Analysis and application of key influencing factors of CBM well fracturing effects in Shizhuang area, Qinshui basin
-
摘要: 针对沁水盆地柿庄区块煤层气开发过程中低产低效问题,基于大量实际生产资料分析,探讨地质因素和工程因素对煤层气开发效果的影响。结果认为,地应力和煤体结构是影响煤层气井压裂增产效果的关键地质因素。其中,煤层气井压裂过程中,高地应力影响裂缝延伸和支撑,水平主应力差影响裂缝延伸方向和形态;煤体结构较差的煤层在压裂中易形成煤粉,堵塞导流通道,压裂效果变差。影响压裂效果的工程因素主要包括压裂液性能、施工排量、前置液占比和井径扩大率,针对研究区地质概况,提出"2% KCl+清水、阶梯排量注入、前置液量180~240 m3、优化射孔段和水力波及压裂"等系列优化技术,并指出煤层气压裂选井是决定压裂效果和开采经济性的重要环节。将优化技术在柿庄区块北部深部煤层气开发井中加以实践验证,取得很好的增产效果。研究成果及认识对沁水盆地及相同地质条件区域的煤层气开发具有一定的指导意义。Abstract: CBM fracturing effect has many influencing factors. Development effect with the same technology is different in different area. Based on a large amount of geological and engineering data in Shizhuang block, it was found that high geo-stress affects fracture extension and support in CBM fracturing, and difference between horizontal stress affects fracture direction and morphology. Coal seam with poor coal structure can produce large amount of gum during fracturing, which will block the diversion channel and result in poor fracturing effect. Engineering factors affecting fracturing effect mainly include the fracturing fluids performance, displacement, prepad fluid proportion and hole enlargement ratio. Finally, a serie of optimized technique was proposed, including "2%KCl+water, ladder displacement injection, prepad fluid volume 180-240 m3, perforation optimization and hydraulic networks fracturing". It was pointed out that the well pattern of CBM fracturing was important to fracturing effects and economics. Field practice shows that the research results have strong guiding significance for CBM development.
-
-
[1] 傅雪海,秦勇,韦重韬. 煤层气地质学[M]. 徐州:中国矿业大学出版社,2008. [2] 柳迎红,吕玉民,郭广山,等. 柿庄南区块煤层气储层精细评价及其应用[J]. 中国海上油气,2018,30(4):113-119. LIU Yinghong,LYU Yumin,GUO Guangshan,et al. Refined reservoir evaluation and its application in coalbed methane reservoirs in Shizhuangnan block[J]. China Offshore Oil and Gas,2018,30(4):113-119.
[3] 郭广山,邢力仁. 柿庄南煤层气富集主控因素及开发潜力分析[J]. 洁净煤技术,2015,21(4):117-121. GUO Guangshan,XING Liren. Primary geological controlling factors of coalbed methane enrichment and its exploration potential in southern Shizhuang block[J]. Clean Coal Technology,2015,21(4):117-121.
[4] 冯虎,徐志强. 沁水盆地煤层气压裂典型曲线分析及应用[J]. 煤炭工程,2015,47(8):116-118. FENG Hu,XU Zhiqiang. Analysis and application of fracturing typical curve of CBM well in Qinshui basin[J]. Coal Engineering,2015,47(8):116-118.
[5] 刘海龙. 柿庄南煤层气井压裂效果评价及影响因素分析[J]. 北京石油化工学院学报,2014,22(1):20-26. LIU Hailong. An analysis of the fracturing effect and the influencing factors in the case of coalbed methane wells in Shizhuangnan[J]. Journal of Beijing Institute of Petro-chemical Technology,2014,22(1):20-26.
[6] 罗平亚. 关于大幅度提高我国煤层气井单井产量的探讨[J]. 天然气工业,2013,33(6):1-6. LUO Pingya. Discussion on how to significantly improve the single-well productivity of CBM gas wells in China[J]. Natural Gas Industry,2013,33(6):1-6.
[7] 付晓龙,戴俊生,张丹丹,等. 沁水盆地柿庄北区块3号煤层裂缝预测[J]. 煤田地质与勘探,2017,45(1):56-61. FU Xiaolong,DAI Junsheng,ZHANG Dandan,et al. Prediction of fractures of seam No.3 in northern Shizhuang,Qinshui basin[J]. Coal Geology & Exploration,2017,45(1):56-61.
[8] 唐书恒,朱宝存,颜志丰. 地应力对煤层气井水力压裂裂缝发育的影响[J]. 煤炭学报,2011,36(1):65-69. TANG Shuheng,ZHU Baocun,YAN Zhifeng. Effect of crustal stress on hydraulic fracturing in coalbed methane wells[J]. Journal of China Coal Society,2011,36(1):65-69.
[9] 杨延辉,孟召平,陈彦君,等. 沁南-夏店区块煤储层地应力条件及其对渗透性的影响[J]. 石油学报,2015,36(增刊1):91-96. YANG Yanhui,MENG Zhaoping,CHEN Yanjun,et al. Geo-stress condition of coal reservoirs in Qinnan-Xiadian block and its influenes on permeability[J]. Acta Petrolei Sinica,2015,36(S1):91-96.
[10] 钟玲文,员争荣,李贵红,等. 我国主要含煤区煤体结构特征及与渗透性关系的研究[J]. 煤田地质与勘探,2004,32(增刊1):77-81. ZHONG Lingwen,YUAN Zhengrong,LI Guihong,et al. The relationship between coal structure and permeability in main coal bearing areas in China[J]. Coal Geology & Exploration,2004,32(S1):77-81.
[11] 陶传奇,王延斌,倪小明,等. 基于测井参数的煤体结构预测模型及空间展布规律[J]. 煤炭科学技术,2017,45(2):173-177. TAO Chuanqi,WANG Yanbin,NI Xiaoming,et al. Prediction model of coal-body structure and spatial distibution law based on logging parameters[J]. Coal Science and Technology,2017,45(2):173-177.
[12] 刘玉章,付海峰,丁云宏,等. 层间应力差对水力裂缝扩展影响的大尺度实验模拟与分析[J]. 石油钻采工艺,2014,36(4):88-92. LIU Yuzhang,FU Haifeng,DING Yunhong,et al. Large scale experimental simulation and analysis of interlayer stress difference effect on hydraulic fracture extension[J]. Oil Drilling & Production Technology,2014,36(4):88-92.
[13] 陈海汇,范洪富,郭建平,等. 煤层气井水力压裂液分析与展望[J]. 煤田地质与勘探,2017,45(5):33-40. CHEN Haihui,FAN Hongfu,GUO Jianping,et al. Analysis and prospect on hydraulic fracturing fluid used in coalbed methane well[J]. Coal Geology & Exploration,2017,45(5):33-40.
[14] 蔡美峰,何满潮,刘东燕. 岩石力学与工程[M]. 北京:科学出版社,2002. [15] 薛海飞,高海滨,刘惠洲,等. 煤层气压裂缝高控制对排采影响的研究[J]. 中国煤层气,2014,11(4):16-19. XUE Haifei,GAO Haibin,LIU Huizhou,et al. Research on the effect mechanism of fracture height control on CBM production[J]. China Coalbed Methane,2014,11(4):16-19.
[16] 薛海飞. 煤层气定向井压裂特征分析及工艺优化[J]. 中国煤层气,2017,14(1):11-14. XUE Haifei. Feature analysis and process optimization of fracturing in CBM directional well[J]. China Coalbed Methane,2017,14(1):11-14.
[17] 朱庆忠,杨延辉,王玉婷,等. 高阶煤层气高效开发工程技术优选模式及其应用[J]. 天然气工业,2017,37(10):27-34. ZHU Qingzhong,YANG Yanhui,WANG Yuting,et al. Optimal geological-engineering models for highly efficient CBM gas development and their application[J]. Natural Gas Industry,2017,37(10):27-34.
-
期刊类型引用(14)
1. 冯兴凯. 煤储层破裂压力对压裂改造的影响与工程应用. 煤矿安全. 2024(03): 84-90 . 百度学术
2. 张亚飞,张松航,邓志宇,王瑞欣,刘广景. 基于层次分析灰色定权聚类的煤层气开发甜点预测方法——以柿庄北区块为例. 煤炭科学技术. 2024(05): 166-175 . 百度学术
3. 孔祥伟,谢昕,王存武. 基于综合可压指数的煤层气水平井压裂分段参数优化. 油气藏评价与开发. 2024(06): 925-932+941 . 百度学术
4. 王高科,牛国斌,门鹏,李刚. 鄂尔多斯盆地西缘中阶煤储层改造效果分析. 中国煤层气. 2023(05): 12-15 . 百度学术
5. 山拓,孙长彦,王乾,谢相军,范毅刚. 基于煤储层水力压裂动态渗透率变化的压裂效果评价方法及其应用. 煤田地质与勘探. 2022(05): 57-65 . 本站查看
6. 孔鹏,任广聪,薄海江,马新仿,刘羽欣,高海滨. ABAQUS中不同断层带的煤层地应力场反演. 西安石油大学学报(自然科学版). 2022(03): 1-8 . 百度学术
7. 王波,吴鹏,赵刚,张迎春,崔树辉. 临兴区块煤系地层多层合压可行性研究. 煤炭工程. 2022(06): 151-157 . 百度学术
8. 尚立涛,孙逊,郑世琪,杜卫强,刘奕杉,侯腾飞. 俄罗斯煤层气改造技术适应性评价与建议. 石油石化节能. 2022(10): 24-27 . 百度学术
9. 黄中伟,李国富,杨睿月,李根生. 我国煤层气开发技术现状与发展趋势. 煤炭学报. 2022(09): 3212-3238 . 百度学术
10. 陈建,贾秉义,董瑞刚,孙四清,赵继展. 煤矿井下水力压裂加骨料增透瓦斯抽采技术应用. 煤炭工程. 2021(02): 90-94 . 百度学术
11. 冯玉龙,周林元,王乾,刘程瑞. 基于多层次模糊数学法的煤层气井产能综合评价模型. 煤田地质与勘探. 2021(02): 125-132 . 本站查看
12. 刘金森,陈健,马俊强. 不同煤阶煤孔隙特征及其吸附能力响应. 能源与环保. 2020(06): 58-62 . 百度学术
13. 李莹,郑瑞,罗凯,朱延茗,张毅敏. 筠连地区煤层气低产低效井成因及增产改造措施. 煤田地质与勘探. 2020(04): 146-155 . 本站查看
14. 刘子雄. 基于微地震向量扫描的煤层气井天然裂缝监测. 煤田地质与勘探. 2020(05): 204-210 . 本站查看
其他类型引用(6)
计量
- 文章访问数: 176
- HTML全文浏览量: 54
- PDF下载量: 23
- 被引次数: 20