic crusts compared with bare sealed soil surfaces are shown to decrease exponentially with increasing microbiotic cover (b = 0·024 for moss‐dominated and b = 0·006 for algae‐dominated crusts). In addition to ground surface cover by vegetation and crop residues, microbiotic crust occurrence can therefore not be neglected when modelling small‐scale spatial and temporal variations in soil loss by concentrated flow erosion on cropland soils in temperate environments. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Resource extraction and transportation activities in subarctic Canada can result in the unintentional release of contaminants into the surrounding peatlands. In the event of a release, a thorough understanding of solute transport within the saturated zone is necessary to predict plume fate and the potential impacts on peatland ecosystems. To better characterize contaminant transport in these systems, approximately 13,000 L/day of sodium chloride tracer (200 mg/L) was released into a bog in the James Bay Lowland. The tracer was pumped into a fully penetrating well (1.5 m) between July 5 and August 18, 2015. Horizontal and vertical plume development was measured via in situ specific conductance and water table depth from an adaptive monitoring network. Over the spill period, the bulk of the plume travelled a lateral distance of 100 m in the direction of the slight regional groundwater and topographical slope. The plume shape was irregular and followed the hollows, indicating preferential flow paths due to the site microtopography. Saturated transport of the tracer occurred primarily at ~25 cm below ground surface (bgs), and at a discontinuous high hydraulic conductivity layer ~125 cm bgs due to a complex and heterogeneous vertical hydraulic conductivity profile. Plume measurement was confounded by a large amount of precipitation (233 mm over the study period) that temporarily diluted the tracer in the highly conductive upper peat layer. Longitudinal solute advection can be approximated using local water table information (i.e., depth and gradient); microtopography; and meteorological conditions. Vertical distribution of solute within the peat profile is far more complex due to the heterogeneous subsurface; characterization would be aided by a detailed understanding of the site‐specific peat profile; the degree of decomposition; and the type of contaminant (e.g., reactive/nonreactive). The results of this research highlight the difficulty of tracking a contaminant spill in bogs and provide a benchmark for the characterization of the short‐term fate of a plume in these complex systems.  相似文献   

9.
Understanding the dynamics and mechanisms of soil water movement and solute transport is essential for accurately estimating recharge rates and evaluating the impacts of agricultural activities on groundwater resources. In a thick vadose zone (0–15 m) under irrigated cropland in the piedmont region of the North China Plain, soil water content, matric potential, and solute concentrations were measured. Based on these data, the dynamics of soil water and solutes were analysed to investigate the mechanisms of soil water and solute transport. The study showed that the 0–15‐m vadose zone can be divided into three layers: an infiltration and evaporation layer (0–2 m), an unsteady infiltration layer (2–6 m), and a quasi‐steady infiltration layer (6–15 m). The chloride, nitrate, and sulphate concentrations all showed greater variations in the upper soil layer (0–1 m) compared to values in the deep vadose zone (below 2 m). The average concentrations of these three anions in the deep vadose zone varied insignificantly with depth and approached values of 125, 242, and 116 mg/L. The accumulated chloride, sulphate, and nitrate were 2,179 ± 113, 1,760 ± 383, and 4,074 ± 421 kg/ha, respectively. The soil water potential and solute concentrations indicated that uniform flow and preferential flow both occurred in the deep vadose zone, and uniform flow was the dominant mechanism of soil water movement in this study. The piston‐like flow velocity of solute transport was 1.14 m per year, and the average value of calculated leached nitrate nitrogen was 107 kg/ha?year below the root zone. The results can be used to better understand recharge processes and improve groundwater resources management.  相似文献   

10.
On the basis of detailed rill surveys carried out on bare plots of different lengths at slopes of 12 per cent, basic rill parameters were derived. Rill width and maximum depth increased with plot length, whereas rill amount and cross‐sectional area, expressed per unit length, remained similar. On smaller plots, all rills were connected in a continuous transport system reaching the plot outlet, whilst on larger plots (10 and 20 m long) part of the rills ended with a deposition areas inside the plots. Amounts of erosion, calculated from rill volume and soil bulk density, were compared with soil loss measured at the plot outlets. On plots 10 and 20 m long, erosion estimated from volume of all rills was larger than measured soil loss. The latter was larger than erosion estimated from volume of contributing rills. To identify contributing soil loss area on these plots, two methods were applied: (i) ratio of total soil loss to maximum soil loss per unit area, and (ii) partition of plot area according to the ratio of contributing to total rill volume. Both methods resulted in similar areas of 21·8–23·5 m2 for the plot 10 m long and 31·2 m2 for the plot 20 m long. Identification of contributing areas enabled rill (5·9 kg m?2) and interrill (2·6 kg m?2) erosion rate to be calculated, the latter being very close to the value predicted from the Universal Soil Loss Equation. Although rill and interrill rates seemed to be similar on all plots, their ratio increased slightly with plot length. Application of this ratio to compute slope length factor of the Revised Universal Soil Loss Equation resulted in similar values to those predicted with the model. The achieved balance of soil loss suggested that all the sediment measured at the plot outlet originated from contributing rills and associated contributing rill areas. The results confirmed the utility of different plot lengths as a research tool for analysing the dynamic response of soil to rainfall–runoff. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Solute transport in undisturbed soil is a complex process and detailed information on the transport characteristics is needed to provide fundamental understanding of the processes involved. X‐ray computer tomography (CT) and electrical resistivity tomography (ERT) have been used to gain information on the transport characteristics. Both methods are non‐intrusive and do not disturb the soil, in contrast to other methods. CT provides high resolution information on bulk density and macropores, while ERT provides a three‐dimensional image of the internal resistivity structure. By adding a suitable solute under steady‐state flow, the internal resistivity changes can be interpreted as a change in resident concentrations. In our experiment two cores from different field sites were investigated. The ERT measurements revealed two transport modes (one fast and one slow) in one of the cores and only one mode in the other. This was consistent with the results of transfer function modelling on the independently measured breakthrough curves (BTCs). The fast transport mode is perhaps a result of many connected macropores, detected by CT, but this could not be verified with the ERT measurements because of the coarser resolution. However, with ERT in both cases we were able to explain the observed BTC qualitatively. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
Heterogeneous water flow and solute transport in soils are an important phenomenon and difficult to be characterized. The objectives of this study were to investigate the heterogeneity of solute transport related to heterogeneous soil water flow using dye infiltration experiments, and to characterize heterogeneous water flow and solute transport in soils using the information theory. Field experiments of dye infiltration were performed in four plots. Various information measures were applied to characterize information content and complexity of water flow and solute transport in soils. Information contents and complexities of the maximum and apparent infiltration depths, and the mean and standard deviation of concentrations in the vertical direction of the plots were calculated. More heterogeneous processes of soil water flow and transport result in higher information/complexity values. The probability distributions of mean concentration were similar to those of the corresponding apparent infiltration depths for the plots, indicating that heterogeneity of dye concentrations was closely related to that of soil water flow. However, the range of information entropy and complexity of the water flow sequences was much narrower than that of the sequences of the concentrations. The results suggested that the transport processes were more heterogeneous than the water flow processes. Compared with the probability distributions of flow parameters, the information measures appeared to be a more versatile tool to describe flow and transport heterogeneities in soils.  相似文献   

13.
Hydrological models have long been used to study the interactions between land, surface and groundwater systems, and to predict and manage water quantity and quality. The soil and water assessment tool (SWAT), a widely used hydrological model, can simulate various ecohydrological processes on land and subsequently route the water quality constituents through surface and subsurface waters. So far, in-stream solute transport algorithms of the SWAT model have only been minimally revised, even though it has been acknowledged that an improvement of in-stream process representation can contribute to better model performance with respect to water quality. In this study, we aim to incorporate a new and improved solute transport model into the SWAT model framework. The new process-based model was developed using in-stream process equations from two well established models—the One-dimensional Transport with Inflow and Storage model and the Enhanced Stream Water Quality Model. The modified SWAT model (Mir-SWAT) was tested for water quality predictions in a study watershed in Germany. Compared to the standard SWAT model, Mir-SWAT improved dissolved oxygen (DO) predictions by removing extreme low values of DO (<6 mg/L) simulated by SWAT. Phosphate concentration peaks were reduced during high flows and a better match of daily predicted and measured values was attained using the Mir-SWAT model (R2 = 0.17, NSE = −0.65, RSR = 1.29 with SWAT; R2 = 0.28, NSE = −0.04, RSR = 1.02 with Mir-SWAT). In addition, Mir-SWAT performed better than the SWAT model in terms of Chlorophyll-a content particularly during winter months, improving the NSE and RSR for monthly average Chl-a by 74 and 42%, respectively. With the new model improvements, we aim to increase confidence in the stream solute transport component of the model, improve the understanding of nutrient dynamics in the stream, and to extend the applicability of SWAT for reach-scale analysis and management.  相似文献   

14.
Stone covers on loessial slopes can increase the time of infiltration by slowing the velocity of the overland flow, which reduces the transport of solutes, but few mechanistic models have been tested under water‐scouring conditions. We carried out field experiments to test a previously proposed, physically based model of water and solute transport. The area of soil infiltration was calculated from the uncovered surface area, and Richards' equation and the kinematic wave equation were used to describe water infiltration and flow along slopes with stone covers. The transport of chemicals into the run‐off from the surface soil, presumably by diffusion, and their movement in the soil profile could be described by the convection–diffusion equations of the model. The simulated and measured data correlated well. The stones on the soil surface reduced the area available for infiltration but increased the Manning coefficient, eventually leading to increased water infiltration and decreased solute loss with run‐off. Our results indicated that the traditional model of water movement and solute migration could be used to simulate water transport and solute migration for stone‐covered soil on loessial slopes.  相似文献   

15.
A database composed of 673 natural rainfall events with sediment concentration measurements at the field or plot scale was analysed. Measurements were conducted on similar soil type (loess soils prone to sealing phenomenon) to apprehend the variability and complexity involved in interrill erosion processes attributable to soil surface conditions. The effects of the dominant controlling factors are not described by means of equations; rather, we established a classification of potential sediment concentration domain according to combination of the dominant parameters. Thereby, significant differences and evolution trends of mean sediment concentration between the different parameter categories are identified. Further, when parameter influences interact, it allows us to discern the relative effects of factors according to their respective degree of expression. It was shown that crop cover had a major influence on mean sediment concentration, particularly when soil surface roughness is low and when maximum 6‐min intensity of rainfall events exceeds 10 mm h?1: mean sediment concentration decreases from 8·93 g l?1 for 0–20 per cent of coverage to 0·97 g l?1 for 21–60 per cent of coverage. The established classification also indicates that the increase of the maximum 6‐min intensity of the rainfall factor leads to a linear increase of mean sediment concentration for crop cover over 21 per cent (e.g. from 2·96 g l?1 to 14·44 g l?1 for the 1–5 cm roughness class) and to an exponential increase for low crop cover (e.g. from 3·92 g l?1 to 58·76 g l?1 for the 1–5 cm roughness class). The implication of this work may bring perspective for erosion prediction modelling and give references for the development of interrill erosion equation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
A total of 15 rainfall simulation experiments were conducted in a 1 m by 2 m box varying slope (10, 20, 30%) and rainfall intensity (60, 90, 120 mm h?1). The experiments were performed to study how rill networks initiate and evolve over time under controlled conditions with regard to the treatment variables considered, and to allow for input in a computer simulation model. Runoff and sediment yield samples were collected. Digital elevation models were calculated by means of photogrammetry for several time steps of most experiments. The soil used in the experiments was a basal till derived Cambisol typical for the Swiss Plateau. While significant differences were found for sediment yield, runoff did not vary significantly with treatment combinations. Increasing rainfall intensity had a larger effect on sediment yield than increasing slope. Rill density and energy expenditure decreased with time, suggesting that energy expenditure was a useful parameter to describe the emergence of rill network at the laboratory scale. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
A new method is presented for predicting sediment sorting associated with soil erosion by raindrop impact for non-equilibrium conditions. The form of soil erosion considered is that which results from raindrop impact in the presence of shallow overland flow itself where the flow is not capable of eroding sediment. The method specifically considers early time runoff and erosion when sediment leaving an eroding area is generally finer and thus may have a higher potential for transport of sorbed pollutants. The new mechanism described is the formation of a deposited layer on the soil surface, which is shown to lead to sediment sorting during an erosion event. The deposited layer is taken to have two roles in this process: to temporarily store sediment on the surface between successive trajectories, and to shield the underlying soil from erosive stresses. Equations describing the dynamics of the suspended sediment mixture and the deposited layer are developed. By integrating these equations over the length of eroding land element and over the duration of the erosion event, an event-based solution is proposed which predicts total sediment sorting over the event. This solution is shown to be consistent with experimentally observed trends in enrichment of fine sediment. Predictions using this approach are found to only partly explain measured enrichment for sets of experimental data for two quite different soils, but to be in poor agreement for an aridsol of dispersive character. It is concluded that the formation of the deposited layer is a significant mechanism in the enrichment of fine sediment and associated sorbed pollutants, but that processes in the dispersive soil are not as well described by the theory presented.  相似文献   

18.
Watershed structure influences the timing, magnitude, and spatial location of water and solute entry to stream networks. In turn, stream reach transport velocities and stream network geometry (travel distances) further influence the timing of export from watersheds. Here, we examine how watershed and stream network organization can affect travel times of water from delivery to the stream network to arrival at the watershed outlet. We analysed watershed structure and network geometry and quantified the relationship between stream discharge and solute velocity across six study watersheds (11.4 to 62.8 km2) located in the Sawtooth Mountains of central Idaho, USA. Based on these analyses, we developed stream network travel time functions for each watershed. We found that watershed structure, stream network geometry, and the variable magnitude of inputs across the network can have a pronounced affect on water travel distances and velocities within a stream network. Accordingly, a sample taken at the watershed outlet is composed of water and solutes sourced from across the watershed that experienced a range of travel times in the stream network. We suggest that understanding and quantifying stream network travel time distributions are valuable for deconvolving signals observed at watershed outlets into their spatial and temporal sources, and separating terrestrial and in‐channel hydrological, biogeochemical, and ecological influences on in‐stream observations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Plant litter can either cover on soil surface or be incorporated into top-soil layer in natural ecosystems. Their effects on infiltration and soil erosion are likely quite different. This study was performed to compare the effects of litter covering on soil surface and being incorporated into top-soil layer on infiltration and soil erosion under simulated rainfall. Four litter types (needle-leaf, broad-leaf, brush, and herb) were collected from fields and applied to cover on soil surface or to be incorporated into top-soil layer (5 cm) at the same rate (0.2 kg/m2). The simulated rainfalls (40 and 80 mm/hr) were run at two slope angles (10° and 20°). The results showed that the mean infiltration rate of litter covering treatment was 1.4 times as great as that of litter incorporated. Litter covering enhanced infiltration via protecting surface from soil sealing. Whereas, litter incorporation affected infiltration by its water repellency. Soil erosion of litter incorporated treatment was 5.4 times as large as that of litter covered treatment, which was attributed to the changes in surface litter coverage and soil erosion resistance. Litter type affected soil erosion through the variations in litter coverage and litter morphology. For litter covering treatment, litter coverage can explain the major variance of soil loss on the slopes. Whereas, for litter incorporated treatment, both the influences of litter coverage and litter length on soil erosion resistance were considered necessary to well explain the variance of soil loss. The results also showed that the benefits of litter to control soil erosion declined with rainfall intensity and slope gradient for both covering and incorporated treatments. The results of this study are helpful to understand the mechanisms of litter influencing hydrological and erosion processes on hillslopes.  相似文献   

20.
Modelling soil erosion requires an equation for predicting the sediment transport capacity by interrill overland flow on rough surfaces. The conventional practice of partitioning total shear stress into grain and form shear stress and predicting transport capacity using grain shear stress lacks rigour and is prone to underestimation. This study therefore explores the possibility that inasmuch as surface roughness affects flow hydraulic variables which, in turn, determine transport capacity, there may be one or more hydraulic variables which capture the effect of surface roughness on transport capacity suffciently well for good predictions of transport capacity to be achieved from data on these variables alone. To investigate this possibility, regression analyses were performed on data from 1506 flume experiments in which discharge, slope, water temperature, rainfall intensity, and roughness size, shape and concentration were varied. The analyses reveal that 89·8 per cent of the variance in transport capacity can be accounted for by excess flow power and flow depth. Including roughness size and concentration in the regression improves that explained variance by only 3·5 per cent. Evidently, flow depth, when used in combination with excess flow power, largely captures the effect of surface roughness on transport capacity. This finding promises to simplify greatly the task of developing a general sediment equation for interrill overland flow on rough surfaces. Copyright © 1998 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号