首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 186 毫秒
1.
The Pan-African basement exposed in the Meatiq area west of Quseir, Egypt, consists of an infracrustal basement overthrusted by a supracrustal cover. The infracrustal rocks were developed as a result of an old orogeny referred to as the Meatiqian orogeny where granite—gneiss, migmatitic gneisses and migmatized amphibolites were formed. The granite—gneiss represents a deformed granite pluton emplaced at 626±2 Ma, whereas the migmatitic gneisses and amphibolites are of mixed igneous and sedimentary parentage. In view of the data so far available, the nature of the Meatiqian orogeny could not be deciphered. In spite of the young isotopic ages, it is suggested that at least the metasedimentary gneisses represent older rocks in the stratigraphic sequence of the infracrustal basement.The supracrustal cover represents a part of an extensive ophiolitic mélange obducted onto the infracrustal basement during the next orogeny (Abu Ziran orogeny) which culminated at 613±2 Ma. An active continental margin-type regime can adequately explain the evolution of such a supracrustal cover. During obduction, the ophiolitic mélange and the upper 2 km thick part of the infracrustal basement were intensely deformed and metamorphosed under PT conditions of the greenschist—epidote amphibolite facies. The deformed infracrustal basement was converted into mylonitic—blastomylonitic rocks and schists composing five thrust sheets, and subsequently intruded by synkinematic granitoid sheets. Later, both the infracrustal basement and the overlying supracrustal cover were isostatically uplifted, subjected to complex shallow folding giving rise to the major Meatiq domal structure, and were intruded by a postkinematic adamellite pluton at 579±6 Ma.  相似文献   

2.
羌塘基底质疑   总被引:40,自引:1,他引:40  
李才 《地质论评》2003,49(1):4-9
部分学者根据西藏1:100万改则幅区调查资料和戈木日,果干加年山浅变质岩中获得的14个锆石Pb-Pb年龄(3204~509Ma),建立了太古宙一元古宙岩石地层系统,提出了“结晶基底”与“软基底”的双层结构模式。资料证实样品取自沉积层,锆石为碎屑锆石,无法确切反映成岩或变质年龄。作者等在原划为下元古界都古尔片麻岩中获得了384Ma的锆石年龄,日湾茶卡东山下石炭统之下火山岩(原划AnD)获得346Ma的Rb-Sr年龄,玛依岗日组玄武岩夹层中获得318Ma的Rb-Sr年龄,野外工作中将“基底岩系”与上覆石英二叠系角度不整合关系厘定为整合关系,基于野外地质立状和同位素年龄资料分析,对羌塘地区基底和双层结构模式提出质疑,认为羌塘中部的浅变质岩系主体时代为晚石炭世。太古宙一元古宙岩石地层,变质期次,双层基底结构及其演化的认识显然是不正确使用同位素年代数据得出的结论。  相似文献   

3.
大陆克拉通早期构造演化历史探讨:以华北为例   总被引:22,自引:1,他引:21  
大陆早期构造演化的研究一直是大陆地质学研究的焦点问题.在华北克拉通基底构造1∶200万编图研究基础上, 本文开展基底断裂边界、构造样式及后期叠加关系的研究, 借鉴比较大地构造理论, 对华北克拉通基底重新进行了构造区划.结合标志性构造单元及其时代、同位素年龄数据库的综合研究, 提出华北早期构造格局演化及其重大构造热事件.华北克拉通基底主要由大面积的新太古代TTG杂岩及表壳岩系组成, 新太古代涉及活动陆缘环境的大规模陆壳增生及不同微陆块的碰撞聚合过程, 造成新太古代末期陆壳迅速增生和克拉通化.古元古代初期开始伸展裂解和早期盖层发育阶段, 古元古代晚期发生微陆块碰撞缝合, 形成超级克拉通, 并在克拉通西北边缘发生强烈改造作用.1.84Ga前后, 华北克拉通经历最强烈的一次伸展裂解过程, 从超级克拉通裂解, 开始了独立的构造演化, 在伸展构造背景下, 克拉通基底被强烈隆升冷却, 经历风化剥蚀, 发育沉积盖层.以上构造格局及其构造热事件提供了早期超级大陆再造研究的构造制约条件.   相似文献   

4.
The Orós belt is a metamorphosed and deformed supracrustal sequence whose deposition started at ca. 1.8 Ga. The volcanic rocks form an essentially bimodal association with a predominance of felsic volcanics. Mafic volcanics show geochemical and Nd isotopic differences which point to separate origins for each type. The mafic rocks are either chemically similar to EMORBs or are transalkaline types, enriched in LILE and LREE and relatively depleted in HFSE but with different isotopic signatures. One mafic type is associated with dominant andesites in a suite which could have evolved by an AFC process involving a Transamazonian-age source rock which later produced some of the overlying felsic volcanics. The rhyolites have variable geochemical signatures, all typical of anatectic products derived from continental crustal rocks. Sedimentary rocks are dominated by pelitic types of different provenances, accompanied by minor arenites and lesser carbonate rocks and calc-silicates. The depositional environment of the supracrustal sequence was continental, and a number of lines of evidence suggest that a rift environment probably developed during relaxation following the Transamazonian orogeny. The most abundant igneous rocks are felsic plutonics, emplaced nearly 100 Ma after the volcanic activity, but whose geochemical signature is similar to that of most of the rhyolites. These are cut by more alkaline anorogenic intrusives. The volcano-sedimentary sequence was intruded at ca. 0.9 Ga by a mafic-ultramafic sill. All deformation and metamorphism occurred during the Brasiliano orogeny, which was accompanied by the intrusion of syn-tectonic granites.The Orós belt, therefore, represents an intracontinental ensialic late Paleoproterozoic volcano-sedimentary basin initially related to strain relaxation of the crust. With subsequent collapse and development of faults, the anorogenic alkaline granites intruded at ca. 1.7 Ga. Based on the data available on this province, the Orós belt forms a part of a series of supracrustal belts of different ages, which were consolidated and welded in the Brasiliano orogeny.Within the Borborema Province, supracrustal sequences with ages of ≈ 2.0-1.9 Ga, ≈ 1.8-1.7 Ga (Orós), ≈ 1.1-1.0 Ga, and ≈ 0.6 Ga are presently known. All were aglutinated or amalgamated to neighboring blocks during the Brasiliano orogenic cycle.  相似文献   

5.
The Paleogene–Neogene stratigraphic scale of the Zerkal’naya River basin is modified with account for new isotopic and paleobotanical data. It is established that the Tadushi Formation and underlying volcanics, which were previously considered as representing transitional Cretaceous–Paleocene strata, are separated in the section of the Ustinovka quarry by a significant stratigraphic hiatus. According to the new data, the volcanics and the Tadushi Formation are established as Campanian and Late Paleocene in age, respectively. The Bogopol Formation in the type section is dated back to the Middle–Late Paleocene. The Svetlyi Formation is now considered to be Early Eocene in age, rather than Late Eocene–Oligocene as previously thought. A new variant of the stratigraphic scale is proposed for the Paleogene–Neogene deposits of the Zerkal’naya depression.  相似文献   

6.
A comparison of ore-lead isotope ratios of Pb-Zn deposits hosted in Triassic carbonates of the Eastern and Southern Alps with the isotopic composition of trace leads of their host rocks, of Triassic volcanics, and of the underlying clastic sediments shows that these rocks could have supplied only part of the ore lead. The isotopic signature of feldspar lead from crystalline basement rocks, however, reveals that they must have contributed a significant amount of metal to these deposits. The presence of barite and of thallium is also indicative that feldspars were the main source of lead. Arsenic is one of the few important trace elements in these deposits and is known to occur in some areas of Lower Paleozoic metasediments in unusually high concentrations. Any model explaining the origin of these deposits must consider the extensive leaching of the basement and to some extent of the overlying clastic sediments as well. How the metal-bearing solutions entered the lagoonal back-reef areas is still open to question as feeder channels have not yet been positively identified. The results further demonstrate that the basement also acted as a metal source for galena-bearing deposits hosted in Permian sediments, vein-type deposits in Permian volcanics, and probably the barite-fluorite polymetallic deposits along a Devonian erosional surface in the Carnic Alps as well.  相似文献   

7.
The Curaçá terrane is part of the Itabuna–Salvador–Curaçá (I–S–C) Paleoproterozoic orogen in the São Francisco craton, northeastern Brazil, and comprises supracrustal rocks, gneisses of their probable basement, amphibolites, and mafic-ultramafic Cu-bearing bodies (including the Caraíba Cu-Mine), all affected by D1-D3 deformation events associated to M1-M3 metamorphism under high-T granulite and amphibolite facies, and assisted by G1-G3 tonalitic-granodioritic-granitic intrusions. U–Pb and Sm–Nd Thermal Ionization Mass Spectrometry (TIMS) isotopic data from amphibolite, tonalite, and granite, sampled in a well-known outcrop, indicate partial reset and heterogeneous modification of the original isotopic systems, attributable to deformation and metamorphism. The ages obtained from these systems agree with each other, and also with other previously published U–Pb data, and imply that 2.6 Ga is the crystallization age of the protolith of the amphibolite. Together with key structural relationships, they also indicate a 2.08–2.05 Ga interval for M3 metamorphism, and make even a less precise age (2.2–2.3 Ga) acceptable, as it suggests contamination in the amphibolite with material in a syn-D2 tonalite crystallized 2248 ± 36 Ma ago. The new data demonstrate the existence of Neoarchean fragments of both oceanic and continental crusts and constrain the Archean-Paleoproterozoic development of the Curaçá belt, the I–S–C orogen, and the São Francisco craton.  相似文献   

8.
扬子地台西缘结晶基底的时代   总被引:26,自引:0,他引:26  
对扬子地台西缘结晶基底变质地层以及岩浆片麻岩中变质地层残片或包裹体中锆石SHRIMP U-Pb同位素年龄研究表明,在康定地区辉长–闪长质片麻岩中,表壳岩包体—糜棱岩化的长英质片岩和宝兴地区黑云斜长角闪岩的年龄分别为816±8.6 Ma和826±13 Ma,代表了它们的原岩——酸性火山岩和火山凝灰岩的形成年龄;泸定地区变质岩层中长英质糜棱岩和斜长角闪岩的年龄分别为816±9 Ma和818±8 Ma,代表了中性火山岩和基性火山岩的形成时代;茨达地区斜长角闪岩和角闪黑云斜长片麻岩的年龄分别为830±7 Ma和827±10 Ma,代表了其原岩火山–沉积建造的形成时代。以上数据表明,所谓的结晶基底都是新元古代的产物,在形成时间上与盐边群、盐井群等褶皱基底的相一致,只是变质程度上略有差异。因此该区并不存在古老(太古宙—古元古代)的结晶基底。  相似文献   

9.
Pb stepwise leaching (PbSL) determinations on two magnetite-enriched fractions of a BIF sample from the northeastern part of the Isua supracrustal belt (West Greenland) yield an isochron of 3691 ± 22 Ma (MSWD = 0.4). In combination with previously published geochronological constraints for a minimum deposition age of ∼3.71 Ga for volcanic sequences (Nutman et al., 1997) comprising the studied BIFs, and supported by microtextural observations, this demonstrates an early Archean amphibolite facies metamorphic event in the supracrustal. PbSL data on magnetite from slightly discordant veins within the same iron stone, together with bulk Pb isotope values of paragenetically late pyrite, yield a 3.63 ± 0.07 Ga (MSWD = 8.6) errorchron, with significantly different Pb isotopic compositions from those obtained from the main magnetite layers, and this suggests that the discordant layers of magnetite and sulfides crystallized when externally derived fluids passed through the formation a few tens of million of years later. The fluids controlling this redistribution of magnetite can be tentatively correlated with metasomatic alteration features produced during the widespread intrusion of 3.6 Ga granitic into 3.7 Ga tonalitic Amı̂tsoq gneisses enclosing the belt. Tremolite-rich layers in the BIF are characterized by Sm/Nd ratios close to chondritic [εNd(3800) of +1.7 and +2.1], within error of published results from adjacent basic units in the supracrustal suite. In contrast, the magnetite-dominated layers yield unrealistically high εNd(3800) of +14.8 and +14.4, indicative of Sm/Nd ratios resembling REE fractionated, continental sources. These high εNd(3800), together with radiogenic Sr leached from the magnetite-enriched separates, is ascribed to secondary hydroxyapatite, which predominantly forms as crystal overgrowths in the magnetite-rich bands. The timing of the hydrothermal event during which apatite was deposited within the BIF remains uncertain, but a TCHUR model age of 1.85 Ga from the apatite-dominated HCl leachate may point to a close genetic relationship with local Proterozoic metamorphism and granite formation by crustal remelting in the Isukasia area.Step leaching of magnetite from a similar silicate-oxide facies BIF from the western part of the Isua supracrustal belt yield a Pb-Pb isochron age of 2.84 ± 0.05 Ga (MSWD = 1.43). The agreement between the PbSL age and previously published field and isotopic evidence for a major late Archean metamorphic event affecting the western area suggests there was widespread equilibration accompanying the intrusion of the 2.75–2.83 Ga granodioritic Ikkattoq gneisses west and southwest of the western limb of the Isua supracrustal belt.We argue that the PbSL isochron ages date the peak of amphibolite facies metamorphic events which, respectively, affected the eastern and western sections of the Isua supracrustal belt during the early and late Archean. Our results give additional support to the suggestion that the scatter on published εNd(T) values from the Isua supracrustal belt and adjoining gneisses can be assigned to post-formational hydrothermal processes and underline the need for care in the interpretation of Sm-Nd bulk data from polymetamorphic rocks to constrain isotopic models of early Earth’s evolution.  相似文献   

10.
华北克拉通在新太古代末期发生克拉通化,形成了现今规模的古陆,大量的太古宙岩石均经历了~2500Ma左右的区域高级变质作用(高角闪岩相-麻粒岩相)。而华北克拉通北部冀北地区出露一套中低级变质(绿片岩相-角闪岩相)的火山-沉积岩系,主要包括胡麻营地区红旗营子表壳岩和大阴山地区单塔子表壳岩中变质程度较低的部分。胡麻营地区红旗营子表壳岩系主要岩石组合为变基性火山岩、绿帘角闪岩、斜长角闪岩、含石榴石斜长角闪岩、角闪斜长片麻岩、黑云斜长片麻岩、黑云角闪斜长片麻岩、黑云二长片麻岩、石英片岩、磁铁石英岩等,SIMS锆石U-Pb定年结果表明斜长角闪岩形成于2486±18Ma(MSWD=1.4),而黑云斜长片麻岩形成于2507±37Ma(MSWD=2.0)。大阴山地区单塔子中低级变质表壳岩系主要由浅变质火山岩、云母石英片岩、斜长角闪岩、磁铁石英岩和大理岩等组成,SHRIMP锆石U-Pb定年结果显示,浅变质火山岩中的变玄武岩形成于2490±19Ma(MSWD=2.0),而变英安岩形成于2502±8Ma(MSWD=0.83)。因此,冀北中低级变质的表壳岩系主要形成于新太古代末期,形成年龄为2507~2486Ma;结合冀东青龙地区新太古代末期(2511~2503Ma)的浅变质火山-沉积岩系(青龙表壳岩),我们认为新太古代末期,中低级变质表壳岩系广泛分布于华北克拉通的核部和边缘地区,此套岩系覆盖在太古宙高级变质杂岩之上,代表华北克拉通化之后的稳定盖层,是克拉通化的主要标志之一。  相似文献   

11.
ABSTRACT

There are voluminous ultrahigh pressure-related orthogneisses and minor metamorphic supracrustal rocks in the northeastern Sulu UHP terrane (NSL), East China. The tectonic affinities of the supracrustal rocks are crucial for unravelling the deep continental subduction processes and locating the tectonic suture between the South China (SCB) and North China (NCB) blocks. In this contribution, we report new zircon U–Pb ages and Hf isotope data for the supracrustal rocks and metagabbros in the Zeku region of the NSL. In the Zeku region, the supracrustal rocks are spatially associated with granitic gneisses, metagabbros, and eclogites. Detrital zircon U–Pb analyses yield ages between 3.39 and 0.65 Ga that cluster as three major age populations including (1) 2.15–1.68 Ga with two subpeaks at ~1.83 Ga and~1.97 Ga, (2) 2.45–2.15 Ga with a peak at ~2.37 Ga, and (3) 0.79–0.65 Ga. In addition, there is a small age population between 3.39 and 2.61 Ga. The youngest age population of 0.79–0.65 Ga indicates that the Zeku supracrustal rocks must have been deposited after 650 Ma rather than during the Palaeoproterozoic as previously thought. The 210–190 Ma metamorphic ages suggest that the Zeku rocks were affected by Triassic collision–subduction and exhumation. Most of the Archaean-Palaeoproterozoic zircons have negative εHf(t) values and two-stage Hf model ages concentrating at 2.4–3.4 Ga (peak at ~2.9 Ga), indicating that source rocks of these zircons were mainly derived from recycling of ancient crustal material. These ages, together with the Hf isotopic compositions and rock assemblages, indicate that the Zeku supracrustal rocks were mainly derived from the Precambrian basement rocks of the northern Yangzte Block and have a tectonic affinity to the SCB, rather than the NCB. Our results, together with previously published data, suggest that there are two types of supracrustal rocks with different zircon U–Pb ages and tectonic affinities in the NSL. On the basis of new data, we suggest that the surface boundary between the SCB and NCB in the Jiaodong Peninsula is a complicated tectonic mélange zone rather than a single fault.  相似文献   

12.
张彦波 《地质科学》1979,14(1):78-91
前言随着地质工作的不断发展,进一步利用同位素地质年龄资料研究和解决地质问题显得越来越重要。我国同位素地质年代学的研究在迅速的发展过程中积累了大量资料。如何根据数学原理,用电子计算机处理和利用这些资料是当前急待解决的问题。本文企图在这方面做些尝试,探索处理和利用同位素地质年龄资料的新方法。  相似文献   

13.
Despite superimposed metamorphic overprinting and metasomatic alterations, primary volcanic features remain preserved in low-strain domains of mafic volcanic sequences in the western Isua supracrustal belt (ISB, West Greenland). These basaltic successions represent the hitherto oldest known fragments of oceanic crust on Earth. Early Archean metasomatic fluids, rich in light rare earth elements (LREE), Th, U, Pb, Ba, and alkalies, invaded the supracrustal package and distinctively altered the basaltic sequences. Field relationships, source characteristics traced by Pb isotopes, and geochronological results provide indications that these fluids were genetically related to the emplacement of tonalite sheets into the ISB between 3.81 and 3.74 Ga ago. Subsequent early Archean metamorphism homogenized the mixed primary and metasomatic mineral parageneses of these metavolcanic rocks. Allanite occurs as the most characteristic and critical secondary metasomatic-metamorphic phase and is developed in macroscopically discernible zones of increased metsomatic alteration, even in domains of low strain. Because of its high concentration of LREE, Th, and U, this secondary mineral accounts for much of the disturbances recorded by the Sm-Nd and Th-U-Pb isotope systematics of the pillowed metabasalts.The supracrustal sequences were tectono-metamorphically affected to varying degrees during a late Archean, ∼2.6- to 2.8-Ga-old event, also recognized in the adjacent gneiss terranes of the Isuakasia area. The degree to which bulk rocks were isotopically reequilibrated is directly dependent on the different relative contributions of allanite-hosted parent-daughter elements to the overall whole-rock mass budget of the respective isotope systems. Although low-strained (initially only weakly metasomatized) pillow basalts remained more or less closed with respect to the U-Pb and Rb-Sr systems since ∼3.74 Ga, the Sm-Nd system appears to have been partially opened on a whole-rock scale during the late Archean event. This diversified behavior of the whole-rock isotope systems with respect to late Archean overprinting is explained by the combination of mass budget contributions of the respective elements added during metasomatism and the partial opening of metasomatic macroenvironments during late Archean recrystallization processes with associated renewed fluid flow. In reactivated zones of high strain, where primary metasomatic alteration is most prominently developed, late Archean partial resetting also of the U-Pb isotope system on a whole-rock scale occurred. This is consistent with an apparent late Archean age of kyanite, which initially crystallized during the early Archean metamorphism. Its age is controlled by the U-Pb systematics of allanite inclusions, which have exchanged their isotopic properties during the tectono-metamorphic event that overprinted the oceanic crustal sequence at Isua more than 1000 myr later.These results underline the need for care in the interpretation of whole-rock geochemical data from polymetamorphic rocks in general, and from the Isua oceanic crustal sequences in particular, to constrain isotopic models of early Earth’s evolution. Likewise, this study cautions against the indiscriminate use of geochemical data of metavolcanic rocks from Isua to infer models for geotectonic settings relevant for their formation.  相似文献   

14.
The eastern part of the Guerrero terrane contains two tectonically juxtaposed metavolcanic-sedimentary sequences with island arc affinities: the lower, Tejupilco metamorphic suite, is intensely deformed with greenschist facies metamorphism; the upper, Arcelia-Palmar Chico group, is mildly to moderately deformed with prehnite-pumpellyite facies metamorphism. A U–Pb zircon age of 186 Ma for the Tizapa metagranite, and Pb/Pb isotopic model ages of 227 and 188 Ma for the conformable syngenetic Tizapa massive sulfide deposit, suggest a Late Triassic–Early Jurassic age for the Tejupilco metamorphic suite. 40Ar/39Ar and K–Ar age determinations of metamorphic minerals from different units of the Tejupilco metamorphic suite in the Tejupilco area date a local early Eocene thermal event related to the emplacement of the undeformed Temascaltepec granite. The regional metamorphism remains to be dated. 40Ar/39Ar ages of 103 and 93 Ma for submarine volcanics support an Albian–Cenomanian age for the Arcelia-Palmar Chico group, although it may extend to the Berriasian. U–Pb isotopic analyses of zircon from the Tizapa metagranite, together with Nd isotopic data, reveal inherited Precambrian zircon components within units of the Tejupilco metamorphic suite, precluding the generation of Tejupilco metamorphic suite magmas from mantle- or oceanic lithosphere-derived melts, as was previously considered to be the case. Instead, these data, together with high-grade gneiss xenoliths with Grenvillian Nd isotopic affinity in Oligocene subvolcanics, indicate the presence of pre-Mesozoic continental crust beneath at least the eastern part of the Guerrero terrane. As a Late Triassic–Early Jurassic basement unit in the eastern part of the Guerrero terrane, the Tejupilco metamorphic suite may therefore represent an evolved volcanic arc developed on old crust with assimilated craton-derived sediment. This would imply a tectonic cycle of deformation, metamorphism and erosion during the Middle–early Late Jurassic that was probably related to the accretion and consolidation of part of the Guerrero terrane into the Acatlán Complex, the pre-Mississippian poly-deformed and metamorphosed basement of the Mixteco terrane.  相似文献   

15.
内蒙古乌兰浩特古元古代变质岩系的发现及其地质意义   总被引:2,自引:0,他引:2  
在乌兰浩特东白音乌苏一带新发现一套斜长角闪片岩、透辉透闪岩、斜长角闪片麻岩的岩石组合,岩石普遍经高绿片岩相-低角闪岩相变质,经受了后期多期构造改造。斜长角闪片岩经原岩恢复为基性火山岩,锆石晶形、阴极发光、背散射图像及高Th/U值等特征显示为岩浆锆石。采用LA-ICP-MS锆石U-Pb测年技术,在变质岩系中获得了1864.1±7.3Ma的同位素年龄,时代归属为古元古代,该年龄为岩浆形成年龄。此年龄限定了该套变质岩系的形成时代,证明乌兰浩特地区可能存在前寒武纪结晶基底。与区域上松嫩地块南部新发现的古元古元代岩浆锆石年龄进行对比发现,松嫩地块西缘可延伸至乌兰浩特一带。  相似文献   

16.
The Amu Dar'ya gas-oil province coincides with a Mesozoic and Cenozoic sag basin that developed on an intermontane depression filled largely by Permian-Triassic redbeds and volcanics. The stratigraphic section of the basin is divided into two parts by an extensive evaporite deposit of Kimmeridgian age. The section below the evaporite consists of Lower-Middle Jurassic clastic rocks overlain by reef-bearing carbonate rocks of Callovian and Oxfordian age. The upper Jurassic and Cretaceous-Paleogene section consists largely of clastic rocks. Structurally the province is a mosaic of highs and lows controlled by basement faults. The Kimmeridgian evaporite is a regional seal for numerous pools in the Callovian- Oxfordian carbonate rocks. In the border areas of the province where the evaporite is not present, the hydrocarbons have migrated farther upward to collect in Lower Cretaceous traps. Prospects for further discovery are excellent in most parts of the province, but are particularly favorable in carbonate reef buildups in the southeastern part of the province.  相似文献   

17.
漠河盆地中生代地层层序及时代   总被引:20,自引:0,他引:20  
依据近几年地层研究成果和野外地质调查获得的新资料 ,对漠河盆地中生代地层进行了厘定 ,将阿杭提河组划归绣峰组 ,木瑞组划归上库力组下部 ,上库力组和依列克得组之间的含煤地层划归上库力组上部。这样纵向上塔木兰沟组—上库力组—依列克得组为火山岩—碎屑岩夹火山岩、煤层—火山岩旋回 ,与邻区具有很好的对比关系。依据新的同位素资料 ,将塔木兰沟组的时代厘定为早白垩世 ;依据双壳类、腹足类、介形类、植物、孢粉等化石资料 ,对漠河盆地额木尔河群的时代进行了讨论 ,认为额木尔河群的时代为晚侏罗世。  相似文献   

18.
This work presents new U-Pb data (SHRIMP-II) for zircons from products of granitization and leucosomes of migmatites from amphibolite- and granulite-facies zones developed on rocks of the tonalite-trondhjemite group of the unstratified basement and supracrustal formations of the western part of the Aldan granulite area. The age data obtained were interpreted using the data available on the U and Th geochemistry. The main geochemical trend of transition from primary zircons, crystallizing from the melt to the later metamorphic zircons is manifested in increasing U and Th concentrations in zircons. In this case, the Th/U ratio decreases, as do the values of the Ce anomaly and LuN/LaN ratio. By studying the sequence of autochthonous and paraautochthonous granite formation in the amphibolite-facies zone the ancient (3222–3226 Ma) metamorphic event in the Aldan Shield (a manifestation of the ultrametamorphic processes (granitization and migmatization), superimposed on rocks of an ancient infracomplex (3.3–3.4 Ga) and gneisses and schists of supracrustal formations) was established. The data obtained indicate the Middle Archean age of both metamorphosed rock complexes. The ancient period of evolutionary development of the Aldan shield was followed by development of diatectic granitoids with an age of 2450 Ma, which is correlated well with Proterozoic granitoids from the conjunction zone between the Aldan granulite area and Olekma granite-greenstone terrain.  相似文献   

19.
庐枞早白垩世火山岩的地球化学特征及其源区意义   总被引:38,自引:1,他引:37  
从中生代到新生代,华北东部岩石圈地幔发生了减薄以及地球化学性质置换, 而扬子地块东部中生代岩石圈地幔也表现出类似的过程,对中生代火山岩的地球化学研究有助于了解这一变化过程以及发生置换时的时空关系。庐枞火山岩出露于扬子地块东部,为一套包括粗玄岩–玄武粗安岩–粗面岩的富碱橄榄安粗岩系。研究了双庙组基性火山岩,这些岩石富集Rb,K,Sr,Th和轻稀土元素,亏损高场强元素。(87Sr/86Sr)i = 0.7060~0.7063,εNd(t )=-3.9~-6.2,(206Pb/204Pb)i=17.788~18.125,(207Pb/204Pb)i= 15.511~15.546,(208Pb/204Pb)i =37.735~38.184。在喷出地表过程中,火山岩没有受到明显的地壳物质混染,因此元素和同位素组成反映了地幔源区的地球化学特征。 其地幔源区具有同位素富集特征,表明火山岩源区曾受到地壳物质的影响,是富集地幔部分熔融的产物,并经历明显的结晶分异作用。庐枞火山岩的岩浆成分和源区特征反映该地区在晚中生代岩石圈地幔的伸展和软流圈地幔上涌的演化过程。  相似文献   

20.
Trace element and isotopic compositions of mid-Tertiary siliceous magma sequences from two localities of the Sierra Madre Occidental, northern Mexico, display differences that reflect the composition and age of the basement through which they erupted. The crust beneath the section at San Buenaventura is thicker and more evolved and forms part of the North American basement, while that under El Divisadero consists of allochthonous terranes of island arc/oceanic? crust accreted during the Mesozoic.The volcanics are highly differentiated and range in composition from basalt to rhyolite (SiO2=50–76%). Those erupted through the accreted terranes display a small range of isotope ratios and have lowest initial (age-corrected) Sr isotope ratios (>0.7044) and the highest Nd (<0.5126) and Pb isotope ratios (206Pb/204Pb ∼18.9). Isotope ratios of the continental suite are more variable and form an array which trends away from that of the accreted terrane suite toward compositions more typical of old crust (to 87Sr/86Sr ∼0.710 and 143Nd/144Nd ∼0.5123). The volcanics in the continental zone are relatively more enriched in moderately incompatible elements compared with those within the accreted terranes (Ce/Yb=25–45 vs. 13–33, respectively), but are depleted in some highly incompatible elements such as U and Rb (e.g., Th/U=3.8–7.5 vs. 2.5–4.0, respectively). Those higher in the stratigraphic sections have higher 87Sr/86Sr, 208Pb/204Pb, and Th/U ratios, and lower 143Nd/144Nd ratios than those lower in the sections.The data have implications for the nature of the sources and the petrogenesis of these volcanics. The isotope ratios of both suites fall between those of mafic magma compositions from the Sierra Madre Occidental, and intermediate and felsic lower crustal xenoliths in northern Mexico and the southwestern USA. The relationship between the isotope ratios of the sequences and the age of the basement, combined with the fact that the overall data set forms well-defined isotopic arrays, demonstrates the strong effects of the crust on the chemistry of the silicic magmas. In the continental suite, isotope ratios covary with Th/Pb and U/Pb ratios, approaching the compositions found in the intermediate and felsic granulite facies xenoliths, strongly indicating that they are not anatectic melts of the lower crust but rather reflect interaction between mantle-derived basaltic parental magmas and the crust. Crustal contributions appear to be large, on the order of 20–70%. The small range of isotope ratios in the accreted terrane suite appears to reflect interaction of the basaltic parent with relatively juvenile crust whose isotopic composition is similar to the mantle-derived magmas. High Th/U and Th/Rb ratios indicate that the crustal contamination occurs in the lower crust. Moreover, the less radiogenic 206Pb/204Pb and 207Pb/204Pb ratios in the continental suite indicate that the depletion in highly incompatible elements in the continental lower crust is an old feature. The secular changes in the isotope ratios within the stratigraphic sections indicate increasingly shallow crustal contributions with time, initially by predominantly mafic deep lower crust and later by more felsic middle crust. Using lavas from outside of the two heavily sampled stratigraphic sections, the differences in the isotopic compositions between volcanics erupted through the accreted terranes and the continental basement help to delineate the location of the boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号