喜马拉雅中段高压麻粒岩变质作用、地球化学与年代学
Metamorphism,geochemistry and U-Pb zircon SHRIMP geochronology of the high-pressure granulites in the central Greater Himalayas
-
摘要: 研究的高压麻粒岩发现于西藏亚东以北约40公里的(Zherger-La)、出露在藏南拆离系(STDS)主构造面下盘的高喜马拉雅结晶岩系中,是继喜马拉雅东西构造结的Nanga Barbat、Namjag Barwa和喜马拉雅中段Khatra & Marina地区、定结地区发现的榴辉岩或高压麻粒岩之后,在青藏高原上新近发现的高压麻粒岩.该麻粒岩呈岩片被包裹于花岗质片麻岩中.麻粒岩记录了两期变质作用,早期矿物组合为Grt+Cpx+Pl+Qz,属麻粒岩相变质产物,矿物成分分析显示早期矿物组合达到了平衡,并且没有表现成分扩散;后期矿物组合为Hbl+Pl+Bio或Opx+Pl,指示了较高温但相对压力较低的麻粒岩相退变变质作用,矿物成分分析和结构显示了退变作用没有达到变质平衡.显微结构可以观察到多组变质反应Grt+Cpx+Qtz=Opx+Pl,Grt+Qtz=Opx+Pl,Grt+Cpx+L=Hbl+Pl+Bio+Mt,和Cpx+L=Hbl+Mt.根据矿物平衡关系,利用Grt-Cpx温度计和Grt-Cpx-Pl-Qz压力计估算的早期变质作用温压为T=780~850℃,P=12~15kbar,相对应的地温梯度16℃~18℃/km.借用Hbl-Pl温度计和A1tot in Hbl压力计估算的晚期变质作用温压为T=730~760℃;P=4~6kbar,相当的地温梯度为38℃~50℃/km.变质作用P-T演化呈等温降压轨迹,指示麻粒岩地体从增厚(或俯冲)地壳到减薄增温(或部分熔融)地壳,进而被快速剥露地表的构造过程.初步的地球化学结果表明高压麻粒岩原岩可能相当于大陆拉斑玄武岩.麻粒岩锆石SHRIMP年代学有两组相对集中的年龄分别为98±5 Ma(5 spots)和17.0±0.3 Ma(13 spots).高压麻粒岩的两期变质作用的温度都在700℃以上,略高于锆石U-Pb同位素体系计时封闭温度,推断17 Ma是高压麻粒岩变质后发生折返,随高喜马拉雅结晶岩系剥露冷却的年龄;98.4Ma的测年结果被推测是高压麻粒岩原岩形成的年龄.在喜马拉雅山,高压麻粒岩记录了类似增厚地壳到减薄地壳的转变一方面可能是地壳深部作用机制的转变,另一方面,这种机制与喜马拉雅南坡巨大的降雨量和去顶作用有密切关系,意义重大.
-
关键词:
- 高压麻粒岩 /
- 喜马拉雅 /
- 变质作用 /
- 锆石SHRIMP定年 /
- 亚东
-
Key words:
- High pressure granulite /
- The Greater Himalayas /
- Metamorphism /
- Zircon U-Pb SHRIMP dating /
- Yadong city
-
-
[1] [1]Anderson JL and Smith DR. 1995. The effects of temperature and oxygen fugacity on the Al-in-hornblende barometer: American Mineralogist,80:549-559
[2] [2]Beaumont C, Jamieson RA, Nguyen MN et al. 2001. Himalayan tectonics explined by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature, 414:738 -742
[3] [3]Bladwin JA, Bowring SA, Williams ML. 2003. Petrological and geochronological constraints on high pressure high temperature metamorphism in the Snowbird tectonic zone, Canada. J.Metamorphic Geology, 21:81 -98
[4] [4]Blisniuk Peter M, Hacker Bradley R, Glodny Johannes, Ratschbacher Lothar, Bi Siwen, Wu Zhenhan, McWilliams Michael O, Calvert Andy. 2001. Normal faulting in central Tibet since at least 13.5Myr ago. Nature, 412(6847) :628 -632
[5] [5]Blundy JD and Holland TJB. 1990. Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Contrib. Mineral.Petrpl. , 104:208-224
[6] [6]Brown LD, Zhao Wenjin, Nelson KD, et al. 1996. Bright spots,structure, and magmatism in southern Tibet from INDEPTH seismic reflection profiling. Science, 274:1688-1690
[7] [7]Burbank DW, Blythe AE, Putkonen J et al. 2003. Decoupling of erosion and precipitation in the himalayas. Nature, 426 (6967) :652 -655
[8] [8]Burchfiel BC, C Zhiliang, Hodges KV et al. 1992. The south Tibetan detachment system, Himalayan orogen: Extension contemporaneous with and parallel to shortening in a collisional mountain belt. Spec.Pap. Geol. Soc. Am., 269:51
[9] [9]Chemenda Al, Manrice Mattaner, Alexander N. Bokum. 1996. Continental sudduction and a mechamism of exhumation of highpressure metamorphic rocks: new medolling and field data from Oman, Earth and Planetary Sciences Letters, 143:173-182
[10] [10]DeCelles PG, Gehrels GE, Quade B et al. 2001. Tectonic implications of U-Pb Zircon ages oh the Himalayan orogenic bele in Nepal. Science,288: 497-499
[11] [11]De Sigeyer J, Guillot S, Lardeaux JM, Mascle G. 1997. Glaucophanebearing eclogites in the Tso Morari dome (eastern Ladakh,Northwestern Himalaya). European Journal of Mineralogy, 9:1073- 1083
[12] [12]Ding L, Zhong D. ????. Metamorphic Characteristics and geotectonic implications of the high-pressure granulite from Namche Barwa,eastern Tibet. Sciences in China D, 42:491 -505
[13] [13]Eckert J O Jr. , Newton R C and Kleppa O J. 1991. The evolution of reaction and recalibration of gamet-pyroxene-Plgioclase- quartz geobarometers in the CMAS system by solution calorimetry. Am.Mineral. , 76:148-160
[14] [14]Ellis DJ and Green DH. 1979. An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. Contrib.Mineral. Petrol. , 71:13 -22
[15] [15]Ganguly J. 1979. Garnet and clinopyroxene solid solutions, and geothermometry based on Fe-Mg distribution coefficient. Geochim.Cosmochim. Acta, 43:1021-1029
[16] [16]Grujic D, Hollister LS, Parrish RR. 2002. Himalayan metamorphic sequence as an orogenic channel: insight from Bhitan. Earth and Plnetary Science Letters, 198:177 -191
[17] [17]Guillot S, Allemand P, Le Fort P, Cosca M, Lardeaux JM, De Sigoyer J.1996. Metamorphic evolutions in the Himalayan belt related to the counterclockwise rotation of India. In: Abstracts of the 11 th Himalaya-Karakorum-Tibet Workshop, Flagsta, 56-57
[18] [18]Hammarstrom JM and Zen E-an. 1986. Aluminium in hornblende: an empirical igneous geobarometer. Am. Mineral. , 71:1297-1313
[19] [19]Hodges KV, Hurtado JM, Whipple KX. 2001. Southward extrusion of Tibetan crust and its effect on Himalayan tectonics. Tectonics, 26(6) :799 -809
[20] [20]Hodges K V. 2000. Tectonics of the Himalaya and southern Tibet from two perspectives. Geological Society of America Bulletin, 112:324- 350
[21] [21]Hollister LS, Grissom GC, Peters EK, Stowell HH and Sisson VB. 1987. Confirmation of the empirical correlation of A1 in hornblende with pressure of solidification of calc-alkaline plutons. Am. Mineral. ,72:231-239
[22] [22]Johnson CA, Bohlen SR and Essene EJ. 1983. An evaluation of garnetclinopyroxene geothermometry in granulites. Contrib. Mineral.Petrol. , 84:191-198
[23] [23]Johnson MC and Rutherford MJ. 1989. Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley Caldera (California) volcanic rocks. Geology, 17:837-841
[24] [24]Kretz R. 1983. Symbols for rock formation minerals. American Mineralogist, 68:277 -279
[25] [25]Krogh E Ravna. 2000. The garnet-clinopyroxene Fe2 + Mg geothermometer: an updated calibration. J. Metamorphic Geology,18:211 -219
[26] [26]Krogh EJ. 1988. The garnet-clinopyroxene Fe-Mg geothermometer a reinterpretation of existing experimental data. Contrib. Mineral.Petrol. , 99:44-48
[27] [27]Lin Ding, Dalai Zhong, An Yin et al. 2001. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa). Earth and Plnetary Science Letters, 192:423 -438
[28] [28]Liu Y, Zhong D. 1997. Petrology of high-pressure granulites from the eastern Himalayan syntaxis. Journal of Metamorphic Geology, 15:451 -466
[29] [29]Lombardo B, Pertusati P, Roffo F, Visona D. 1998. First report of eclogites from the Eastern Himalaya: Implications for the Himalayan orogeny. Memorie di Scienze Geologiche dell\' Universita di Padova 50, 67 -68
[30] [30]Lombardo B, Rolfo F. 2000. Two contrasting eclogite types in Himalayas: implications for the Himalayan orogeny. Journal of Geodynamics, 30:37-60
[31] [31]Nelson KD, Zhao Wenjin, Brown LD et al. 1996. Evidence from earthquake data for a partially molten crustal layer in southern Tibet.Science, 274:1692-1694
[32] [32]Newton RC and Perkins D Ⅲ. 1982. Thermodynamic calibration of geobarometers based on the assemblages garnet-Plgioclaseorthopyroxene (clinopyroxene)-quartz. Am. Mineral. , 67: 203 -222
[33] [33]O\' Brien PJ, Zotov N, Law R. 2001. Coesite in Himalayan eclogite and implications for models of India-Asia collision. Geology, 29:435 -438
[34] [34]O\' Brien PJ, Rotzler J. 2003. High-pressure granulite: formation,recovery of peak conditions and implications for tectonics. Journal of Metamorphic Geology, 21:3 -20
[35] [35]Pattison DRM. 2003. Petrogenetic significance of orthopyroxene-free garnet + clinopyroxene + Plgioclase + /-quartz-bearing metabasites with respect to the amphibilite and granulite facies. J.Metamorphic Geol. , 21:21 -34
[36] [36]Rainer Kind, James Ni, Wenjin Zhao et al. 1992. Amphibole composition in tonalite as a function of pressure: An experimental calibration of the Al -in -hornblende barometer. Contributions to Mineralogy and Petrology, 5:65-94
[37] [37]Rushmer T. 1993. Experimental high-pressure granulite: some applications to natural mafic xenolith suites and Archean granulite terrances. Geology, 21:411 -414
[38] [38]Searle MP, Simpson RL, Law RD et al. 2003. The structural geometry,metamorphic and magmatic evolution of the Everest massif, High Himalaya of Nepal-South Tibet. Journal of the Geological Society,London. 160:345-366
[39] [39]Sengnpta P, Dasgupta S, Bhattacharya PK and Hariya Y. 1989. Mixing behavior in quaternary garnet solid solution and an extended Ellis and Green gamet-clinopyroxene geothermometer. Contrib. Mineral.Petrol., 103:223-227
[40] [40]Stephenson BJ, Searle MP, Waters DJ et al. 2001. Structure of the Main Central Thrust zone and extrusion of the High Himalayan deep crustal wedge, Kishtwar-Zanskar Himalaya. Journal of the Geological Society, London. 158:637 -652
[41] [41]Vannay JC, Grasemann B. 2001. Himalayan inverted metamorphism and syn-convergence extension as a consequence of a general shear extrusion. Geol. Mag., 138(3):253-276
[42] [42]Wu Changde, Nelson KD, Wortman G et al. 1998. Yadong cross structure and South Tibetan Detachment in the east central Himalaya (89°-90°E). Tectonics, 17:28-45
[43] [43]李德威,廖群安等.2002.喜马拉雅造山带中段核部杂岩中基性麻粒岩的发现及构造意义.地球科学,27(1):80,96
-
计量
- 文章访问数:
- PDF下载数:
- 施引文献: 0