首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-mountain basins provide a source of valuable water resources. This paper presents hydrological models for the evaluation of water resources in the high-mountain Zêzere river basin in Serra da Estrela, Central Portugal. Models are solved with VISUAL BALAN v2.0, a code which performs daily water balances in the root zone, the unsaturated zone and the aquifer and requires a small number of parameters. A lumped hydrological model fails to fit measured stream flows. Its limitations are overcome by considering the dependence of the temperature and precipitation data with elevation and the spatial variability in hydrogeomorphological variables with nine sub-basins of uniform parameters. Model parameters are calibrated by fitting stream flow measurements in the Zêzere river. Computed stream flows are highly sensitive to soil thickness, whereas computed groundwater recharge is most sensitive to the interflow and percolation recession coefficients. Interflow is the main component of total runoff, ranging from 41 to 55% of annual precipitation. High interflows are favored by the steep relief of the basin, by the presence of a high permeability soil overlying the fractured low permeability granitic bedrock and by the extensive subhorizontal fracturing at shallow depths. Mean annual groundwater recharge ranges from 11 to 15% of annual precipitation. It has a significant uncertainty due to uncertainties in soil parameters. This methodology proves to be useful to handle the research difficulties regarding a complex mountain basin in a context of data scarcity.  相似文献   

2.
The stable isotopes of oxygen and hydrogen were used to determine the seasonal contributions of precipitation to groundwater recharge at a forested catchment area in the upper North Han River basin, Korea. A comparison of the stable isotopic signatures of groundwater and precipitation indicates that the precipitations which occurred during both the dry and rainy seasons are the important source of groundwater recharge in this region. A stable isotopic signature shown in the stream waters at the upstream reaches is similar to that of groundwaters, indicating that stream waters are mostly fed by groundwater discharge. Reservoir waters in the downstream flood control dams have lower deuterium excess values or d-values compared with those of the upstream waters, indicating a secondary evaporative enrichment. These results can provide a basis for the effective management of groundwater and stream water resources in the North Han River basin.  相似文献   

3.
The major ion hydrochemistry, sodium absorption ratio (SAR), sodium percentage, and isotopic signatures of Hammamet-Nabeul groundwaters were used to identify the processes that control the mineralization, irrigation suitability, and origin of different water bodies. This investigation highlights that groundwater mineralization is mainly influenced by water-rock interaction and pollution by the return flow of irrigation water. The comparison of groundwater quality with irrigation suitability standards proves that most parts of groundwater are unacceptable for irrigation and this long-term practice may result in a significant increase of the salinity and alkalinity in the soils. Based on isotopic signatures, the shallow aquifer groundwater samples were classified into (i) waters with depleted δ18O and δ2H contents, highlighting recharge by modern precipitation, and (ii) waters with enriched stable isotope contents, reflecting the significance of recharge by contaminated water derived from the return flow of evaporated irrigation waters. The deep-aquifer groundwater samples were also classified into (i) waters with relatively enriched isotope contents derived from modern recharge and mixed with shallow-aquifer groundwater and (ii) waters with depleted stable isotope contents reflecting a paleoclimatic origin. Tritium data permit to identify three origins of recharge, i.e., contemporaneous, post-nuclear, and pre-nuclear. Carbon-14 activities demonstrate the existence of old paleoclimatic recharge related to the Holocene and Late Pleistocene humid periods.  相似文献   

4.
Groundwater resources in some parts of the lower section of Shire River valley, Malawi, are not useable for rural domestic water supply due to high salinity. In this study, a combined assessment of isotopic (87Sr/86Sr, δ18O and δ2H) and major ion composition was conducted in order to identify the hydro-geochemical evolution of the groundwater and thereby the causes of salinity. Three major end-members (representing fresh- and saline groundwater, and evaporated recharge) were identified based on major ion and isotopic composition. The saline groundwater is inferred to result from dissolution of evaporitic salts (halite) and the fresh groundwater shows influence of silicate weathering. Conservative mixing models show that brackish groundwater samples result from a three component mixture comprising the identified end-members. Hence their salinity is interpreted to result from mixing of fresh groundwater with evaporated recharge and saline groundwater. On the other hand, the groundwater with low TDS, found at some distance from areas of high salinity, is influenced by mixing of evaporated recharge and fresh groundwater only. Close to the Shire marshes, where there is shallow groundwater, composition of stable isotopes of water indicates that evaporation may also be an important factor.  相似文献   

5.
The stable isotopic characteristics were used together with the total chloride to assess changes in groundwater from recharge zones into the carbonate aquifer in an arid environment. The aquifer under study represents a major source of groundwater and thermal springs in Al-Ain city, which are located at the northern part of Jabal Hafit in the United Arab Emirates (UAE). The relationship between oxygen and hydrogen isotopic composition of groundwater is established and is described by δD?=?2.2δ18O???9.96. The lower slope and y-intercept of groundwater samples relative to the local meteoric waterline suggests that the isotopic enrichment is due to the evaporation of shallow groundwater after recharge occurs. The majority of the shallow groundwater samples have a negative deuterium excess (d-excess) which might be ascribed to high a degree of evaporation, while most of the groundwater samples from deep wells, have a positive value of d-excess which may be related to a low degree of evaporation. The δ18O values of the thermal waters suggest enrichment towards δ18O of the carbonate rocks because of the exchange with oxygen at higher temperatures. A possible mixing between thermal or hot water and shallow groundwater is evident in some samples as reflected by δD vs. Cl and d-excess vs. δ18O plots.  相似文献   

6.
The Yakima River, a major tributary of the Columbia River, is currently overallocated in its surface water usage in part because of large agricultural water use. As a result, groundwater availability and surface water/groundwater interactions have become an important issue in this area. In several sub-basins, the Yakima River water is diverted and applied liberally to fields in the summer creating artificial recharge of shallow groundwater. Major ion, trace element, and stable isotope geochemistry of samples from 26 groundwater wells from a transect across the Yakima River and 24 surface waters in the Kittitas sub-basin were used to delineate waters with similar geochemical signatures and to identify surface water influence on groundwater. Major ion chemistry and stable isotope signatures combined with principal component analysis revealed four major hydrochemical groups. One of these groups, collected from shallow wells within the sedimentary basin fill, displays temporal variations in NO3 and SO4 along with high δ18O and δD values, indicating significant contribution from Yakima River and/or irrigation water. Two other major hydrochemical groups reflect interaction with the main aquifer lithologies in the basin: the Columbia River basalts (high-Na groundwaters), and the volcaniclastic rocks of the Ellensburg Formation (Ca–Mg–HCO3 type waters). The fourth major group has interacted with the volcaniclastic rocks and is influenced to a lesser degree by surface waters. The geochemical groupings constrain a conceptual model for groundwater flow that includes movement of water between underlying Columbia River basalt and deeper sedimentary basin fill and seasonal input of irrigation water.  相似文献   

7.
Deuterium, oxygen-18 and chloride were analyzed for 84 samples from deep and shallow wells, precipitation and the river White Nile to investigate groundwater recharge/discharge relations in the semi-arid central Sudan. Spatial and vertical variation in isotopic signature and chloride concentration in the groundwater show similar patterns and indicate local recharge and evaporative discharge. Progressive decrease in isotopic composition along the regional groundwater flow path demonstrates aquifer continuity down the NW–SE recharge-discharge path. Isotope-heavy recharged water progressively mixes with lighter older groundwater formed during cooler and humid conditions in the late Pleistocene. However, evaporative fractionation in the flow path’s final reach in the southeast re-enriches the isotopic composition and suggests evaporative loss of groundwater as the plausible discharge mechanism. Chloride concentration increases down the gradient from the recharge area and reaches its peak in the discharge zones indicating: lack of recharge from direct infiltration down the gradient, evaporation and prolonged rock/water interaction. Head differences and increased isotopic concentration in the vicinity of the White Nile suggest recharge from the river from subsurface flow. Reduced chloride content and relatively heavier isotopic composition in the deep groundwater beneath the wadi of Khor Abu Habil indicate recharge from the streambed into the deep aquifer.  相似文献   

8.
The reasons for the rapid degradation and salination of the shallow aquifer in the northern Jordan Valley were investigated. Shallow groundwater, surface water and thermal water were sampled from the study area for this purpose. The geochemical mass-balance technique was used to quantify the contribution of different sources, geochemical processes and rock types to the final water composition, applying the NETPATH software package. The isotopic compositions of the water were also investigated. The results suggest three potential recharge sources: the Yarmouk River, the Jordan River, and the Mukheibah thermal water. Evaporation significantly contributes to the current chemistry of the shallow water, as is indicated by the geochemical models and the isotopic results. Tritium analyses indicate that the water is clearly new (less than 50 years). The relatively high values of nitrate in some wells may be of anthropogenic origin.  相似文献   

9.
Hydrochemical and isotopic data of waters from the Zéroud aquifer have been used to potentially provide a means for locating occurrences and to trace movements of a variety of natural and anthropogenic recharge waters in the Zéroud Basin, Central Tunisia. Geochemical data have been measured during the dam water release, from May to September 2005, with a sampling time step of 15 days. An implication of dam water has been demonstrated that is noticeable up along the main flow path to a distance of 10 km far from the injection site. Environmental isotopes 2H, 18O and 3H of water molecule were studied to investigate the effect of dam water on the hydrological system, and an isotope balance was established to compute the contribution of water storage component in groundwater. Based on isotopic mass balance, we assess that an average of 13% of total groundwater in the upper aquifer came from dam water storage. Three distinctive recharge waters in the aquifer can be determined. Water from local rainfall (pre-dam Zéroud River) that infiltrated into the boundaries of the Draa Affane Mountain was easily distinguished from the water influenced by anthropogenic recharge located in the Zéroud right rivulet. Distinguishable isotopic signatures of native wadi Zéroud recharge due to “recent lineal recharge” through the riverbed were also identified.  相似文献   

10.
In the region between Mersin and Tarsus cities, located along the Mediterranean Sea coast in southern Turkey, the demand for groundwater has increased dramatically as the available surface water supplies have already been developed. Fundamental information is required to characterize the existing groundwater system in this area in order to establish a sustainable groundwater-use policy. For this purpose, hydrochemical and environmental isotopic data were collected and integrated with available geological and hydrogeological information to develop a conceptual model of the system. Results, backed up mainly by depleted stable isotope composition and infinitesimal tritium content, suggest that most of the groundwater along the coastal zone is supplied by the neighboring mountain belt while local precipitation has also contributes to aquifer recharge. The validation of the conceptual perspective by a steady-state numerical groundwater flow model reveals that about 90% of the recharge to the aquifer system is supplied by the deep flow of karstic groundwater fed from the Taurus Mountains. Monitoring of changes in the recharge regime of the mountain sector seems to be critical in establishing future groundwater use policies.  相似文献   

11.
黄河三角洲地下水咸化已成为区域最突出的生态环境问题之一。识别地下水补给及盐分来源是有效控制和改善地下水咸化问题的关键。本研究采集了研究区浅层地下水、地表水和海水等不同类型水样,利用离子比、Piper三线图、吉布斯图等方法对八大离子浓度、δD和δ18O 组成、Br和Sr 浓度等进行地下水补给研究与盐分来源辨析。结果表明:(1)黄河三角洲浅层地下水以总溶解性固体(TDS)为338 g/L的咸水为主,地下水水化学类型较为单一,主要为Cl-Na型。(2)三角洲区域地下水以大气降水补给为主,并且在补给过程中经历了不同程度的蒸发作用的影响,黄河现行流路区域地下水主要来源于河水侧渗补给,但浅层地下水含水层水平渗透性较差限制了黄河侧渗补给范围。(3)海洋是黄河三角洲浅层地下水盐分的主要来源,黄河现行流路区域及近岸地下水盐分来源于海水混合,三角洲北部刁口河等古河道区域地下水盐分主要来源于海相蒸发盐淋滤溶解。  相似文献   

12.
Rapid population growth and urbanization has placed a high demand on freshwater resources in southeast costal Tanzania. In this paper, we identify the various sources of groundwater and the major factors affecting the groundwater quality by means of multivariate statistical analyses, using chemical tracers and stable isotope signatures. The results from hierarchical cluster analyses show that the groundwater in the study area may be classified into four groups. A factor analysis indicates that groundwater composition is mainly affected by three processes, accounting for 80.6% of the total data variance: seawater intrusion, dilution of groundwater by recharge, and sewage infiltration. The hydrochemical facies of shallow groundwater was mostly of the Na–Ca–Cl type, although other water types were also observed. The deep groundwater samples were slightly to moderately mineralized and they were of the NaHCO3 type. This water type is induced mainly by dissolution of carbonate minerals and modified by ion exchange reactions. The signal from the stable isotope composition of the groundwater samples corresponded well with the major chemical characteristics. In the shallow groundwater, both high-nitrate and high-chloride concentrations were associated with localized stable isotope enrichments which offset the meteoric isotopic signature. This is inferred to be due to the contamination by influx of sewage, as well as intrusion by seawater. The depleted stable isotope values, which coincides with a chemical signature for the deep aquifer indicates that this deep groundwater is derived from infiltration in the recharge zone followed by slow lateral percolation. This study shows that a conceptual hydrogeochemical interpretation of the results from multivariate statistical analysis (using HCA and FA) on water chemistry, including isotopic data, provides a powerful tool for classifying the sources of groundwater and identifying the significant factors governing the groundwater quality. The derived knowledge generated by this study constitutes a conceptual framework for investigating groundwater characteristics. This is a prerequisite for developing a sound management plan, which is a requirement for ensuring a sustainable exploitation of the deep aquifer water resource in the coastal area of Tanzania.  相似文献   

13.
河套灌区西部浅层地下水咸化机制   总被引:2,自引:0,他引:2       下载免费PDF全文
浅层地下水水位埋深浅、含盐量高,是导致河套灌区土壤次生盐渍化的重要原因.以河套灌区西部地区为研究区,通过对浅层地下水的水化学和氢氧同位素特征分析以及水文地球化学模拟,探讨了灌区浅层地下水的补给来源和主控水-岩作用过程,并定量估算了蒸发作用对浅层地下水含盐量的影响.研究区内浅层地下水为弱碱性咸水,pH为7.23~8.45,总溶解性固体(total dissolved solids,TDS)变化范围为371~7 599 mg/L;随着地下水咸化程度增大,水化学类型由HCO3-Na·Mg·Ca型向Cl-Na型过渡.引黄灌溉和大气降水是浅层地下水的主要补给来源,径流过程中浅层地下水受蒸发作用和植物蒸腾作用影响,地下水化学组分主要来源于蒸发盐溶解和硅酸盐风化水解,并受强烈的蒸发作用和离子交换作用影响.水文地球化学模拟和主成分分析结果显示,蒸发作用和岩盐溶解作用对区内浅层地下水咸化贡献最大,石膏和白云石等矿物的溶解、硅酸盐的水解、Na-Ca离子交换以及局部地形起伏对地下水咸化过程也有较大贡献.   相似文献   

14.
This paper gives an account of the implementation of hydrochemical and isotopic techniques to identify and explain the processes that govern solute exchange in two groundwater-dependent shallow lakes in the Southeastern Pampa Plain of Argentina. Water samples (lakes, streams, spring water and groundwater) for hydrochemical and stable isotopic determination were collected and the main physical–chemical parameters were measured. The combination of stable isotope data with hydrogeochemical techniques was used for the identification of sources and preferential recharge areas to these aquatic ecosystems which allowed the explanation of the lake water origin. The hydrochemical processes which explain Los Padres Lake water chemistry are evaporation from groundwater, CO2 input, calcite dissolution, Na+ release by Ca2+ and Mg2+ exchange, and sulfate reduction. The model that best aligns with La Brava Lake hydrochemical constraints includes: mixing, CO2 and calcite dissolution, cationic exchange with Na+ release and Mg2+ adsorption, and to a lesser extent, Ca/Na exchange. This model suggests that the fractured aquifer contribution to this water body is greater than 50 %. An isotopic-specific fingerprint for each lake was identified, finding a higher evaporation rate for La Brava Lake compared to Los Padres Lake. Isotopic data demonstrate the importance of these shallow lakes as recharge areas to the regional aquifer, becoming areas of high groundwater vulnerability. The Tandilia Range System, considered in many hydrogeological studies as the impermeable bedrock of the Pampean aquifer, acts as a fissured aquifer in this area, contributing to low salinity waters and with a fingerprint similar to groundwater isotopic composition.  相似文献   

15.
The hydrodynamic groundwater data and stable isotopes of water have been used jointly for better understanding of upward leakage and mixing processes in the Djerid aquifer system (southwestern Tunisia). The aquifer system is composed of the upper unconfined Plio-Quaternary (PQ) aquifer, the intermediate (semi-)confined Complex Terminal (CT) aquifer and the deeper confined Continental Intercalaire (CI) aquifer. A total of 41 groundwater samples from the CT and PQ aquifers were collected during June 2001. The stable isotope composition of waters establishes that the CT deep groundwater (depleted as compared to present Nefta local rainfall) is ancient water recharged during late Quaternary time. The relatively recent water in the shallow PQ aquifer is composed of mixed water resulting from upward leakage and sporadic meteoric recharge. In order to characterize the meteoric input signal for PQ in the study area, rainfall water samples were collected during 4 years (2000–2003) at the Nefta meteorological station. Weighted mean values of isotopic contents with respect to rainfall amounts have been computed. Despite the short collection period in the study area, results agree with those found in Beni Abbes (southwestern Algerian Sahara) by Fontes on 9 years of rainfall surveillance. Stable isotopic relationships provide clear evidence of shallow PQ aquifer replenishment by deep CT groundwater. The 18O/upward leakage rate allowed the identification of distinctive PQ waters related to CT aquifer configuration (confined in the western part of the study area, semi-permeable in the eastern part). These trends were confirmed by the relation 18O/TDS. The isotope balance model indicated a contribution of up to 75% of the deep CT groundwater to the upper PQ aquifer in the western study area, between Nefta and Hazoua.  相似文献   

16.
Nitrate pollution of groundwater in the Yellow River delta,China   总被引:8,自引:0,他引:8  
Nitrate pollution of groundwater in the Yellow River delta, China is an important issue related not only to nitrate dispersion and health concerns but also to mass transport and interactions of groundwater, sea, and river waters in the coastal area. The spatial distribution of nitrate, nitrate sources, and nitrogen transformation processes were investigated by field surveys and geochemical methods. Nitrate occurred mainly in shallow layers and had a spatial distribution coinciding with geomorphology and land/water use. Irrigation water from the Yellow River and anthropogenic waste are two main nitrogen sources of nitrate in the delta, and both denitrification and mixing processes could take place according to characteristics identified by ionic and isotopic data.  相似文献   

17.
The use of radioactive isotopes plays a very important role in dating groundwater, providing an apparent age of the systems in the framework of the aquifers conceptual modelling making available important features about the water fluxes, such as recharge, horizontal flow rates and discharge. In this paper, special emphasis has been put on isotopic constraints in the use of δ13C and 14C content as a dating tool in some hot (76 °C) and cold (17 °C) CO2-rich mineral waters discharging in the Vilarelho da Raia–Pedras Salgadas region (N-Portugal). The radiocarbon content determined in these CO2-rich mineral waters (14C activity from 4.3 up to 9.9 pmc) is incompatible with the systematic presence of 3H (from 1.7 to 7.9 TU). The δ13C values of the studied CO2-rich mineral waters indicate that the total C in the recharge waters is being masked by larger quantities of CO2 (14C-free) introduced from deep-seated (upper mantle) sources. This paper demonstrates that a good knowledge of mineral water systems is essential to allow hydrologists to make sound conclusions on the use of C isotopic data in each particular situation.  相似文献   

18.
用氢氧稳定同位素评价闽江河口区地下水输入   总被引:4,自引:0,他引:4       下载免费PDF全文
通过分析闽江河口区降水、地表水和地下水的氢氧稳定同位素特征,揭示降水的环境同位素效应和地下水的形成演化规律,定量评价河口区多种水体的混合过程及地下水输入量。夏季的降水氢氧同位素组成相对贫化,呈现出降雨量效应。在δ18O与δD关系图上,闽江北岸基岩裂隙水、平原及丘陵区浅层地下水均落在福州降水线上,而南岸平原及丘陵区浅层地下水大部分落在福州降水线右下方,其拟合线与降水线交点与5~9月农灌期降水氢氧同位素加权值接近,表明北岸地下水主要来自降水补给,而南岸地下水同时接受灌溉水和降水补给,并在入渗过程中经历了不同程度的蒸发作用。闽江河口段除接受两岸地下水补给外,局部河段还接受断裂带裂隙水补给。将线性端元混合模型、数字高程模型和地下水文分析法结合起来定量评价地下水的输入和各水体的混合过程,结果显示,在河口段淡水区,地下水混合比率上限为8.8%,其中包括0.4%的断裂带裂隙水;在河口段淡咸水混合区,淡水(河水、地下水)和海水的混合比为53:47,其中地下水的保守混合比率为1.7%;枯水期闽江河口段地下水保守输入量为87.0 m3/s,是闽江径流量的12.8%。  相似文献   

19.
An extensive geochemical data base, including analyses of major and minor solutes, mineralogical studies of core samples, and isotopic studies of waters, carbonates and sulfates, has been assembled for evaporites and related rocks in the northern Delaware Basin of southeastern New Mexico. These data were compiled for the geological and hydrological characterization of the Waste Isolation Pilot Plant (WIPP), which is excavated in the evaporites of the Salado Formation. These data were evaluated in order: (1) to determine the stability of the evaporite mineralogy over geological time; (2) to compare the aqueous geochemistry with host rock mineralogy; (3) to delineate the nature and timing of water-rock interactions, such as dissolution and recrystallization; (4) to determine the geological and climatic conditions that have governed groundwater recharge. The resulting synthesis of data and current hypotheses concerning the origin, composition and history of waters in the evaporite rocks and related units of the Delaware Basin provides a tentative conceptual model for the behavior of the water-rock system since the deposition of the evaporites in the Permian. Essential components of this model include: (1) widespread Late Triassic/Early Jurassic evaporite recrystallization; (2) accumulation of deep-basin brines isolated from meteoric recharge; (3) evaporite dissolution by meteoric waters flowing in carbonates and sulfates interbedded in the uppermost Permian section and at the basin margin; (4) lateral rather than vertical infiltration of pre-Holocene meteoric waters in the uppermost Permian section; and (5) climatic conditions presently less conducive to recharge than in the Late Pleistocene.  相似文献   

20.
Gafsa region is one of the most productive artesian basins in Southern Tunisia. It is located in the southwestern part of the country, and its groundwater resources are developed for water supply and irrigation. Proper understanding of the geochemical evolution of groundwater is important for sustainable development of water resources in this region. A hydrogeochemical survey was conducted on the Plio-Quaternary shallow and on the Complex Terminal aquifers system using major (Ca, Mg, Na, SO4, Cl, NO3 and HCO3) and minor (Sr) elements, in order to evaluate the groundwater chemistry patterns and the main mineralization processes occurring in this system. Hydrochemical and isotopic data were used in conjunction with hydrogeological characteristics to investigate the groundwater composition in these aquifers. It has been demonstrated that groundwaters acquire their mineralization principally by water–rock interaction, i.e. dissolution of evaporites (halite/gypsum, pyrite, etc.) and return flow of irrigation waters, and by anthropogenic activities due to the use of nitrogen (N) fertilizers–pesticides in agriculture. The isotopic study of “stable isotopes, radiocarbon and tritium” (Yermani 2002) shows that a paleoclimatic recharge is corroborated by the relatively low carbon-14 activities (5–25.3%) of the referred groundwater group samples, which were interpreted as recharge occurring during the late Pleistocene and the early Holocene periods. The water feedings of these aquifers are mainly provided by infiltration of precipitations, infiltration of irrigation water, lateral feeding from Cretaceous relieves from the South and the North and along recent and fossil drainage networks that constitute major freshwater sources in groundwater tables (Hamed et al., J Environ Protect 1:466–474, 2010a).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号