首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deforestation and mining activities have proven to be very damaging to rivers because these activities disturb the environmental characteristics of rivers. Thus, the concentrations of dissolved organic carbon (DOC), particulate organic carbon (POC), particulate nitrogen (PN), and Chlorophyll‐a (Chl‐a) were measured monthly during 2 hydrological years in the Maroni and Oyapock Rivers to assess the dynamics and fluxes of organic carbon and nitrogen in these 2 Guiana Shield basins, which have been strongly (Maroni) and weakly (Oyapock) impacted by deforestation and mining activities. The 2‐year time series show that DOC, POC, PN, and Chl‐a concentrations vary seasonally with discharge in both rivers, indicating a hydrologically dominated control. Temporal patterns of DOC, POC, and PN indicate that these variables show maximum concentrations in rising waters due to the yield of organic matter and nitrogen accumulated in soils, which are incorporated into the rivers during rainfall. However, the Chl‐a concentrations were at a maximum during low‐water stages. The C/N and C/Chl‐a ratios also showed a seasonal trend, with lower values during the low water periods due to an increase in algal biomass. During high water, the POC in both rivers is the result of terrestrial organic matter, whereas during low‐water autochthonous organic matter can reach up to 34% of the POC. The mean annual fluxes of TOC and PN were higher (4.56 × 105 tonC year?1 and 1.77 × 104 tonN year?1, respectively) in the Maroni River than those (1.84 × 105 tonC year?1 and 0.54 × 104 tonN year?1, respectively) in the Oyapock River. However, the specific fluxes of DOC, POC, and PN from both basins were nearly the same. Although gold mining activities are performed in both basins, there is no conclusive evidence regarding the impact of these activities on the dynamics of organic matter and particulate nitrogen in the Maroni and Oyapock Rivers.  相似文献   

2.
Surface water draining granitic bedrock in Yosemite National Park exhibits considerable variability in chemical composition, despite the relative homogeneity of bedrock chemistry. Other geological factors, including the jointing and distribution of glacial till, appear to exert strong controls on water composition. Chemical data from three surface water surveys in the upper Merced River basin conducted in August 1981, June 1988 and August 1991 were analysed and compared with mapped geological, hydrological and topographic features to identify the solute sources and processes that control water chemistry within the basin during baseflow. Water at most of the sampling sites was dilute, with alkalinities ranging from 26 to 77 μequiv. l−1. Alkalinity was much higher in two subcatchments, however, ranging from 51 to 302 μequiv. l−1. Base cations and silica were also significantly higher in these two catchments than in the rest of the watershed. Concentrations of weathering products in surface water were correlated to the fraction of each subcatchment underlain by surficial material, which is mostly glacial till. Silicate mineral weathering is the dominant control on concentrations of alkalinity, silica and base cations, and ratios of these constituents in surface water reflect the composition of local bedrock. Chloride concentrations in surface water samples varied widely, ranging from <1 to 96 μequiv. l−1. The annual volume-weighted mean chloride concentration in the Merced River at the Happy Isles gauge from 1968 to 1990 was 26 μequiv. l−1, which was five times higher than in atmospheric deposition (4–5 μequiv. l−1), suggesting that a source of chloride exists within the watershed. Saline groundwater springs, whose locations are probably controlled by vertical jointing in the bedrock, are the most likely source of the chloride. Sulphate concentrations varied much less than most other solutes, ranging from 3 to 14 μequiv. l−1. Concentrations of sulphate in quarterly samples collected at the watershed outlet also showed relatively little variation, suggesting that sulphate may be regulated to some extent by a within-watershed process, such as sulphate adsorption.  相似文献   

3.
Abstract

The discharge variability of the main rivers that drain the Guyana Shield is analysed over the last 50 years using cross-wavelet, coherence and composite analysis involving oceanic and atmospheric variables. We highlight the overall hydro-climatological homogeneity of this region that allowed us to focus on the longest discharge time series available. Therefore, a wavelet cross-analysis was carried out between monthly and seasonal Maroni River discharge at the Langa Tabiki station and selected climate indices. This confirms a strong relationship between the hydrology of the Guyana Shield and the Pacific sea-surface temperature (SST) fluctuations. There is evidence of intermittent influence, of between inter-annual and near decadal scales, of the Atlantic SST fluctuations, in particular around 1970 and 1990. Finally, we show that the links between oceanic regions and high discharge in the rivers of Guyana are realized through the reinforcement of the Walker and Hadley cells between the Amazon and the adjacent oceans and through decreased trade winds and monsoon flux that favour the persistence of humidity over the Guyana Shield.

Editor Z.W. Kundzewicz; Associate editor D. Hughes

Citation Labat, D., Espinoza, J.-C., Ronchail, J., Cochonneau, G., de Oliveira, E., Doudou, J.C. and Guyot, J.-L., 2012. Fluctuations in the monthly discharge of Guyana Shield rivers, related to Pacific and Atlantic climate variability. Hydrological Sciences Journal, 57 (6), 1081–1091.  相似文献   

4.
Groundwater-surface water interactions (GSI) connect rivers and streams with riparian areas and the adjacent aquifer. Although these interactions exert a substantial control of quantity and quality of both groundwater and surface water, knowledge on GSI along rivers at the regional scale, particularly for inland waterways, is still limited. We investigated GSI along the river Moselle, an important federal inland waterway in Germany, by using radon and tritium to identify gaining (water flux from the aquifer to the surface water) and losing (water flux from the surface water to the aquifer) stream conditions, respectively. Gaining stream conditions were identified by continuously measuring radon along the river during boat surveys with a high spatial resolution (every 2 km) during intermediate (October 2020) and near low flow conditions (August/September 2021). The tritium concentrations in surface water and groundwater and the resulting tritium inventories were used to characterize losing stream conditions Monthly tritium inventories from 2017 to 2022 revealed a mean loss for the whole period of 20.3 % and a mean gain of 21.8%. Both were probably triggered by a combination of losing stream conditions and flood-induced mass transfer of water from the aquifer back into the river as well as discharge fluctuations. At the investigated site Lehmen there were direct indications of an influence of surface water due to elevated tritium concentrations in the groundwater (up to 13.3 Bq L−1). Using radon mass balance modelling, good agreements of simulated versus measured radon data with respect to two groundwater end-member scenarios were obtained during intermediate flow (Spearman's ρ: 0.97 and 0.99; MAE: 10.1 and 3.4 Bq L−1) and near low flow (Spearman's ρ: 0.97 and 0.99; MAE: 11 and 6.5 Bq L−1). Considerable groundwater inflow was limited to the meander of Detzem, where cumulated groundwater inflow of about 19 m3 s−1 (9.5% of total discharge) and 4.2 m3 s−1 (3.8% of total discharge) was simulated during intermediate and near low flow, respectively. However, the groundwater inflow was relatively low compared to alpine streams, for example. The study will help to better identify and quantify GSI at the regional scale and provide methodological guidance for future studies focusing on inland waterways.  相似文献   

5.
Changes in the hydrological regimes of Arctic rivers could affect the thermohaline circulation of the Arctic Ocean. In this study, we analysed spatiotemporal variations in temperature and precipitation in the Ob River Basin regions during 1936–2017 based on data from the Global Precipitation Climatology Center. Changes in discharge and response to climate change were examined based on monthly observed data during the same period. It is indicated the Ob River Basin experienced significant overall rapid warming and wetting (increased precipitation) in the study period, with average rates of 0.20°C (10 year−1) and 5.3 mm (10 year−1), respectively. The annual spatial variations of temperature and precipitation showed different scales in different regions. The discharge in spring and winter significantly increased at a rate of 384.1 and 173.1 m3/s (10 year−1), respectively. Hydrograph separation indicated infiltration and supported that deep flow paths increased the contribution of groundwater to base flow. Meanwhile, the variation of the ratio of Qmax/Qmin suggested that the basin storage and the mechanism of discharge generation have significantly changed. The hydrological processes were influenced by changes of permafrost in a certain in the Ob River Basin. An increase in the recession coefficient (RC) implies that the permafrost degradation in the basin due to climate warming affected hydrological processes in winter. Permafrost degradation affected the Qmax/Qmin more significantly in the warm season than RC due to the enhanced infiltration that converted more surface water into groundwater in the cold season. The impact of precipitation on discharge, including surface flow and base flow, was more significant than temperature at the annual and seasonal scales in the Ob River Basin. The base flow was more obviously influenced by temperature than surface flow. The results of this study are significant for analyses of the basin water budget and freshwater input to the Arctic Ocean.  相似文献   

6.
Earlier efforts have been geared towards modelling the hydrological water balance of the Mackenzie River basin and its sub‐basins using a coupled land surface–hydrological model for the Canadian cold region known as WATCLASS. The goal of this current study is to effectively inter‐compare the resulting total water storage anomalies estimated from the gravity recovery and climate experiment (GRACE) satellite analysis with those estimated from the atmospheric‐based water balance approach as well as the model output from WATCLASS over the 1 · 8 × 106 km2 Mackenzie River basin in Canada. Since the success of the parameter estimation stage of the coupled land surface–hydrological model, WATCLASS over this large catchment, was entirely based on a goodness of fit between the simulated and observed flows, it is often desirable to assess the reliability of the generated state variables prior to concluding on the overall efficiency of this model in reproducing the relevant hydrological processes over this region. A major challenge here lies in finding suitable dataset with which this comparison can be made to further assess the ability of the model in accurately reproducing other mass fluxes. The outcome of this inter‐comparison reveals the potential application of the GRACE‐based approach as a veritable tool required for the closure of the hydrological water balance of the Mackenzie River basin as well as serving as a dependable source of data for the calibration of traditional hydrological models. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Lithological and hydrological influence on fluvial physical and chemical erosion was studied in a glacierized sedimentary basin with high evaporite presence. Suspended particulate matter (SPM), total dissolved solids (TDS) and major ion concentrations were analysed for 2 years of different hydrologic condition: (i) 2009–2010, Q = 100% average; and (ii) 2010–2011, Q = 60% average. Annual hydrograph was simple regime‐type with one peak in summer related to snow melting. The intra‐annual SPM and TDS variations were directly and inversely associated to Q, respectively. Snow chemistry showed continental influence (Na+/Ca2+ = 0.17), and atmospheric input of TDS was <1% of the total exported flux. River water was highly concentrated in Ca2+ and SO42− (~4 mmol l−1) and in Na+ and Cl (~3 mmol l−1). Ca2+/SO42− and Na+/Cl molar ratios were ~1 and related to Q, directly and inversely, respectively. Major ion relationships suggest that river chemistry is controlled by evaporite (gypsum and halite) dissolution having a summer input from sulfide oxidation and carbonate dissolution, and a winter input from subsurface flow loaded with silicate weathering products. This variation pattern resulted in nearly chemostatic behaviour for Ca+, Mg2+ and SO42−, whereas Na+, Cl and SiO2 concentrations showed to be controlled by dilution/concentration processes. During the 2009–2010 hydrological year, the fluxes of water, SPM and TDS registered in the snow melting–high Q season were, respectively, 71%, 92% and 67% of the annual total, whereas for equal period in 2010–2011, 56% of water, 86% of SPM and 54% of TDS annual fluxes were registered. The SPM fluxes for 2009–2010 and 2010–2011 were 1.19 × 106 and 0.79 × 106 t year−1, whereas TDS fluxes were 0.68 × 106 and 0.55 × 106 t year−1, respectively. Export rates for 2009–2010 were 484 t km2 year−1 for SPM and 275 t km2 year−1 for TDS. These rates are higher than those observed in glacierized granite basins and in non‐glacierized evaporite basins, suggesting a synergistic effect of lithology and glaciers on physical and chemical erosion. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
A monthly sampling programme for dibutyltin (DBT), tributyltin (TBT) and tetrabutyltin (TTBT) was initiated for a period of one year (July 1985–June 1986) in the Maryland waters of Chesapeake Bay. Concentrations of the above butyltin species were evaluated in the microlayer and water column of eight sampling stations representing two small and two large marinas, a large harbour, two major river systems and a heavily used shipping channel. DBT concentrations in the microlayer were generally higher in the four marinas when compared with the other stations. The highest DBT concentration reported in the microlayer was 1156 ng l−1. Mean microlayer TBT concentrations ranged from 54–310 ng l−1 in the four marinas. Three TBT concentrations ranging from 1049–1171 ng l−1 were reported in the microlayer of the marinas. TBT concentrations of 41 and 29 mg l−1 were detected in the microlayer of a heavily used shipping channel (C & D Canal) during May and June. TTBT concentrations were not detected in the microlayer at most stations during the 12 month sampling period.Mean DBT concentrations in the water column ranged from 23–145 ng l−1 in the four marinas. DBT concentrations in the water column of the other stations were < 35 ng l−1. Mean water column concentrations of TBT ranged from 51–408 ng l−1 in all four marinas. Peak concentrations of TBT were reported in May and June for the various marinas. The highest TBT concentration reported in the water column was 998 ng l−1. TBT concentrations of 20–24 ng l−1 were reported in one of the river systems (Potomac River). TTBT concentrations were not detected in the water column at most of the stations.  相似文献   

9.
鄱阳湖流域径流模型   总被引:8,自引:4,他引:4  
流域径流是鄱阳湖主要来水,建立鄱阳湖流域径流模型对揭示湖泊水量平衡及其受流域自然和人类活动的影响具有重要意义.针对鄱阳湖-流域系统的特点:流域面积大(16.22×104km2)、多条入湖河流、湖滨区坡面入湖径流等,研究了相应的模拟方法,建立了考虑流域土壤属性和土地利用空间变化的鄱阳湖流域分布式径流模型.采用6个水文站1991-2001年的实测河道径流对模型进行了率定和验证.结果显示,模型整体模拟精度较高.其中,赣江、信江和饶河均取得了较好的模拟结果,月效率系数为0.82-0.95;抚河和修水模拟精度略低,为0.65-0.78.模型揭示了研究时段内年平均入湖径流总量为1623×108m3,其中,赣江最多,占47%,其次为信江和抚河,分别占13%和12%,湖滨区坡面入湖径流约占4%,其余24%来自饶河、修水以及其它入湖支流.模型将用于评估流域下垫面或气候变化引起的入湖水量变化,为湖泊水量平衡计算提供依据.  相似文献   

10.
Direct sediment inputs from forest roads at stream crossings are a major concern for water quality and aquatic habitat. Legacy road–stream crossing approaches, or the section of road leading to the stream, may have poor water and grade control upon reopening, thus increasing the potential for negative impacts to water quality. Rainfall simulation experiments were conducted on the entire running surface area associated with six reopened stream crossing approaches in the south‐western Virginia Piedmont physiographic region, USA. Event‐based surface run‐off and associated total suspended solid (TSS) concentrations were compared among a succession of gravel surfacing treatments that represented increasing intensities of best management practice (BMP) implementation. The three treatments were no gravel (10–19% cover), low gravel (34–60% cover), and high gravel (50–99% cover). Increased field hydraulic conductivity was associated with maximized surface cover and ranged from 7.2 to 41.6, 11.9 to 46.3, and 16.0 to 58.6 mm h−1 respectively for the no gravel, low gravel, and high gravel treatments. Median TSS concentration of surface run‐off for the no gravel treatment (2.84 g l−1) was greater than low gravel (1.10 g l−1) and high gravel (0.82 g l−1) by factors of 2.6 and 3.5 respectively. Stream crossing approaches with 90–99% surface cover had TSS concentrations below 1 g l−1. Reducing the length of road segments that drain directly to the stream can reduce the costs associated with gravel surfacing. This research demonstrates that judicious and low‐cost BMPs can ameliorate poor water control and soil erosion associated with reopening legacy roads. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
The River Buyukmelen is located in the province of Duzce in northwest Turkey and its water basin is approximately 470 km2. The Aksu, Kucukmelen and Ugursuyu streams flow into the River Buyukmelen. It flows into the Black Sea with an output of 44 m3 s−1. The geological succession in the basin comprises limestone and dolomitic limestone of the Yılanlı formation, sandstone, clayey limestone and marls of the Akveren formation, clastics and volcano‐clastics of the Caycuma formation, and cover units comprised of river alluvium, lacutrine sediments and beach sands. The River Buyukmelen is expected to be a water source that can supply the drinking water needs of Istanbul until 2040; therefore, it is imperative that its water quality be preserved. The samples of rock, soil, stream water, suspended, bed and stream sediments and beach sand were collected from the Buyukmelen river basin. They were examined using mineralogical and geochemical methods. The chemical constituents most commonly found in the stream waters are Na+, Mg2+, SO2−4, Cl and HCO3 in the Guz stream water, Ca2+ in the Abaza stream water, and K+ in the Kuplu stream water. The concentrations of Na+, K+, Ca2+, Mg2+, SO2−4, HCO3, Cl, As, Pb, Ni, Mn, Cr, Zn, Fe and U in the Kuplu and Guz stream waters were much higher than the world average values. The Dilaver, Gubi, Tepekoy, Maden, Celik and Abaza streams interact with sedimentary rocks, and the Kuplu and Guz streams interact with volcanic rocks. The amount of suspended sediment in the River Buyukmelen in December 2002 was 120 mg l−1. The suspended and bed sediments in the muddy stream waters are formed of quartz, calcite, plagioclase, clay (kaolinite, illite and smectite), muscovite and amphibole minerals. As, Co, Cd, Cr, Pb, Ni, Zn and U have all accumulated in the Buyukmelen river‐bed sediments. The muddy feature of the waters is related to the petrographic features of the rocks in the basin and their mineralogical compositions, as most of the sandstones and volcanic rocks (basalt, tuffite and agglomerate) are decomposed to a clay‐rich composition at the surface. Thus, the suspended sediment in stream waters increases by physical weathering of the rocks and water–rock interaction. Owing to the growing population and industrialization, water demand is increasing. The plan is to bring water from the River Buyukmelen to Istanbul's drinking‐water reservoirs. According to the Water Pollution Regulations, the River Buyukmelen belongs to quality class 1 based on Hg, Cd, Pb, As, Cu, Cr, Zn, Mn, Se, Ba, Na+, Cl, and SO2−4; and to quality class 3 based on Fe concentration. The concentration of Fe in the River Buyukmelen exceeds the limit values permitted by the World Health Organization and the Turkish Standard. Because water from the River Buyukmelen will be used as drinking water, it will have an adverse effect on water quality and humans if not treated in advance. In addition, the inclusion of Mn and Zn in the Elmali drinking‐water reservoir of Istanbul and Fe in the River Buyukmelen water indicates natural inorganic contamination. Mn, Zn and Fe contents in the waters are related to geological origin. Moreover, the River Buyukmelen flow is very muddy in the rainy seasons and it is inevitable that this will pose problems during the purification process. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
The formation and distribution of present-day water resources under the effect of changing climate are studied. Seasonal, annual, and many-year variations in the regime of spring-flood and dry-season runoff of rivers with drainage areas from 2000 to 20000 km2, reflecting the zonal landscape-climatic conditions of runoff formation, are considered. It is shown that various and often contradictory demands of water users to water supply distribution over seasons of the year result in that the entire water management complex depends on not only the total volume of water resources, but also on the water regime characteristics of rivers in different phases of hydrological year. It was established that the climate changes recorded in the recent decades radically change the pattern of space and time variations in runoff characteristics.  相似文献   

13.
The Mackenzie River, Canada's longest and largest river system, provides the greatest Western Hemisphere discharge to the Arctic Ocean. Recent reports of declining flows have prompted concern because (1) this influences Arctic Ocean salinity, stratification and polar ice; (2) a major tributary, the Peace River, has large hydroelectric projects, and further dams are proposed; and (3) the system includes the extensive and biodiverse Peace–Athabasca, Slave and Mackenzie deltas. To assess hydrological trends over the past century that could reflect climate change, we analysed historic patterns of river discharges. We expanded the data series by infilling for short gaps, calculating annual discharges from early summer‐only records (typical r2 > 0.9), coordinating data from sequential hydrometric gauges (requiring r2 > 0.8) and advancing the data to 2013. For trend detection, Pearson correlation provided similar outcomes to non‐parametric Kendall's τ and Spearman's ρ tests. There was no overall pattern for annual flows of the most southerly Athabasca River (1913–2013), while the adjacent, regulated Peace River displayed increasing flows (1916–2013, p < 0.05). These rivers combine to form the Slave River, which did not display an overall trend (1917–2013). The more northerly, free‐flowing Liard River is the largest tributary and displayed increasing annual flows (1944–2013, p < 0.01, ~3.5% per decade) because of increasing winter, spring, and summer flows, and annual maximum and minimum flows also increased. Following from the tributary contributions, the Mackenzie River flows gradually increased (Fort Simpson 1939–2013, p < 0.05, ~1.5% per decade), but the interannual patterns for the Liard and other rivers were correlated with the Pacific Decadal Oscillation, complicating the pattern. This conclusion of increasing river flows to the Arctic Ocean contrasts with some prior reports, based on shorter time series. The observed flow increase is consistent with increasing discharges of the large Eurasian Arctic drainages, suggesting a common northern response to climate change. Analyses of historic trends are strengthened with lengthening records, and with the Pacific Decadal Oscillation influence, we recommend century‐long records for northern rivers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Suspended sediment concentration (SSC) is a critical parameter in the study of river sediment transport and water quality variation, but traditional measurement methods are costly and time‐consuming. This paper is focused on presenting a methodology that may be useful in estimating SSC which is of key importance in process geomorphology and hydrology. In previous studies, remote sensing has been applied to estimate the SSC of sea waters as well as low turbid inland waters like lakes, reservoirs and short river reaches visible within a single Landsat satellite image coverage. Rivers, especially highly turbid large rivers, have largely been ignored. The dataset used in this paper includes measured SSC and multi‐temporal Landsat ETM+ images covering most part of the Yangtze River. Using an effective easy‐to‐use atmospheric correction method that does not require in situ atmospheric conditions, retrieved water reflectance of Band 4 was found to be a good SSC indicator within the large SSC range 22–2610 mg l–1. The newly developed regression relation between SSC and water reflectance of Band 4 appears to be able to provide a relatively accurate SSC estimate directly from Landsat ETM+ images for the Yangtze River from the upper, the middle to the lower reaches. With the relation it is possible to estimate or map out SSC dynamics of large rivers which lack SSC data due to constraints of conventional measurements. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
This paper describes the hydrological changes caused by inter‐basin water transfer and the reservoir development on the hydrological regimes of two rivers. The Sabljaki Reservoir in the Zagorska Mre?nica River and the Bukovik Reservoir in the upper Dobra River began operation in 1959. Both are part of the hydroelectric power plant (HEPP) Gojak, whose installed capacity is 50 m3/s. Their water volumes at the spillway altitudes of 320·10 and 320·15 m a. s. l. are 3·3 × 106 and 0·24 × 106 m3 respectively. Both the Dobra and Mre?nica Rivers are losing, sinking and underground karst rivers. A 9376‐m‐long tunnel provides water from the Sabljaki Reservoir to the HEPP Gojak, which was constructed in the Lower Dobra River. The Sabljaki Reservoir is located in the Pla?ki karst polje, while the Bukovik Reservoir is located in the neighbouring Ogulin karst polje. The consequences of the inter‐basin water transfer are strong and have caused abrupt changes in the hydrological regimes of the downstream sections of both rivers. At the same time, the construction and development of both the reservoirs have also caused hydrological changes to the upstream section of the Upper Dobra River. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Dissolved inorganic carbon (DIC) transport by rivers is an important control on the pH and carbonate chemistry of the coastal ocean. Here, we combine DIC and total alkalinity (TAlk) concentrations from four tropical rivers of the Great Barrier Reef region in Australia with daily river discharge to quantify annual river loads and export rates. DIC in the four rivers ranged from 284 to 2,639 μmol kg−1 and TAlk ranged from 220 to 2,612 μmol kg−1. DIC:TAlk ratios were mostly greater than one suggesting elevated exports of free [CO2*]. This was pronounced in the Johnstone and Herbert rivers of the tropical wet north. The largest annual loads were transported in the two large river catchments of the southern Great Barrier Reef region, the Fitzroy and Burdekin rivers. The carbon stable isotopic composition of DIC suggests that carbonate weathering was the dominant source of DIC in the southern rivers, and silicate weathering was likely a source of DIC in the northern Wet Tropics rivers. Annual loads and export rates were strongly driven by precipitation and discharge patterns, the occurrence of tropical cyclones, and associated flooding events, as well as distinct seasonal dry and wet periods. As such, short-lived hydrological events and long-term (seasonal and inter-annual) variation of DIC and TAlk that are pronounced in rivers of the tropical and subtropical wet and dry climate zone should be accounted for when assessing inorganic carbon loads to the coastal ocean and the potential to buffer against or accelerate ocean acidification.  相似文献   

17.
Abstract

Streamflow in the Himalayan rivers is generated from rainfall, snow and ice. The distribution of runoff produced from these sources is such that the streamflow may be observed in these rivers throughout the year, i.e. they are perennial in nature. Snow and glacier melt runoff contributes substantially to the annual flows of these rivers and its estimation is required for the planning, development and management of the water resources of this region. The average contribution of snow and glacier melt runoff in the annual flows of the Satluj River at Bhakra Dam has been determined. Keeping in view the availability of data for the study basin, a water balance approach was used and a water budget period of 10 years (October 1986-September 1996) was considered for the analysis. The rainfall input to the study basin over the water budget period was computed from isohyets using rainfall data of 10 stations located at different elevations in the basin. The total volume of flow for the same period was computed using observed flow data of the Satluj River at Bhakra Dam. A relationship between temperature and evaporation was developed and used to estimate the evapotranspiration losses. The snow-covered area, and its depletion with time, was determined using satellite data. It was found that the average contribution of snow and glacier runoff in the annual flow of the Satluj River at Bhakra Dam is about 59%, the remaining 41% being from rain.  相似文献   

18.
Conservative solute injections were conducted in three first-order montane streams of different geological composition to assess the influence of parent lithology and alluvial characteristics on the hydrological retention of nutrients. Three study sites were established: (1) Aspen Creek, in a sandstone–siltstone catchment with a fine-grained alluvium of low hydraulic conductivity (1·3×10−4 cm/s), (2) Rio Calaveras, which flows through volcanic tuff with alluvium of intermediate grain size and hydraulic conductivity (1·2×10−3 cm/s), and (3) Gallina Creek, located in a granite/gneiss catchment of coarse, poorly sorted alluvium with high hydraulic conductivity (4·1×10−3 cm/s). All sites were instrumented with networks of shallow groundwater wells to monitor interstitial solute transport. The rate and extent of groundwater–surface water exchange, determined by the solute response in wells, increased with increasing hydraulic conductivity. The direction of surface water–groundwater interaction within a stream was related to local variation in vertical and horizontal hydraulic gradients. Experimental tracer responses in the surface stream were simulated with a one-dimensional solute transport model with inflow and storage components (OTIS). Model-derived measures of hydrological retention showed a corresponding increase with increasing hydraulic conductivity. To assess the temporal variability of hydrological retention, solute injection experiments were conducted in Gallina Creek under four seasonal flow regimes during which surface discharge ranged from baseflow (0·75 l/s in October) to high (75 l/s during spring snowmelt). Model-derived hydrological retention decreased with increasing discharge. The results of our intersite comparison suggest that hydrological retention is strongly influenced by the geologic setting and alluvial characteristics of the stream catchment. Temporal variation in hydrological retention at Gallina Creek is related to seasonal changes in discharge, highlighting the need for temporal resolution in studies of the dynamics of surface water–groundwater interactions in stream ecosystems. © 1997 by John Wiley & Sons, Ltd.  相似文献   

19.
The Cenozoic marine osmium isotope record is largely driven by changes in the continental input. We aid its interpretation by supplying direct measurements of present day riverine Os in known geological and environmental settings. We analyzed Os concentrations and isotopic ratios in the dissolved, suspended, and bed materials of the Mackenzie River in Canada and smaller rivers draining the Western Cordillera into the Pacific Ocean. Rhenium content was measured for suspended and bed materials to provide further constraint. Dissolved 187Os/188Os ratios range from 0.74 to 4.5 and are controlled to first order by age and lithology of the bedrock. The rivers draining Jurassic volcanic rocks are unradiogenic, as low as 0.74, and those draining the Precambrian Canadian Shield are radiogenic, as high as 3.5. The headwaters of the Mackenzie left bank tributaries draining metamorphic carbonates in the Eastern Cordillera and Paleozoic black and gray shales in the Transition zone and the Interior Platform are especially radiogenic (3.0-4.5) with relatively high concentrations of Os. These latter rivers are responsible for the Mackenzie being above world average in Os concentration and yield (mol Os/km2/year) as well as in 187Os/188Os. The dissolved load is more radiogenic than the suspended or bed loads and constitutes a significant fraction of total fluvial Os.  相似文献   

20.
ABSTRACT

This work explores the ability of two methodologies in downscaling hydrological indices characterizing the low flow regime of three salmon rivers in Eastern Canada: Moisie, Romaine and Ouelle. The selected indices describe four aspects of the low flow regime of these rivers: amplitude, frequency, variability and timing. The first methodology (direct downscaling) ascertains a direct link between large-scale atmospheric variables (the predictors) and low flow indices (the predictands). The second (indirect downscaling) involves downscaling precipitation and air temperature (local climate variables) that are introduced into a hydrological model to simulate flows. Synthetic flow time series are subsequently used to calculate the low flow indices. The statistical models used for downscaling low flow hydrological indices and local climate variables are: Sparse Bayesian Learning and Multiple Linear Regression. The results showed that direct downscaling using Sparse Bayesian Learning surpassed the other approaches with respect to goodness of fit and generalization ability.
Editor D. Koutsoyiannis; Associate editor K. Hamed  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号