首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the study was the determination of the natural background levels (NBLs) for the ions Na+, Cl?, SO4 2?, As3+, F?, Fe2+, and Mn2+, in some groundwater bodies of the Campania region (southern Italy). The ??Protocol to evaluate the natural background concentrations?? proposed in 2009 by ISPRA (Italian Institute for Environmental Protection and Research) has been applied to the chemical data set of groundwater of the examined groundwater bodies. These analyses have also been examined following the guidelines of the BRIDGE project (Background cRiteria for the IDentification of Groundwater thrEshold). These approaches to evaluate the Threshold Values (TVs) and the NBLs, based on probability distribution functions, have been applied in many countries by various authors during the last 5?years. Changes applied to ISPRA Protocol in this study concern mainly the preselection criteria, in particular threshold values of specific ions, deriving from the aquifers geochemical features. The preselection criteria of the ISPRA Protocol have been merged with those of the BRIDGE Project in order to define a procedure suitable for the definition of the NBLs in the examined aquifers. The NBL of fluoride for the ??Phlegrean Fields?? and the ??eastern Plain of Naples?? groundwater bodies shows values deeply exceeding the reference value (REF) of 1,500???g/L, ranging between 3,600 and 15,000???g/L. The cause of this very high fluoride content is in the natural features of the aquifers constituted by volcanic and pyroclastic rocks. The volcanic origin of the aquifers is also the reason for the high arsenic content in ??Phlegrean Fields?? groundwater. Here the NBL calculated was about 47???g/L against the drinking water standard value of 10???g/L. The widespread high content of manganese and iron for the groundwater body of the ??eastern Plain of Naples?? is due to the reducing conditions related to the extensive marshlands present in the past. The very high NBL of all the examined ions for the groundwater body of ??Ischia Island?? depends on the existence of a geothermal system.  相似文献   

2.
A step from resource to source vulnerability mapping is presented, based on the European COST Action 620 approach for karst groundwater protection. Guidelines on vulnerability assessment of the horizontal groundwater flow path within the karst saturated zone (K factor) are proposed. By integrating this into the previously existing COP method for intrinsic resource vulnerability mapping, adequate source protection can be assessed. The proposed “Karst saturated zone (K) factor” assessment considers groundwater travel time (t subfactor), connection and contribution to the source (r subfactor) and active conduit or fissured network (n subfactor). The extended COP method was applied in two carbonate aquifers in southern Spain with different geological, hydrogeological and climate settings. The results are coherent with previous research results of the studied areas. Moreover, they are consistent with the occasional groundwater contamination detected in one of the springs. On the other hand, an absence of contamination, despite high risk, justifies the lower degrees of vulnerability assigned to the sources surveyed. The source vulnerability maps obtained can thus be used as a basis for the delineation of protection zones.  相似文献   

3.
The future availability and sustainability of fresh groundwater resources in the South West district of the national capital territory (NCT) Delhi, India, have been projected. Due to a rapid decline in groundwater level and quality, the district has been required by the Government of India to regulate development of groundwater resources. Shallow groundwater is mostly saline and water resources in the area are limited. The methodology applied here involves microzonation of the district in terms of thickness of fresh groundwater and then quantification of present and future availability of freshwater in different freshwater zones, including tentative timescales. The calculation method has been aided by data on historic trends in water level at representative groundwater monitoring stations, located either in fresh groundwater zones or near to them. It is estimated that the presently available 481 million m3 of resources will be reduced to 374 million m3 by year 2007 and to 303 million m3 by the year 2012, and by the year 2022 the district will have only 176 million m3 of available fresh groundwater resources.  相似文献   

4.
The aim of this research was to predict groundwater levels in the Neishaboor plain, Iran, using a ??panel-data?? model. Panel-data analysis endows regression analysis with both spatial and temporal dimensions. The spatial dimension pertains to a set of cross-sectional units of observation. The temporal dimension pertains to periodic observations of a set of variables characterizing these cross-sectional units over a particular time span. Firstly, the available observation wells in the Neishaboor plain were clustered according to their fluctuation behavior using the ??Ward?? method, which resulted in six areal zones. Then, for each cluster, an observation well was selected as its representative, and for each zone, values of monthly precipitation and temperature, as independent variables, were estimated by the inverse-distance method. Finally, the performance of different panel-data regression models such as fixed-effects and random-effects models were investigated. The results showed that the two-way fixed-effects model was superior. The performance indicators for this model (R 2?=?0.97, RMSE?=?0.05?m and ME?=?0.81?m) reveal the effectiveness of the method. In addition, the results were compared with the results of an artificial-neural-network (ANN) model, which demonstrated the superiority of the panel-data model over the ANN model.  相似文献   

5.
The Middle Awash basin is an arid region in Ethiopia where surface waters are scarce and local communities are dependent on groundwater resources for water supply. The complex hydrogeological system of this basin has been conceptualized. Multivariate statistical analysis of hydrochemical variables and water isotopes were used to study the rock?Cwater interaction, geochemical reaction processes and the hydrological link between aquifers. Groundwaters from aquifers of the high-rainfall plateau bounding the rift are slightly mineralized, as well as depleted in ??18O and ??D, and contain 3H above 0.8?TU. This suggests a low degree of rock?Cwater interaction and that groundwater is under recharge from heavy rain that falls on surrounding highlands. On the other hand, groundwaters from aquifers of the rift floor are highly mineralized and show slight enrichment in ??18O and ??D with positive oxygen shift, but contain 3H below 0.8?TU. The positive oxygen shift in rift floor groundwaters may be caused by the isotopic exchange of oxygen between groundwater and aquifer materials during rock?Cwater interaction, whereas the low 3H content could be due to the decay of tritium along relatively long flow paths. The approach utilized in this study may be applicable to understanding hydrogeochemical processes in other complex volcanic terrains.  相似文献   

6.
The stable isotopic characteristics were used together with the total chloride to assess changes in groundwater from recharge zones into the carbonate aquifer in an arid environment. The aquifer under study represents a major source of groundwater and thermal springs in Al-Ain city, which are located at the northern part of Jabal Hafit in the United Arab Emirates (UAE). The relationship between oxygen and hydrogen isotopic composition of groundwater is established and is described by δD?=?2.2δ18O???9.96. The lower slope and y-intercept of groundwater samples relative to the local meteoric waterline suggests that the isotopic enrichment is due to the evaporation of shallow groundwater after recharge occurs. The majority of the shallow groundwater samples have a negative deuterium excess (d-excess) which might be ascribed to high a degree of evaporation, while most of the groundwater samples from deep wells, have a positive value of d-excess which may be related to a low degree of evaporation. The δ18O values of the thermal waters suggest enrichment towards δ18O of the carbonate rocks because of the exchange with oxygen at higher temperatures. A possible mixing between thermal or hot water and shallow groundwater is evident in some samples as reflected by δD vs. Cl and d-excess vs. δ18O plots.  相似文献   

7.
To identify impacts of air pollution, sewage drainage, agricultural production, over-pumping and reservoir storage on groundwater, a field survey was conducted in the Baiyangdian catchment of the North China Plain. Major ions and water isotopes were measured. Results show that hydrological processes and hydrogeochemical evolution of shallow groundwater were greatly disturbed by human activities. Excessive pumping resulted in significant declines of groundwater levels over the study area. This also induced infiltration of surface water into groundwater. A groundwater depression cone was the conflux center of groundwater surrounded by recharge zones including alluvial fans and surface water in alluvial plain. Pumping almost was the only way to discharge groundwater. Emission of SO x and NO x contributed at least 11% of rock weathering by dissolving into infiltrating precipitation. Surface waters containing sewage replenished ambient groundwater with an average mixing ratio of 74 ± 17% due to groundwater level drawdown. As a result, groundwater had elevated concentrations of Na+ and SO4 2? with Na+ exchanged into aquifer sediments. About 29 ± 16% of Na+ was exchanged from groundwater into soil matrix. Agriculture nitrate was high only in the recharge zones. The most important result is that the transformation of the study area from a place rich in water resource into an area lack of water just took several decades with the joint action of the heavily human activities. Our study also indicates that shallow groundwater could sensitively respond to and record environmental changes.  相似文献   

8.
Groundwater/surface-water interaction is receiving increasing focus in Africa due to its importance to ecologic systems and sustainability. In South Africa??s 1998 National Water Act (NWA), water-use licenses, including groundwater, are granted only after defining the Reserve, the amount of water needed to supply basic human needs and preserve some ecological integrity. Accurate quantification of groundwater contributions to ecosystems for successful implementation of the NWA proves challenging; many of South Africa??s aquifers are in heterogeneous and anisotropic fractured-rock settings. This paper reviews the current conceptualizations and investigative approaches regarding groundwater/surface-water interactions in the context of South African policies. Some selected pitfall experiences are emphasized. The most common approach in South Africa is estimation of average annual fluxes at the scale of fourth-order catchments (??500 km2) with baseflow separation techniques and then subtracting the groundwater discharge rate from the recharge rate. This approach might be a good start, but it ignores spatial and temporal variability, potentially missing local impacts associated with production-well placement. As South Africa??s NWA has already been emulated in many countries including Zambia, Zimbabwe and Kenya, the successes and failures of the South African experience dealing with the groundwater/surface-water interaction will be analyzed to guide future policy directions.  相似文献   

9.
Processes controlling hydrogeochemistry in the Yuncheng Basin, China, were characterised using major-ion chemistry, 87Sr/86Sr ratios and ??13C values. Evapotranspiration during recharge increased solute concentrations by factors of ??5?C50 in deep palaeowaters, while higher degrees of evapotranspiration have occurred in shallow, modern groundwater. Aquifer sediments (loess) contain approximately 15 weight% calcite; trends in groundwater HCO3 concentrations and ??13C values (ranging from ?16.4 to ?8.2??) indicate that carbonate weathering is a significant source of DIC. Groundwater 87Sr/86Sr ratios (0.7110?C0.7162, median of 0.7116) are similar to those in both loess carbonate (0.7109?C0.7116) and local rainfall (0.7112), and are significantly lower than Sr in aquifer silicates (0.7184?C0.7251). Despite evidence for substantial carbonate dissolution, groundwater is generally Ca-poor (<?10% of total cations) and Na-rich, due to cation exchange. Saturation with respect to carbonate minerals occurs during or soon after recharge (all calcite and dolomite saturation indices are positive). Subsequent carbonate dissolution in the deep aquifer must occur as a second-stage process, in response to Ca loss (by ion exchange) and/or via incongruent dissolution of dolomite and impure calcite. The latter is consistent with positive correlations between ??13C values and Mg/Ca and Sr/Ca ratios (r 2?=?0.32 and 0.34).  相似文献   

10.
Analytical studies on release/capture zones are often limited to a uniform background groundwater flow. In fact, for basin-scale problems, the undulating water table would lead to the development of hierarchically nested flow systems, which are more complex than a uniform flow. Under the premise that the water table is a replica of undulating topography and hardly influenced by wells, an analytical solution of hydraulic head is derived for a two-dimensional cross section of a drainage basin with horizontal injection/pumping wells. Based on the analytical solution, distributions of hydraulic head, stagnation points and flow systems (including release/capture zones) are explored. The superposition of injection/pumping wells onto the background flow field leads to the development of new internal stagnation points and new flow systems (including release/capture zones). Generally speaking, the existence of n injection/pumping wells would result in up to n new internal stagnation points and up to 2n new flow systems (including release/capture zones). The analytical study presented, which integrates traditional well hydraulics with the theory of regional groundwater flow, is useful in understanding basin-scale groundwater flow influenced by human activities.  相似文献   

11.
We consider the evolution of the ionization zone around Population III stars with M * ?? 25?C200M ?? in protogalaxies with M ?? 107 M ?? at redshifts z = 12, assuming that the dark-energy profile is a modified isothermal sphere. We study the conditions for the growth of instabilities in the ionization zones. The Rayleigh-Taylor and thermal instabilities develop efficiently in the ionization zones around 25?C40M ?? stars, while this efficiency is lower for stars withM * ?? 120M ??. For more massive stars (??200M ??), the flux of ionizing photons is strong enough to considerably reduce the gas density in the ionization zone, and the typical lifetimes of stars (??2 Myr) are insufficient for the growth of instabilities. The gas in a protogalaxy with M ?? 107 M ?? with a 200M ?? central star is completely ionized by the end of the star??s lifetime; in the case of a 120M ?? central star, only one-third of the total mass of gas is ionized. Thus, ionizing photons from stars with M * ? 120M ?? cannot leave protogalaxies with M ? 107 M ??. If the masses of the central stars are 25 and 40M ??, the gas in protogalaxies of this mass remains essentially neutral. We discuss the consequences of the evolution of the ionization zones for the propagation of the envelope after the supernova explosions of the strs and the efficiency of enrichment of the intergalactic medium in heavy elements.  相似文献   

12.
The Drummond Nature Reserve (DNR), a high-value conservation area 100?km northeast of Perth, Western Australia, contains two rare freshwater claypans and a diverse range of rare and threatened vascular plants. Groundwater/surface-water interactions were investigated via isotopic (??18O and ??D) and major ion analysis. The groundwater chemical and isotope analyses combined with nutrient data allowed for the assessment of potential hydrologically derived threats to the claypans and their associated conservation values. Groundwater composition is typically Na?CCl to Na?CMg?CCl; whereas the claypan??s ephemeral fresh surface water is Na?CCl?CHCO3. Distinct ??18O and ??D isotopic signatures for the claypan surface waters and adjoining groundwaters indicate that there currently is minimal connection between these two hydrological systems. Hence the current threat to the freshwater claypans and associated biota from rising saline and acidic groundwater is minimal. Elevated nutrient (N) levels identified in groundwaters along the reserve??s western boundary may be linked to fertiliser regimes employed in adjoining agricultural lands. The ecosystem associated with the southwest claypan is particularly vulnerable to N and P inputs via surface-water flows, which could cause algal blooms, vegetation degradation and weed infestation.  相似文献   

13.
This article presents the results of deterministic and probabilistic seismic hazard analyses (DSHA and PSHA) of the city of Hamedan and its neighboring regions. This historical city is one of the developing cities located in the west of Iran. For this reason, the DSHA and PSHA approaches have been used for the assessment of seismic hazards and earthquake risk evaluation. To this purpose, analyses have been carried out considering the historic and instrumented earthquakes, geologic and seismotectonic parameters of the region covering a radius of 100?km, keeping Hamedan as the center. Therefore, in this research, we studied the main faults and fault zones in the study area and calculated the length and distance of faults from the center of Hamedan. In the next step, we measured the maximum credible earthquake (MCE) and peak ground acceleration (PGA) using both DSHA and PSHA approaches and utilized the various equations introduced by different researchers for this purpose. The results of DSHA approach show that the MCE-evaluated value is 7.2 Richter, which might be created by Nahavand fault activities in this region. The PGA value of 0.56?g will be obtained from Keshin fault. The results of PSHA approach show that the MCE-evaluated value is 7.6 Richter for a 0.64 probability in a 50-year period. The PGA value of 0.45?g will be obtained from Keshin fault. Seismic hazard parameters have been evaluated considering the available earthquake data using Gutenberg?CRichter relationship method. The ??a?? and ??b?? parameters were estimated 5.53 and 0.68, respectively.  相似文献   

14.
Various approaches exist to relate saturated hydraulic conductivity (K s) to grain-size data. Most methods use a single grain-size parameter and hence omit the information encompassed by the entire grain-size distribution. This study compares two data-driven modelling methods??multiple linear regression and artificial neural networks??that use the entire grain-size distribution data as input for K s prediction. Besides the predictive capacity of the methods, the uncertainty associated with the model predictions is also evaluated, since such information is important for stochastic groundwater flow and contaminant transport modelling. Artificial neural networks (ANNs) are combined with a generalised likelihood uncertainty estimation (GLUE) approach to predict K s from grain-size data. The resulting GLUE-ANN hydraulic conductivity predictions and associated uncertainty estimates are compared with those obtained from the multiple linear regression models by a leave-one-out cross-validation. The GLUE-ANN ensemble prediction proved to be slightly better than multiple linear regression. The prediction uncertainty, however, was reduced by half an order of magnitude on average, and decreased at most by an order of magnitude. This demonstrates that the proposed method outperforms classical data-driven modelling techniques. Moreover, a comparison with methods from the literature demonstrates the importance of site-specific calibration. The data set used for this purpose originates mainly from unconsolidated sandy sediments of the Neogene aquifer, northern Belgium. The proposed predictive models are developed for 173 grain-size K s-pairs. Finally, an application with the optimised models is presented for a borehole lacking K s data.  相似文献   

15.
In many cases, the development of groundwater resources to boost agricultural production in dry areas has led to a continuous decline in groundwater levels; this has called into question the sustainability of such exploitation. In developing countries, limited budgets and scarce hydrological data often do not allow groundwater resources to be assessed through groundwater modeling. A case study is presented of a low-cost water-balance approach to groundwater resource assessments in a 1,550 km2 semi-arid region in northwestern Syria. The past development of irrigated agriculture and its effect on the groundwater system were studied by analysis of Landsat images and long-term groundwater level changes, respectively. All components of the groundwater balance were determined. Groundwater recharge was estimated using the chloride mass balance method. Over the past three decades, groundwater levels have declined, on average, 23 m, coinciding with a two-fold increase in the groundwater-irrigated area. Groundwater resources are currently depleted by a value that lies between 9.5×106 and 118×106 m3 year?1, which is larger than can be compensated for by a future decrease in natural discharge or changes in boundary conditions. However, groundwater resources are likely to be sufficient to supply domestic and livestock needs in the area.  相似文献   

16.
A multi-methodological approach based on monitoring and spatio-temporal analysis of groundwater quality changes is proposed. The presented tools are simple, quick and cost-effective to give service to all sorts of users. The chief purpose of the monitoring network is the detection of the piezometric or potenziometric level in the aquifer. The spatial and multi-temporal analysis of usual chemical and physical data provides both an assessment of the spatial vulnerability of the aquifer to seawater intrusion, defining a salinity threshold between fresh groundwater and brackish groundwater and of the water quality trend in terms of salinity. The evaluation of the salinity trend or of salinity-correlated parameters highlights the effects of groundwater mismanagement. The multiparameter logging provides a rapid groundwater quality classification for each well. The whole approach allows evaluating the effects of current management criteria and designing more appropriate management targets. The Apulian karstic coastal aquifers have been selected as a case study (Southern Italy). Three types of aquifer zones can be distinguished: (1) areas with low vulnerability to seawater intrusion, (2) areas with high vulnerability and (3) areas with variable vulnerability in which the salt degradation largely depends on the ability to manage the well discharge. The water quality degradation caused by seawater intrusion appears to be a combined effect of an anomalous succession of drought periods observed from about 1980 onwards and increased groundwater pumping, particularly during drought periods. A management criterion based on aquifer zones is proposed.  相似文献   

17.
Extracted groundwater, 90% of which is used for irrigated agriculture, is central to the socio-economic development of India. A lack of regulation or implementation of regulations, alongside unrecorded extraction, often leads to over exploitation of large-scale common-pool resources like groundwater. Inevitably, management of groundwater extraction (draft) for irrigation is critical for sustainability of aquifers and the society at large. However, existing assessments of groundwater draft, which are mostly available at large spatial scales, are inadequate for managing groundwater resources that are primarily exploited by stakeholders at much finer scales. This study presents an estimate, projection and analysis of fine-scale groundwater draft in the Seonath-Kharun interfluve of central India. Using field surveys of instantaneous discharge from irrigation wells and boreholes, annual groundwater draft for irrigation in this area is estimated to be 212 × 106 m3, most of which (89%) is withdrawn during non-monsoon season. However, the density of wells/boreholes, and consequent extraction of groundwater, is controlled by the existing hydrogeological conditions. Based on trends in the number of abstraction structures (1982–2011), groundwater draft for the year 2020 is projected to be approximately 307 × 106 m3; hence, groundwater draft for irrigation in the study area is predicted to increase by ~44% within a span of 8 years. Central to the work presented here is the approach for estimation and prediction of groundwater draft at finer scales, which can be extended to critical groundwater zones of the country.  相似文献   

18.
The concept of groundwater recharge and quality improvement is often implemented in arid and semi-arid areas with depleted aquifers. Nalgonda district in Andhra Pradesh, India, has endemic fluoride, with concentrations in drinking water varying between 3 and 8?mg/l. Numerous techniques adopted in the recent past for defluoridizing groundwater proved to have limitations. The integrated approach of a geographic information system (GIS) and an analytic hierarchy process (AHP), to identify suitable sites for recharge structures over an area of ??115?km2, is highlighted. Further, to validate the delineated sites, a micro-watershed basin (2?km2) was selected for detailed recharge assessment and site feasibility studies through geophysical and tracer tests. Groundwater velocity (7?m/day) and flow direction through fractures in the shallow horizon were established through tracer experiments. The efficacy of the recommended recharge structures and their impact on groundwater quality were assessed over a period of 5?years, from 2002 to 2007, and the mean groundwater fluoride concentration of?>?3.5?mg/l over the study area was brought down to?<?1.5?mg/l.  相似文献   

19.
A case study was conducted to find the groundwater potential zones in an area between the Serang and Bogowonto rivers, Kulon Progo Regency, Java, Indonesia. The objectives of this study were to delineate the groundwater potential zone based on a number of groundwater parameters that can be surveyed in the field and to incorporate the geomorphological conditions into these data. The geomorphology interpretation was conducted using the landform approach. This approach begins by preparing supporting data such as an Indonesian Topographic Map containing contour and land use data; a regional geology map containing lithology type and geology structures; and soil, climate, and hydrological data. The determination of the geomorphology unit was conducted manually by the visual interpretation of Digital Landsat ETM+ with some image interpretation keys. Four groundwater parameters were surveyed in the field: (a) depth to the water table, (b) water table fluctuation, (c) fluid electrical conductivity to represent groundwater quality, and (d) aquifer thickness. The groundwater potential zones were obtained by overlaying all the groundwater field parameters in terms of weighted overlay methods using the spatial analysis tool in ArcGIS 9.2. During the weighted overlay analysis, rankings were produced for each individual parameter of each groundwater field parameter, and weights were assigned based on the amount of influence they had (i.e., depth to the water table—30 %, water table fluctuation—20 %, aquifer thickness—30 %, and fluid conductivity—20 %). We then found the good, moderate, and poor zones in terms of groundwater potential, which had areas of 5.83, 4.53, and 2.36 km2, respectively. Areas with good groundwater potential are located largely within sand dunes, beach ridges, beaches, and fluviomarine plain landforms, which are characterized by a shallow water table, low fluctuation, thick aquifer, and low EC value. Moderate groundwater zones are generally characterized by poor water quality (high EC value), which is found to some degree in the alluvial plain. The regions with poor groundwater potential are spread mainly across the landforms composed of igneous rock (thin aquifers), such as denudational hills, which act as run-off zones due to their steep slope.  相似文献   

20.
The objective of this study is to integrate geographic information system and bivariate frequency ratio method for the mapping of flowing well zones in the west and southwest parts of the Euphrates river basin of Iraq. Ten groundwater conditioning factors are identified as controlling factors of groundwater movement based on data availability, literature review, and expert’s opinions. The spatial association between flowing well locations and groundwater controlling factors is investigated by means of a probabilistic frequency ratio approach. Seventy percent or 148 wells from an inventory of 211 flowing wells in the study area are randomly selected for training, and the remaining 30 or 63% wells are used for validation of the probabilistic frequency ratio model. The estimated probabilistic ratio values are overlaid and summed to produce the groundwater potential index map. The results reveal that groundwater potential in 128,547 km2 or 84% of the total area is very low to low. The moderate potential zone covers an area of about 11,210 km2 or 7%, while the high and very high potential zones are found in an area of 12,982 km2 or 9% of the study area. Validation of obtaining results by means of a receiver operating characteristic technique reveals that the predictive accuracy of 94% indicating the excellent performance of the proposed approach for spatial zoning of groundwater flowing well boundary at Iraqi desert.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号