首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subsurface tile drainage speeds water removal from agricultural fields that are historically prone to flooding. While managed drainage systems improve crop yields, they can also contribute tothe eutrophication of downstream ecosystems, as tile-drained systems are conduits for nutrients to adjacent waterways. The changing climate of the Midwestern US has already altered precipitation regimes which will likely continue into the future, with unknown effects on tile drain water and nutrient loss to waterways. Adding vegetative cover (i.e., as winter cover crops) is one approach that can retain water and nutrients on fields to minimize export via tile drains. In the current study, we evaluate the effect of cover crops on tile drain discharge and soluble reactive phosphorus (SRP) loads using bi-monthly measurements from 43 unique tile outlets draining fields with or without cover crops in two watersheds in northern Indiana. Using four water years of data (n = 844 measurements), we examined the role of short-term antecedent precipitation conditions and variation in soil biogeochemistry in mediating the effect of cover crops on tile drain flow and SRP loads. We observed significant effects of cover crops on both tile drain discharge and SRP loads, but these results were season and watershed specific. Cover crop effects were identified only in spring, where their presence reduced tile drain discharge in both watersheds and SRP loads in one watershed. Varying effects on SRP loads between watersheds were attributed to different soil biogeochemical characteristics, where soils with lower bioavailable P and higher P sorption capacity were less likely to have a cover crop effect. Antecedent precipitation was important in spring, and cover crop differences were still evident during periods of wet and dry antecedent precipitation conditions. Overall, we show that cover crops have the potential to significantly decrease spring tile drain P export, and these effects are resilient to a wide range of precipitation conditions.  相似文献   

2.
Flow from artificial subsurface (tile) drainage systems may be contributing to increasing baseflow in Midwestern rivers and increased losses of nitrate‐nitrogen. Standard hydrograph analysis techniques were applied to model simulation output and field monitoring from tile‐drained landscapes to explore how flow from drainage tiles affects stream baseflow and streamflow recession characteristics. DRAINMOD was used to simulate hydrologic response from drained (24 m tile spacing) and undrained agricultural systems. Hydrograph analysis was conducted using programs PART and RECESS. Field monitoring data were obtained from several monitoring sites in Iowa typical of heavily drained and less‐drained regions. Results indicate that flow from tile drainage primarily affects the baseflow portion of a hydrograph, increasing annual baseflow in streams with seasonal increases primarily occurring in the late spring and early summer months. Master recession curves from tile‐drained watersheds appear to be more linear than less‐tiled watersheds although comparative results of the recession index k were inconsistent. Considering the magnitude of non‐point source pollutant loads coming from tile‐drained landscapes, it is critical that more in‐depth research and analysis be done to assess the effects of tile drainage on watershed hydrology if water quality solutions are to be properly evaluated. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Water quality problems are frequently influenced by hydrological processes, particularly in landscapes in which land drainage has been modified. The expansion of agricultural tile drainage in the Northern Great Plains of North America is occurring, yet is controversial due to persistent water quality problems such as eutrophication. Runoff‐generating mechanisms in North American tile‐drained landscapes in vertisolic soils have not been investigated but are important for understanding the impacts of tile drainage on water quantity and quality. This study evaluated the role of climate drivers on the activation of overland (OF) and tile (TF) flow and groundwater flow responses (GWT) on tile‐drained and nontile‐drained farm fields in Southern Manitoba, Canada. The response times of different flow paths (OF, TF, and GWT) were compared for 23 hydrological events (April–September 2015, 2016) to infer dominant runoff generation processes. Runoff responses (all pathways) were more rapid following higher intensity rainfall. Subsurface responses were hastened by wetter antecedent conditions in spring and delayed by the seasonal soil–ice layer. The activation of OF did not differ between the tiled and nontiled fields, suggesting that tile drains do little to reduce the occurrence of OF in this landscape. Rapid vertical preferential flow into tiles via preferential flow pathways was uncommon at our site, and the soil profile instead wet up from the top down. These conclusions have implications for the expansion of tile drainage and the impact of such an expansion on hydrological and biogeochemical processes in agricultural landscapes.  相似文献   

4.
Frequent algal blooms in surface water bodies caused by nutrient loading from agricultural lands are an ongoing problem in many regions globally. Tile drains beneath poorly and imperfectly drained agricultural soils have been identified as key pathways for phosphorus (P) transport. Two tile drains in an agricultural field with sandy loam soil in southern Ontario, Canada were monitored over a 28‐month period to quantify discharge and the concentrations and loads of dissolved reactive P (DRP) and total P (TP) in their effluent. This paper characterizes seasonal differences in runoff generation and P export in tile drain effluent and relates hydrologic and biogeochemical responses to precipitation inputs and antecedent soil moisture conditions. The generation of runoff in tile drains was only observed above a clear threshold soil moisture content (~0.49 m3·m?3 in the top 10 cm of the soil; above field capacity and close to saturation), indicating that tile discharge responses to precipitation inputs were governed by the available soil‐water storage capacity of the soil. Soil moisture content approached this threshold throughout the non‐growing season (October – April), leading to runoff responses to most events. Concentrations of P in effluent were variable throughout the study but were not correlated with discharge (p > 0.05). However, there were significant relationships between discharge volume (mm) and DRP and TP loads (kg ha?1) for events occurring over the study period (R2 ≥ 0.49, p ≤ 0.001). This research has shown that the hydrologic and biogeochemical responses of tile drains in a sandy loam soil can be predicted to within an order of magnitude from simple hydrometric data such as precipitation and soil moisture once baseline conditions at a site have been determined. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
This paper uses a variety of multivariate statistical techniques in order to improve current understanding of the antecedent and rainfall controls on drainage characteristics for an agricultural underdrained clay site. Using the dataset obtained from a two‐year hillslope study at Wytham (Oxfordshire, UK) a number of patterns in the nature and style of drainage events were explored. First, using principal components analysis, a distinction was drawn between drainflow controlled by antecedent conditions and drainflow controlled by rainfall characteristics. Dimensional analysis then distinguished between two further types of drainflow event: antecedent limited events (ALE) and non‐antecedent limited events (NALE). These were drainflow events requiring a minimum antecedent hydraulic head to occur (ALE) and events that occurred in response to rainfall irrespective of the antecedent conditions, because the rainfall was either of high enough intensity or duration to prompt a response in drainflow (NALE). 2. The dataset also made possible a preliminary investigation into the controls on and types of macropore flow at the site. Principal components analysis identified that rainfall characteristics were more important than antecedent conditions in generating high proportions of macropore flow in drainflow. Of the rainfall characteristics studied, rainfall amount and intensity were the dominant controls on the amount of macropore flow, with duration as a secondary control. Two styles of macropore flow were identified: intensity‐driven and duration‐driven. Intensity‐driven events are characterized by rainfall of high intensity and short duration. During such events the amount of macropore flow is proportional to the rainfall intensity and the interaction between macropore and matrix flow is kinetically limited. The second style of macropore flow is characterized by long‐duration events. For these events the amount of macropore flow approaches a maximum value whatever the rainfall duration. This suggests that these events are characterized by an equilibrium interaction between macropores and matrix flow. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
Tile‐drain response to rainfall events is determined by unsaturated vertical flow to the water table, followed by horizontal saturated water movement. In this study, unsaturated vertical movement from the redistribution of water is modelled using a sharp‐front approximation, and the saturated horizontal flow is modelled by an approximate solution to the Boussinesq equation. The unsaturated flow component models the fast response that is associated with the presence of preferential flow paths. By convoluting the responses of the two components, a transfer function is developed that predicts tile‐drain response to unit amounts of infiltrated water. It is observed that the unsaturated flow component can be cast in a form that is linear in a power function of the infiltrated depth. Since the approach is process based, model parameter definitions are easily identified with soil properties at the field scale. Furthermore, it is demonstrated that the transfer function model parameters can be estimated from moment analysis. Using superposition, the transient tile‐drain response to arbitrary amounts of infiltrated water can be constructed. Comparison with data measured from the Water Quality Field Station show that this approach provides a promising method for generating tile‐drain response to rainfall events. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
This study analysed the importance of precipitation events from May 2003 to April 2004 on surface water chemistry and solute export from a 696 ha glaciated forested watershed in western New York State, USA. The specific objectives of the study were to determine: (a) the temporal patterns of solutes within individual storm events; (b) the impact of precipitation events on seasonal and annual export budgets; and (c) how solute concentrations and loads varied for precipitation events among seasons as functions of storm intensity and antecedent moisture conditions. Analysis of solute trajectories showed that NH4+, total Al and dissolved organic nitrogen (DON) peaked on the hydrograph rising limb, whereas dissolved organic carbon (DOC) concentrations peaked following the discharge peak. Sulphate and base‐cations displayed a dilution pattern with a minimum around peak discharge. End‐member mixing analysis showed that throughfall contributions were highest on the rising limb, whereas valley‐bottom riparian waters peaked following the discharge peak. The trajectories of NO3? concentrations varied with season, indicating the influence of biotic processes on the generation, and hence flux, of this solute. Storm events had the greatest impact on the annual budgets for NH4+, K+, total dissolved Al, DON and DOC. Storm events during summer had the greatest impact on seasonal solute budgets. Summer events had the highest hourly discharges and high concentrations of solutes. However, NO3? and DOC exports during a spring snowmelt event were considerably more than those observed for large events during other periods of the year. Comparisons among storms showed that season, precipitation amount, and antecedent moisture conditions affected solute concentrations and loads. Concentrations of solutes were elevated for storms that occurred after dry antecedent conditions. Seven of the largest storms accounted for only 15% of the annual discharge, but were responsible for 34%, 19%, 64%, 13%, 39% and 24% of the annual exports of NH4+, K+, Al, NO3?, DON and DOC respectively. These results suggest that the intense and infrequent storms predicted for future climate‐change scenarios will likely increase the exports of solutes like DOC, DON, NH4+, Al and K+ from watersheds. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
In response to growing concern about impacts of upland agricultural land management on flood risk, an intensely instrumented experimental catchment has been established at Pontbren, a sheep‐farmed headwater catchment of the River Severn, UK. Primary aims are to develop understanding of the processes governing flood generation and the associated impacts of land management practices, and to bridge the gap between process understanding and ability to predict effects on downstream flooding. To achieve this, the experiment is designed to operate at plot (~100 m2), hillslope (~0·1 km2) and small catchment scale (~10 km2). Hillslope‐scale data, from an under‐drained, agriculturally ‘improved’ pasture, show that drain flow is a dominant runoff process. However, depending on antecedent moisture conditions, overland flow may exceed drain flow rates and can be an important contributor to peak flow runoff at the hillslope‐scale. Flow, soil tension data and tracer tests confirm the importance of macropores and presence of perched water tables under ‘normal’ wet conditions. Comparisons of pasture runoff with that from within a 10 year‐old tree shelterbelt show significantly reduced overland flow due to the presence of trees and/or absence of sheep. Comparisons of soil hydraulic properties show significant increases in hydraulic conductivity and saturated moisture content of soil under trees compared to adjacent improved pasture. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Agricultural zones are significant sediment sources, but it is crucial to identify critical source areas (CSAs) of sediment yield within these zones where best management practices (BMPs) can be applied to the best effect in reducing sediment delivery to receiving water bodies rather than the economically nonviable alternative of randomly or sweepingly implementing BMPs. A storm event of a specific magnitude and hyetograph profile may, at different times, generate a greater or lesser sediment yield. The widely used agricultural nonpoint source (AGNPS) model was used to identify CSAs for sediment losses in Southwestern Ontario's agriculture‐dominated 374‐ha Holtby watershed. A storm threshold approach was adopted to identify critical periods for higher sediment losses. An AGNPS model for the Holtby watershed was set up, calibrated, and validated for run‐off volume, peak flow rate, and sediment yield for several storms. The calibrated and validated model was run for storms of increasing return periods to identify threshold storm events that would generate sediment yield greater than an acceptable value for early and late spring, summer, and fall seasons. Finally, to evaluate the potential impacts of climate change, we shifted shorter duration summer storms into spring conditions and quantified the changes in sediment yield dynamics. A 6‐hr, 7.5‐year early spring storm would generate sediment losses exceeding the acceptable limit of 0.34 t ha?1 for the season. However, summer storms (2 hr, up to 100 years) tended to generate sediment yields below those of an identifiable threshold storm. If such shorter duration summer storms occurred in spring, the sediment yield would increase by more than fivefold. A 5‐year future storm would generate an equivalent effect of a 100‐year current spring event. The high sediment delivery to be expected will have significant implications regarding the future management of water quality of receiving waters. Appropriate placement of BMPs at CSAs will thus be needed to reduce such high sediment delivery to receiving waters.  相似文献   

10.
Hydrological threshold behaviour has been observed across hillslopes and catchments with varying characteristics. Few studies, however, have evaluated rainfall–run‐off response in areas dominated by agricultural land use and artificial subsurface drainage. Hydrograph analysis was used to identify distinct hydrological events over a 9‐year period and examine rainfall characteristics, dynamic water storage, and surface and subsurface run‐off generation in a drained and farmed closed depression in north‐eastern Indiana, USA. Results showed that both surface flow and subsurface tile flow displayed a threshold relationship with the sum of rainfall amount and soil moisture deficit (SMD). Neither surface flow nor subsurface tile flow was observed unless rainfall amount exceeded the SMD. Timing of subsurface tile flow relative to soil moisture response on the shoulder slope of the depression indicated that the formation and drainage of perched water tables on depression hillslopes were likely the main mechanism that produced subsurface connectivity. Surface flow generation was delayed compared with subsurface tile flow during rainfall events due to differences in soil water storage along depression hillslopes and run‐off generation mechanisms. These findings highlight the substantial impact of subsurface tile drainage on the hydrology of closed depressions; the bottom of the depression, the wettest area prior to drainage installation, becomes the driest part of the depression after installation of subsurface drainage. Rapid connectivity of localized subsurface saturation zones during rainfall events is also greatly enhanced because of subsurface drainage. Thus, less fill is required to generate substantial spill. Understanding hydrologic processes in drained and farmed closed depressions is a critical first step in developing improved water and nutrient management strategies in this landscape.  相似文献   

11.
The Arctic hydrologic cycle is intensifying, as evidenced by increased rates of precipitation, evapotranspiration, and riverine discharge. However, the controls on water fluxes from terrestrial to aquatic systems in upland Arctic landscapes are poorly understood. Upland landscapes account for one third of the Arctic land surface and are often drained by zero‐order geomorphic flowpath features called water tracks. Previous work in the region attributed rapid runoff response at larger stream orders to water tracks, but models suggest water tracks are hydrologically disconnected from the surrounding hillslope. To better understand the role of water tracks in upland landscapes, we investigated the surface and subsurface hydrologic responses of 6 water tracks and their hillslope watersheds to natural patterns of rainfall, soil thaw, and drainage. Between storms, both water track discharge and the water table in the hillslope watersheds exhibited diel fluctuations that, when lagged by 5 hr, were temporally correlated with peak evapotranspiration rate. Water track soils remained saturated for more of the summer season than soils in their surrounding hillslope watersheds. When rainfall occurred, the subsurface response was nearly instantaneous, but the water tracks took significantly longer than the hillslopes to respond to rainfall, and longer than the responses previously observed in nearby larger order Arctic streams. There was also evidence for antecedent soil water storage conditions controlling the magnitude of runoff response. Based on these observations, we used a broken stick model to test the hypothesis that runoff production in response to individual storms was primarily controlled by rainfall amount and antecedent water storage conditions near the water track outlet. We found that the relative importance of the two factors varied by site, and that water tracks with similar watershed geometries and at similar landscape positions had similar rainfall–runoff model relationships. Thus, the response of terrestrial water fluxes in the upland Arctic to climate change depends on the non‐linear interactions between rainfall patterns and subsurface water storage capacity on hillslopes. Predicting these interactions across the landscape remains an important challenge.  相似文献   

12.
Little is known regarding hormone export from tile‐drained agricultural fields despite the widespread presence of tile drains in the Midwestern United States. By intensively measuring water flow rates and hormone concentrations in four subsurface tile drains and three receiving ditches at a working Midwest farm, hormone fluxes and loads from the tile‐drained fields were quantified. Before and during the 17‐month study period (January 2009 – May 2010), the associated farm fields received various animal waste applications (beef, dairy, poultry, sheep, and swine). Hormones monitored included the estrogens17β‐ and 17α‐estradiol, estrone, and estriol; the natural androgens testosterone, and androstenedione; and the synthetic androgens 17β‐ and 17α‐trenbolone, and trendione. Hormone loads measured in the ditches for three drainage areas during the entire 17‐month study period were in ranges of 16–58 mg/ha for total estrogens, 6.8–19 mg/ha for natural androgens, and 4.2–44 mg/ha for synthetic androgens. Because higher hormone concentrations generally occurred during discrete periods of increased flow, high flow rates often were associated with a disproportionately high hormone flux. For example, 80% of total estrogens and natural androgens exported into the ditches occurred during only 9–26% of the study period, coinciding with the most significant storm events. In addition, hormone fluxes were highest during storm events that occurred shortly after animal waste applications. Therefore, to effectively reduce hormone loads exported to downstream aquatic ecosystems in the absence of any application reduction, the short periods during which high‐flow events occur must be targeted. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Understanding flow pathways and mechanisms that generate streamflow is important to understanding agrochemical contamination in surface waters in agricultural watersheds. Two environmental tracers, δ18O and electrical conductivity (EC), were monitored in tile drainage (draining 12 ha) and stream water (draining nested catchments of 6‐5700 ha) from 2000 to 2008 in the semi‐arid agricultural Missouri Flat Creek (MFC) watershed, near Pullman Washington, USA. Tile drainage and streamflow generated in the watershed were found to have baseline δ18O value of ?14·7‰ (VSMOW) year round. Winter precipitation accounted for 67% of total annual precipitation and was found to dominate streamflow, tile drainage, and groundwater recharge. ‘Old’ and ‘new’ water partitioning in streamflow were not identifiable using δ18O, but seasonal shifts of nitrate‐corrected EC suggest that deep soil pathways primarily generated summer streamflow (mean EC 250 µS/cm) while shallow soil pathways dominated streamflow generation during winter (EC declining as low as 100 µS/cm). Using summer isotopic and EC excursions from tile drainage in larger catchment (4700‐5700 ha) stream waters, summer in‐stream evaporation fractions were estimated to be from 20% to 40%, with the greatest evaporation occurring from August to October. Seasonal watershed and environmental tracer dynamics in the MFC watershed appeared to be similar to those at larger watershed scales in the Palouse River basin. A 0·9‰ enrichment, in shallow groundwater drained to streams (tile drainage and soil seepage), of δ18O values from 2000 to 2008 may be evidence of altered precipitation conditions due to the Pacific Decadal Oscillation (PDO) in the Inland Northwest. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
This study aimed to investigate the seasonal variability of runoff generation processes, the sources of stream water, and the controls on the contribution of event water to streamflow for a small forested catchment in the Italian pre‐Alps. Hydrometric, isotopic, and electrical conductivity data collected between August 2012 and August 2013 revealed a marked seasonal variability in runoff responses. Noticeable differences in runoff coefficients and hydrological dynamics between summer and fall/spring rainfall events were related to antecedent moisture conditions and event size. Two‐component and three‐component hydrograph separation and end‐member mixing analysis showed an increase in event water contributions to streamflow with event size and average rainfall intensity. Event water fractions were larger during dry conditions in the summer, suggesting that stormflow generation in the summer consisted predominantly of direct channel precipitation and some saturated overland flow from the riparian zone. On the contrary, groundwater and hillslope soil water contributions dominated the streamflow response during wet conditions in fall. Seasonal differences were also noted between event water fractions computed based on isotopic and electrical conductivity data, likely because of the dilution effect during the wetter months. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
The effects of vegetation root distribution on near‐surface water partitioning can be two‐fold. On the one hand, the roots facilitate deep percolation by root‐induced macropore flow; on the other hand, they reduce the potential for deep percolation by root‐water‐uptake processes. Whether the roots impede or facilitate deep percolation depends on various conditions, including climate, soil, and vegetation characteristics. This paper examines the effects of root distribution on deep percolation into the underlying permeable bedrock for a given soil profile and climate condition using HYDRUS modelling. The simulations were based on previously field experiments on a semiarid ponderosa pine (Pinus ponderosa) hillslope. An equivalent single continuum model for simulating root macropore flow on hillslopes is presented, with root macropore hydraulic parameterization estimated based on observed root distribution. The sensitivity analysis results indicate that the root macropore effect dominates saturated soil water flow in low conductivity soils (Kmatrix below 10?7 m/s), while it is insignificant in soils with a Kmatrix larger than 10?5 m/s, consistent with observations in this and other studies. At the ponderosa pine site, the model with simple root‐macropore parameterization reasonably well reproduces soil moisture distribution and some major runoff events. The results indicate that the clay‐rich soil layer without root‐induced macropores acts as an impeding layer for potential groundwater recharge. This impeding layer results in a bedrock percolation of less than 1% of the annual precipitation. Without this impeding layer, percolation into the underlying permeable bedrock could be as much as 20% of the annual precipitation. This suggests that at a surface with low‐permeability soil overlying permeable bedrock, the root penetration depth in the soil is critical condition for whether or not significant percolation occurs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
In the Colorado Front Range, forested catchments near the rain–snow transition are likely to experience changes in snowmelt delivery and subsurface water transport with climate warming and associated shifts in precipitation patterns. Snowpack dynamics are strongly affected by aspect: Lodgepole pine forested north‐facing slopes develop a seasonal snowpack, whereas Ponderosa pine‐dotted south‐facing slopes experience intermittent snow accumulation throughout winter and spring. We tested the degree to which these contrasting water input patterns cause different near‐surface hydrologic response on north‐facing and south‐facing hillslopes during the snowmelt period. During spring snowmelt, we applied lithium bromide (LiBr) tracer to instrumented plots along a north–south catchment transect. Bromide broke through immediately at 10‐ and 30‐cm depths on the north‐facing slope and was transported out of soil waters within 40 days. On the south‐facing slope, Br? was transported to significant depths only during spring storms and remained above the detection limit throughout the study. Modelling of unsaturated zone hydrologic response using Hydrus‐1D corroborated these aspect‐driven differences in subsurface transport. Our multiple lines of evidence suggest that north‐facing slopes are dominated by connected flow through the soil matrix, whereas south‐facing slope soils experience brief periods of rapid vertical transport following snowmelt events and are drier overall than north‐facing slopes. These differences in hydrologic response were largely a function of energy‐driven differences in water supply, emphasizing the importance of aspect and climate forcing when considering contributions of water and solutes to streamflow in catchments near the snow line. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
This paper examines the impact of contrasting antecedent soil moisture conditions on the hydrochemical response, here the changes in dissolved nitrogen (NO3?, NH4+ and dissolved organic nitrogen (DON)) and dissolved organic carbon (DOC) concentrations, of a first‐order stream during hydrological events. The study was performed in the Hermine, a 5 ha forested watershed of the Canadian Shield. It focused on a series of eight precipitation events (spring, summer and fall) sampled every 2 or 3 h and showing contrasted antecedent moisture conditions. The partition of the eight events between two groups (dry or wet) of antecedent moisture conditions was conducted using a principal component analysis (PCA). The partition was controlled (first axis explained 86% of the variability) by the antecedent streamflow, the streamflow to precipitation ratio Q/P and by the antecedent groundwater depth. The mean H+, NO3?, NH4+, total dissolved nitrogen and DOC concentrations and electrical conductivity values in the stream were significantly higher following dry antecedent conditions than after wetter conditions had prevailed in the Hermine, although the temporal variability was high (17 to 138%). At the event scale, a significantly higher proportion of the changes in DON, NO3?, and DOC concentrations in the stream was explained by temporal variations in discharge compared with the seasonal and annual scales. Two of the key hydrochemical features of the dry events were the synchronous changes in DOC and flow and the frequent negative relationships between discharge and NO3?. The DON concentrations were much less responsive than DOC to changes in discharge, whereas NH was not in phase with streamflow. During wet events, the synchronicity between streamflow and DON or NO3? was higher than during dry events and discharge and NO3? were generally positively linked. Based on these observations, the hydrological behaviour of the Hermine is conceptually compatible with a two‐component model of shallow (DON and DOC rich; variable NO3?) and deep (DON and DOC poor; variable NO3?) subsurface flow. The high NO3? and DOC levels measured at the early stages of dry events reflected the contribution from NO3?‐rich groundwaters. The contribution of rapid surface flow on water‐repellent soil materials located close to the stream channel is hypothesized to explain the DOC levels. An understanding of the complex interactions between antecedent soil moisture conditions, the presence of soil nutrients available for leaching and the dynamics of soil water flow paths during storms is essential to explain the fluxes of dissolved nitrogen and carbon in streams of forested watersheds. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Intensification of concentrated animal feeding operations combined with the use of tile drains in agricultural fields has resulted in land-applied manure being a significant source of hormones to the environment. Currently, no model exists to simulate hormone fluxes from tile drains under field conditions. Therefore, we developed the Hormone Export and Recovery Dynamics (HERD) model, which incorporates hydro-climatic, biogeochemical, and anthropogenic drivers that affect hormone fate and transport. We validated HERD using known input (rainfall; lagoon effluent irrigation) and response data (tile drain flow; 17β-estradiol and estrone fluxes) from the 2009 growing season, 18 years after land-application activities began at a tile-drained field in Indiana. We used HERD to better understand the: (1) decision-making process underlying effluent irrigation activities; (2) contribution of macropore flow to estrogen transport; (3) potential for long-term applications to result in the development of legacy estrogen sources within the soil profile; and (4) potential recovery trajectory of estrogen transport following the cessation of animal waste applications. HERD adequately predicted irrigation events based on lagoon storage limits. Simple threshold exceedance logic for macropore flow activation accounted for ∼87% of the observed estrogen loads. Application history was found to be important, as not accounting for 18 years of application led to a severe underestimation of the observed estrogen loads; however, accounting for application history led to a much closer match between modeled and observed fluxes. Simulated trajectories after cessation of applications indicated that estrogens may continue to leach for several decades, which has important implications for mitigating hormone concentrations in receiving water bodies.  相似文献   

19.
The impact of road‐generated runoff on the hydrological response of a zero‐order basin was monitored for a sequence of 24 storm events. The study was conducted in a zero‐order basin (C1; 0·5ha) with an unpaved mountain road; an adjacent unroaded zero‐order basin (C2; 0·2 ha) with similar topography and lithology was used to evaluate the hydrological behaviour of the affected zero‐order basin prior to construction of the road. The impact of the road at the zero‐order basin scale was highly dependent on the antecedent soil‐moisture conditions, total storm precipitation, and to some extent rainfall intensity. At the beginning of the monitoring period, during dry antecedent conditions, road runoff contributed 50% of the total runoff and 70% of the peak flow from the affected catchment (C1). The response from the unroaded catchment was almost insignificant during dry antecedent conditions. As soil moisture increased, the road exerted less influence on the total runoff from the roaded catchment. For very wet conditions, the influence of road‐generated runoff on total outflow from the roaded catchment diminished to only 5·4%. Both catchments, roaded and unroaded, produced equivalent amount of outflow during very wet antecedent conditions on a unit area basis. The lag time between the rainfall and runoff peaks observed in the unroaded catchment during the monitoring period ranged from 0 to 4 h depending on the amount of precipitation and antecedent conditions, owing mainly to much slower subsurface flow pathways in the unroaded zero‐order basin. In contrast, the lag time in the roaded zero‐order basin was virtually nil during all storms. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Various complementary techniques were used to investigate the stormflow generating processes in a small headwater catchment in northeastern Puerto Rico. Over 100 samples were taken of soil matrix water, macropore flow, streamflow and precipitation, mainly during two storms of contrasting magnitude, for the analysis of calcium, magnesium, silicon, potassium, sodium and chloride. These were combined with hydrometric information on streamflow, return flow, precipitation, throughfall and soil moisture to distinguish water following different flow paths. Geo‐electric sounding was used to survey the subsurface structure of the catchment, revealing a weathering front that coincided with the elevation of the stream channel instead of running parallel to surface topography. The hydrometric data were used in combination with soil physical data, a one‐dimensional soil water model (VAMPS ) and a three‐component chemical mass‐balance mixing model to describe the stormflow response of the catchment. It is inferred that most stormflow travelled through macropores in the top 20 cm of the soil profile. During a large event, saturation overland flow also accounted for a considerable portion of the stormflow, although it was not possible to quantify the associated volume fully. Although the mass‐balance mixing model approach gave valuable information about the various flow paths within the catchment, it was not possible to distill the full picture from the model alone; additional hydrometric and soil physical evidence was needed to aid in the interpretation of the model results. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号