首页 | 本学科首页   官方微博 | 高级检索  
     

鄂尔多斯晚三叠世湖盆异重流沉积新发现
引用本文:杨仁超,金之钧,孙冬胜,樊爱萍. 鄂尔多斯晚三叠世湖盆异重流沉积新发现[J]. 沉积学报, 2015, 33(1): 10-20. DOI: 10.14027/j.cnki.cjxb.2015.01.002
作者姓名:杨仁超  金之钧  孙冬胜  樊爱萍
作者单位:1.山东省沉积成矿作用与沉积矿产重点实验室 山东科技大学地球科学与工程学院 山东青岛 266590;
基金项目:国家自然科学基金“鄂尔多斯盆地南部晚三叠世异重流沉积机制”(批准号:41372135);国家科技重大专项“中西部重点碎屑岩领域油气富集规律与分布预测”(编号:2011ZX05002-006)”;山东科技大学科研创新团队计划(编号:2010KYTD103)联合资助
摘    要:水下重力流沉积作为重要的油气储层,已成为当前学术研究和油气工业共同关注的焦点.在鄂尔多斯盆地南部延长组长7~长6油层组深湖相沉积中,发现一种不同于砂质碎屑流沉积和滑塌浊积岩的重力流成因砂岩.其沉积特征为一系列向上变粗的单元(逆粒序层)和向上变细的单元(正粒序层)成对出现;每一个粒序层组合内部的泥质含量变化(高-低-高)与粒度变化一致;上部正粒序层与下部逆粒序层之间可见层内微侵蚀界面;砂岩与灰黑色纯泥岩、深灰色粉砂质泥岩互层;粉砂质泥岩层内也表现出类似的粒度变化特征.通过岩芯观察和薄片鉴定,认为该岩石组合形成于晚三叠世深湖背景下的异重流(hyperpycnal flow)沉积.其沉积产物--hyperpycnite(异重岩?)以发育逆粒序和层内微侵蚀面而区别于其它浊积岩,逆粒序代表洪水增强期的产物,上部的正粒序层为洪水衰退期的沉积,逆粒序-正粒序的成对出现代表一次洪水异重流事件沉积旋回;层内微侵蚀面是洪峰期流速足以对同期先沉淀的逆粒序沉积层侵蚀造成的.鄂尔多斯盆地延长组异重岩的发现,不仅为探索陆相湖盆环境下的异重流沉积提供了一个范例,而且对于深水砂体成因研究、储层预测和油气勘探具有理论和现实意义.

关 键 词:异重流   异重岩   重力流沉积   鄂尔多斯盆地   延长组
收稿时间:2013-11-08

Discovery of Hyperpycnal Flow Deposits in the Late Triassic Lacustrine Ordos Basin
YANG RenChao;JIN ZhiJun;SUN DongSheng;FAN AiPing. Discovery of Hyperpycnal Flow Deposits in the Late Triassic Lacustrine Ordos Basin[J]. Acta Sedimentologica Sinica, 2015, 33(1): 10-20. DOI: 10.14027/j.cnki.cjxb.2015.01.002
Authors:YANG RenChao  JIN ZhiJun  SUN DongSheng  FAN AiPing
Affiliation:1.Shandong Provincial Key Laboratay of Depositional Mineralization & Sedimentary Minerals, College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590;2.Petroleum Exploration and Production Research Institute, SINOPEC, Beijing 100083
Abstract:As a major focus of both academic and industrial circles, deep-water sandy sedimentation is not only a record of gravity flows transporting a great deal of continental sediments into basin, but also important reservoir of oil and gas with great economic value. Subaqueous sediment density flows are one of the most important processes for moving sediments from provenance to depositional basins, but people still know little about these subaqueous gravity flows such as slump, sandy debris flow, muddy debris flow, granular flow, fluidized flow, turbidite current, and so on. What is more, they are extremely difficult to monitor directly. A new kind of gravity flow sandstone deposits diferent to sandy debris flow and slumping turbidity current was discovered in the sixth and seventh member of Yanchang Formation (for short, YC6 and YC7 members) in the southern part of the deep lacustrine Ordos Basin. Characteristics of the gravity flow deposits dominated by: ① a series of upward coarsening interval (inverse grading) and upward fining interval (normal grading) always exist in pairs; ② changes of relative high clay content (high-low-high) consistent with that of granularity (fine-coarse-fine) in each size-graded couplet; ③ inner micro-erosion surface sometimes separated a couplet of an upper, upward fining interval and a lower, upward-coarsening interval; ④ sandstone interbedded with dark mudstone and grey siltstone; and ⑤ granularity changes in silty mudstone is similar to that of sandstone. It was considered as flood-generated hyperpycnal flow deposit in the late Triassic deep lacustrine Ordos Basin, based on drill core observation and slice identification. A hyperpycnal flow is a kind of sustainable turbidity current occurring at a flooding river mouth when the concentration of suspended sediment is so large that the density of the river water is greater than that of lake (sea) water. It is turbid river plume that can plunge to form turbidity current where it enters a water body with lesser density and flow at basin floor. Associated with high-suspended concentration, hyperpycnal flow can transport considerable volume of sediment to lacustrine basins. Mapping of individual flow deposits (beds) emphasizes how a single event can contain several flow types, with transformations between flow types. Flow transformation may be from dilute to dense flow, as well as from dense to dilute flow. Turbid river flow must move through transfer belt of a backwater zone, depth-limited plume, and plunging zone before becoming a turbidity current. The transfer belt can extend tens of kilometers offshore and significantly affect the transfer of momentum from river to turbidity current. Sedimentary architecture of deep lacustrine gravity flows in the southern part of the late Triassic Ordos bain consist of sandy debris flow deposits, turbidites and hyperpycnites, interbedded with fine-grained deposits (thin turbidites, hyperpycnites, and deep lacustrine mudstones). Sand and mud rich turbidite systems fed by mountainous “dirty” rivers and slumps at deep angle deltas front. Storm-influenced, hyperpycnal flows generated subaqueous channelized forms at the mouth of the river deltas, which later filled with sand. The typical deposit of hyperpycnal flow in the YC6 and YC7 members in the southern part of the deep lacustrine Ordos Basin is a compound of a basal coarsening-up unit, deposited during the waxing period of discharge, and a top fining-up unit formed during the waning period of discharge. Hyperpycnites differ from other turbidites because of their well-developed inversely graded intervals and intrasequence erosional contacts. Deposits of hyperpycnal flow, hyperpycnite is different to others turbidite as for well developed upward-coarsening interval and inner micro-erosion surface in size-graded couplets. The lower, upward-coarsening interval represents deposition of waxing hyperpycnal flow. The upper, upward-fining interval was generated from waning hyperpycnal flow. The two parts of the size-graded couplet of upward-coarsening interval and upward-fining interval in pairs represent a cycle of event sedimentary of flood-generated hyperpycnal flow. The micro-erosion surface that sometimes divides the two parts of the size-graded couplet resulted from waxing flows of sufficiently high velocity to erode the sediment previously deposited by the same flow. Some bed forms and sediment grading patterns in hyperpycnal- flow deposits can record multiple flow accelerations and decelerations even during a simple single-peaked flood. Because hyperpycnal flow provides one of the most direct connections between terrestrial sediment sources and lacustrine depositional basin, its deposits might preserve an important record across a variety of climatic and tectonic settings. Depositional processes in the late Triassic deep lacustrine in the studied area were dominated by sediment gravity flows originating from gravity induced slumps and mountainous “dirty” river discharged hyperpycnal flow. Gravity flows deposits in the YC6 and YC7 members in the southern part of the deep lacustrine Ordos Basin appear to be primarily controlled by the strong climatic and tectonic forcing parameters. The basin also must be deep enough, in some cases greater than tens of meters, in order for the plume to collapse and form a turbidity current. All in all, controlling factors of hyperpycnal flow include seasonal flood river, deep angle depositional slope, enough water depth and large density difference between basinal water mass and discharged flood river. The discovery of hyperpycnite in Yanchang Formation in the Ordos Basin can not only provide an example to probe hyperpycnal flow deposits in continental lacustrine environment, but also has theoretical and realistic significances to study on genesis of deep water sandbodies, to reservoir forecasting and oil-gas exploration.
Keywords:hyperpycnal flow  hyperpycnite  gravity flow deposits  Ordos Basin  Yanchang Formation
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《沉积学报》浏览原始摘要信息
点击此处可从《沉积学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号