首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents applications of the modified 3D‐SAM approach, a three‐dimensional seismic assessment methodology for buildings directly based on in situ experimental modal tests to calculate global seismic demands and the dynamic amplification portion of natural torsion. Considering that the building modal properties change from weak to strong motion levels, appropriate modification factors are proposed to extend the application of the method to stronger earthquakes. The proposed approach is consistent with the performance‐based seismic assessment approach, which entails the prediction of seismic displacements and drift ratios that are related to the damage condition and therefore the functionality of the building. The modified 3D‐SAM is especially practical for structures that are expected to experience slight to moderate damage levels and in particular for post‐disaster buildings that are expected to remain functional after an earthquake. In the last section of this paper, 16 low to mid‐rise irregular buildings located in Montreal, Canada, and that have been tested under ambient vibrations are analyzed with the method, and the dynamic amplification portion of natural torsion of the dataset is reported and discussed. The proposed methodology is appropriate for large‐scale assessments of existing buildings and is applicable to any seismic region of the world. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
In recent years, many studies have been focused on the use and effectiveness of passive islotaing devices for reducing the effect of seismic ground motion on buildings. Among the available methods, one consists in isolating the structure using rubber bearings, the solution certainly the most accomplished and having the most feedback. In this study, we focused on the case of Martinique earthquake (Mw=7.4) of 29 November 2007, recorded by accelerometric stations installed at the Centre de Découverte des Sciences de la Terre (Martinique), a base-isolation building with rubber bearings. Several earthquakes are used in this paper, from moderate to strong ground motion. Ambient vibration modal analysis is first described in order to understand the elastic response of the building. The earthquake data are then interpreted, in particular to understand the mechanism of vibration of the structure and its comparison with the experimental modes previously estimated using ambient vibrations.  相似文献   

3.
付建 《地震工程学报》2018,40(2):241-245
由地震等自然灾害引发的等级多变强随机振动会对大跨度钢管混凝土柱结构产生较大的破坏,造成相关建筑全结构寿命周期性衰减。提出一种随机振动下大跨度钢管混凝土柱结构的抗震性测试方法,在等级多变强随机振动的情况下,设计测试模型,利用信号的协方差矩阵将振动信号与噪声进行分离,通过计算振动信号的强度、后验密度及权值系数等对振动信号进行预处理,获取单一寿命衰减参数;在此基础上引入粒子群算法,求解大跨度钢管混凝土柱结构寿命衰减抑制周期,判断其抗震性。实验结果表明,按照大跨度钢管混凝土柱结构寿命衰减抑制周期的判断方法,可实现对相关建筑结构在等级多变强随机振动下的抗震性测试。  相似文献   

4.
Seismic protection of buildings under risk can be achieved by increasing the knowledge about the behaviour of existing structures. Operational Modal Analysis is a powerful tool used for this purpose all over the world. It provides the dynamic characteristics of structures under operational conditions or some particular environmental issues such as blasts and earthquakes. The main objective of this study is to evaluate blast effects on a reinforced concrete (RC) building considering experimentally determined dynamic characteristics. The study consists of three phases: the measurement of vibration characteristics of blasting, the theoretical modal analysis of the inspected building, and experimental verification of dynamic characteristics using modal testing. The vibration characteristics of blasting are measured around the inspected building on hard soil using a geophone set. The initial analytical model of the building is constructed according to the in-situ investigation on building. The theoretical modal analysis results are verified by carrying out modal testing on the RC building. The Operational Modal Analysis method is used for the extraction of the dynamic characteristics of the building, and blast vibrations are taken into account as environmental vibrations. The effects of blasting on the reinforced concrete building are introduced by assessing the vibration of blasting with the dynamic characteristics of the building.  相似文献   

5.
模态参数是有效评估结构安全状况的关键参数,在结构抗震加固和健康诊断领域得到广泛应用。与频域法相比较,时域法直接利用实测的振动信号识别模态参数,不需要进行频域变换,减少数据处理带来的误差,并且可以实现大型结构的在线识别,真实地反应结构的现状。以同济大学12层钢筋混凝土标准框架振动台模型试验完整数据为对象,在详细介绍ITD法和复指数法2种时域法理论的基础上,通过编程选取结构不同测点的振动加速度时程数据,识别了小震和强震工况下12层钢筋混凝土框架模型振动台试验模型的模态频率和阻尼比,并结合移动谱识别结构模态参数的时变特性。结果表明:ITD法和复指数法可有效地识别结构的模态参数,自振频率的识别精度较高,而阻尼比的离散度较大;小震工况频率变化值不大,而强震工况频率值较初始时刻有明显的下降,这与试验现象是吻合的,进一步说明移动谱与这2种时域法相结合可以反应结构在塑性阶段的参数时变特性。  相似文献   

6.
For almost a decade, a 66‐storey, 280m tall building in Singapore has been instrumented to monitor its dynamic responses to wind and seismic excitations. The dynamic characteristics of the tall building have been investigated via both the finite element method and the experimental modal analysis. The properties of the finite element model have been shown to correlate well with those derived from the data recorded during the ambient vibration tests. During the study period, 21 sets of earthquake ground motions have been recorded at the building site. The basement motions may be divided into three categories based on their predominant frequency components with respect to the building's fundamental frequency. The calibrated three‐dimensional finite element model is employed to simulate the seismic response of the tall building. Correlation analysis of the time histories between the recorded data and the simulated results has been carried out. The correlation analysis results show that the simulated dynamic response time histories match well with those of the recorded dynamic responses at the roof level. The results also show that the simulated maximum response at the roof level is close to the peak response recorded during the earthquakes. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents a statistical performance analysis of a semi‐active structural control system for suppressing the vibration response of building structures during strong seismic events. The proposed semi‐active mass damper device consists of a high‐frequency mass damper with large stiffness, and an actively controlled interaction element that connects the mass damper to the structure. Through actively modulating the operating states of the interaction elements according to pre‐specified control logic, vibrational energy in the structure is dissipated in the mass damper device and the vibration of the structure is thus suppressed. The control logic, categorized under active interaction control, is defined directly in physical space by minimizing the inter‐storey drift of the structure to the maximum extent. This semi‐active structural control approach has been shown to be effective in reducing the vibration response of building structures due to specific earthquake ground motions. To further evaluate the control performance, a Monte Carlo simulation of the seismic response of a three‐storey steel‐framed building model equipped with the proposed semi‐active mass damper device is performed based on a large ensemble of artificially generated earthquake ground motions. A procedure for generating code‐compatible artificial earthquake accelerograms is also briefly described. The results obtained clearly demonstrate the effectiveness of the proposed semi‐active mass damper device in controlling vibrations of building structures during large earthquakes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
The seismic response of the Mexico City Cathedral built of very soft soil deposits is evaluated by using motions recorded in various parts of the structure during several moderate earthquakes. This unique set of records provides significant insight into the seismic response of this and other similar historic stone masonry structures. Free‐field ground motions are carefully compared in time and frequency domains with motions recorded at building basement. The dynamic characteristics of the structure are inferred from the earthquake records by using system identification techniques. Variation of seismic response for different seismic intensities is discussed. It is shown that, due to the soil–structure interaction, due to large differences between dominant frequencies of earthquake ground motions at the site and modal frequencies of vibration of the structure, and due to a particularly high viscous damping, seismic amplifications of ground motion in this and similar historic buildings erected on soft soil deposits are much smaller than that induced in most modern constructions. Nevertheless, earthquake records and analytical results show that several components of the structure such as its central dome and the bell towers may be subjected to local vibrations that significantly amplify ground motions. Overall, results indicate that in its present state the structure has an acceptable level of seismic safety. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents shake‐table tests conducted on a two‐fifths‐scale reinforced concrete frame representing a conventional construction design under current building code provisions in the Mediterranean area. The structure was subjected to a sequence of dynamic tests including free vibrations and four seismic simulations in which a historical ground motion record was scaled to levels of increasing intensity until collapse. Each seismic simulation was associated with a different level of seismic hazard, representing very frequent, frequent, rare and very rare earthquakes. The structure remained basically undamaged and within the inter‐story drift limits of the ‘immediate occupancy’ performance level for the very frequent and frequent earthquakes. For the rare earthquake, the specimen sustained significant damage with chord rotations of up to 28% of its ultimate capacity and approached the upper bound limit of inter‐story drift associated with ‘life safety’. The specimen collapsed at the beginning of the ‘very rare’ seismic simulation. Besides summarizing the experimental program, this paper evaluates the damage quantitatively at the global and local levels in terms of chord rotation and other damage indexes, together with the energy dissipation demands for each level of seismic hazard. Further, the ratios of column‐to‐beam moment capacity recommended by Eurocode 8 and ACI‐318 to guarantee the formation of a strong column‐weak beam mechanism are examined. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
This purpose of this paper is to study the dynamic characteristics of the Fei-Tsui arch dam using the seismic response data and the ambient vibration data. For the identification of dam properties from seismic response data, the multiple inputs from the abutment of the dam to represent the nonuniform excitations of seismic input motion are considered, and the ARX model is applied using the discrete-time linear filtering approach with least-squares approximation to identify the dynamic characteristics of the dam. The system modal dampings, natural frequencies and frequency response functions are identified. A comparison of the identified modal parameters is made among different seismic events. Post-earthquake safety evaluation of the dam can be made based on the identified model. Finally, the ambient vibration test of the dam is performed to identify the mode shapes along the dam crest.  相似文献   

11.
The aim of this paper is to adjust behaviour models for each class of structure for vulnerability assessment by using ambient vibration. A simple model based on frequencies, mode shapes and damping, taken from ambient vibrations, allows computation of the response of the structures and comparison of inter‐storey drifts with the limits found in the literature for the slight damage grade, considered here as the limit of elastic behaviour. Two complete methodologies for building fragility curves are proposed: (1) using a multi‐degree of freedom system including higher modes and full seismic ground‐motion and (2) using a single‐degree of freedom model considering the fundamental mode f0 of the structure and ground‐motion displacement response spectra SD(f0). These two methods were applied to the city of Grenoble, where 60 buildings were studied. Fragility curves for slight damage were derived for the various masonry and reinforced concrete classes of buildings. A site‐specific earthquake scenario, taking into account local site conditions, was considered, corresponding to an ML = 5.5 earthquake at a distance of 15 km. The results show the benefits of using experimental models to reduce variability of the slight damage fragility curve. Moreover, by introducing the experimental modal model of the buildings, it is possible to improve seismic risk assessment at an overall scale (the city) or a local scale (the building) for the first damage grade (slight damage). This level of damage, of great interest for moderate seismic‐prone regions, may contribute to the seismic loss assessment. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The dynamic behaviour of two curved cable‐stayed bridges, recently constructed in northern Italy, has been investigated by full‐scale testing and theoretical models. Two different excitation techniques were employed in the dynamic tests: traffic‐induced ambient vibrations and free vibrations. Since the modal behaviour identified from the two types of test are very well correlated and a greater number of normal modes was detected during ambient vibration tests, the validity of the ambient vibration survey is assessed in view of future monitoring. For both bridges, 11 vibration modes were identified in the frequency range of 0ndash;10Hz, being a one‐to‐one correspondence between the observed modes of the two bridges. Successively, the information obtained from the field tests was used to validate and improve 3D finite elements so that the dynamic performance of the two systems were assessed and compared based on both the experimental results and the updated theoretical models. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
A full‐scale five‐story reinforced concrete building was built and tested on the NEES‐UCSD shake table during the period from May 2011 to May 2012. The purpose of this test program was to study the response of the structure and nonstructural components and systems (NCSs) and their dynamic interaction during seismic base excitation of different intensities. The building specimen was tested first under a base‐isolated condition and then under a fixed‐based condition. As the building was being erected, an accelerometer array was deployed on the specimen to study the evolution of its modal parameters during the construction process and placement of major NCSs. A sequence of dynamic tests, including daily ambient vibration, shock (free vibration) and forced vibration tests (low‐amplitude white noise and seismic base excitations), were performed on the building at different stages of construction. Different state‐of‐the‐art system identification methods, including three output‐only and two input‐output methods, were used to estimate the modal properties of the building. The obtained results allow to investigate in detail the effects of the construction process and NCSs on the dynamic parameters of this building system and to compare the modal properties obtained from different methods, as well as the performance of these methods. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
在北京城区的一栋钢筋混凝土建筑(Reinforced Concrete building,简称RC)中,进行历时两天的地脉动和地铁振动观测.介绍了利用地脉动和地铁振动信号研究RC建筑结构响应的观测方法、仪器设备、数据采集和数据处理方法.对观测数据进行两种分析:(1)对连续的地脉动背景噪声,采用H/V谱比法;(2)对经过...  相似文献   

15.
Free vibration of soils happens frequently during some large earthquakes, perhaps seeming like a paradox. This happens because the energy released from seismic sources in some cases is not stationary in time, allowing relaxation intervals in between without important seismic wave arrivals in which free soil vibration happens. Two techniques to estimate the natural period of the free vibration from accelerograms are presented: autocorrelograms and Fourier spectra. Both techniques sometimes allow measuring higher mode frequencies of the soil for the three first modes as well as modal damping. Free vibration modal periods satisfy the classic 1D equation S-wave theory. The presence of free vibrations corresponds to shear wave soil energy radiation episodes rather than to energy amplification of incoming stationary seismic shear waves suggested by the dynamic soil amplification. These results explain the discrepancies observed between the theoretical soil dynamic amplification and the accelerographic measurement. Observation of free vibration of soils is not always possible, it depends on the duration of the time windows without important seismic waves arrivals compared to the natural period and damping of the soil.  相似文献   

16.
Ambient vibration tests were conducted on a base-isolated apartment building in Takamatsu, Japan, to determine the mode shapes and the associated natural frequencies and damping ratios at very low levels of excitation. The latest developments in signal analysis for modal decomposition are used to analyze the ambient response data. A finite element model of the building and isolators was calibrated and refined using the experimental results from the ambient vibration tests. This model was then used to simulate the recorded response of the building under excitation from a small earthquake. The finite element model, calibrated by ambient vibration data and the low level of earthquake shaking, provides the starting point for modelling the non-linear response of the building when subjected to strong shaking.  相似文献   

17.
The analysis of site effects is very important since the amplification of seismic motion in some specific areas can be very strong. In this paper, the site considered is located in the centre of Nice on the French Riviera. Site effects are investigated considering a numerical approach (Boundary Element Method) and are compared with experimental results. The experimental results are obtained thanks to real earthquakes (weak motion) and microtremor measurements. The investigation of seismic site effects through numerical approaches is interesting because it shows the dependency of the amplification level on such parameters as wave velocity in surface soil layers, velocity contrast with deep layers, seismic wave type, incidence and damping.In this specific area of Nice, experimental measurements obtained for weak motion lead to strong site effects. A one-dimensional (1D) analytical analysis of amplification does not give a satisfactory estimation of the maximum reached levels. A boundary element model is then proposed considering different wave types (SH, P, SV) as the seismic loading. The alluvial basin is successively assumed as an isotropic linear elastic medium and an isotropic linear viscoelastic solid with Zener type behaviour (standard solid). The influence of frequency and incidence is analysed. The thickness of the surface layer, its mechanical properties, its general shape as well as the seismic wave type involved have a great influence on the maximum amplification and the frequency for which it occurs. For real earthquakes, the numerical results are in very good agreement with experimental measurements for each motion component. The boundary element method leads to amplification values very close to the actual ones and much larger than those obtained in the 1D case. Two-dimensional basin effects are then very strong and are well reproduced numerically.  相似文献   

18.
The knowledge of fundamental frequency and damping ratio of structures is of uppermost importance in earthquake engineering, especially to estimate the seismic demand. However, elastic and plastic frequency drops and damping variations make their estimation complex. This study quantifies and models the relative frequency drop affecting low‐rise modern masonry buildings and discusses the damping variations based on two experimental data sets: Pseudo‐dynamic tests at ELSA laboratory in the frame of the ESECMaSE project and in situ forced vibration tests by EMPA and EPFL. The relative structural frequency drop is shown to depend mainly on shaking amplitude, whereas the damping ratio variations could not be explained by the shaking amplitude only. Therefore, the absolute frequency value depends mostly on the frequency at low amplitude level, the amplitude of shaking and the construction material. The decrease in shape does not vary significantly with increasing damage. Hence, this study makes a link between structural dynamic properties, either under ambient vibrations or under strong motions, for low‐rise modern masonry buildings. A value of 2/3 of the ambient vibration frequency is found to be relevant for the earthquake engineering assessment for this building type. However, the effect of soil–structure interaction that is shown to also affect these parameters has to be taken into account. Therefore, an analytical methodology is proposed to derive first the fixed‐base frequency before using these results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
基于HHT的结构强震记录分析研究   总被引:5,自引:0,他引:5  
本文利用HHT(Hilbert-HUang Transform)研究了结构强震记录的时频特性及结构动力特性。介绍了一座7层钢混框架结构及其强震观测台阵概况以及经历的地震情况,选择了在3次有代表性地震中的强震记录,利用一种新的非平稳信号处理方法HHT对记录进行了处理和分析,得到了该结构强震记录的时频幅值三维分布以及边际谱,并将边际谱与傅里叶谱进行了对比,识别了结构的自振频率。研究表明,对结构强震记录这种强非平稳信号,可以利用HHT分析得到能量集中分布的频段与时间范围。HHT边际谱与傅里叶谱相比,在低频部分幅值要大于傅里叶谱,而在高频部分,幅值要小于傅里叶谱。利用结构强震记录识别的自振频率比环境振动测试结果要小。  相似文献   

20.
This paper proposes the use of the nonlinear restoring force in an isolation system to improve the performance of a seismic isolator. Nonlinear magnetic springs applied to guideway sliding isolators (GSI) that protect precision machinery against seismic motion were studied. The magnetic springs use a non‐contact magnetic repulsion force to achieve a nonlinear property. A numerical simulation model of the GSI system using step‐by‐step integration in the time domain was developed. A full‐scale shaking table test was performed to verify the accuracy of the numerical model. Simulation and experimental results show that the GSI system with magnetic springs has good performance when subjected to floor vibrations during earthquakes. A parametric analysis of the magnetic springs in the GSI system under seismic motion was theoretically investigated. It was found that sufficient magnetic forces can diminish the system relative displacements. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号