Risk judgment technology of water accumulation in overlying goaf based on plate shell and fracture mechanics theory
-
摘要: 为避免山西临汾胜利煤矿10号煤层采动过程中受上覆6号煤层采空区透水的威胁,利用板壳理论、断裂力学理论分别建立导水裂隙带高度和底板破裂深度的力学模型,计算10号煤层Ⅰ—Ⅵ区开采过程中导水裂隙带高度分别为46.77 m、48.86 m、56.05 m、56.14 m、56.33 m和55.20 m,6号煤层Ⅰ—Ⅳ区的破裂带影响深度分别为1.57 m、1.14 m、1.85 m和1.26 m。通过构建上覆煤层采空区积水危险性类型的划分准则,对10号煤层采动过程中受到上覆6号煤层采空区积水的危险性进行判定分析,结果表明:6号煤层Ⅰ—Ⅳ区对10号煤层的积水危险性类型均为突水型,会对10号煤开采过程产生安全威胁;6号煤层的不可采区域对10号煤层Ⅴ区和Ⅵ区的影响类型为原岩渗透型,对10号煤层Ⅴ区和Ⅵ区的回采不会构成危险性。Abstract: In order to avoid the threat of water penetration from the goaf of overlying seam No.6 during mining seam No.10 in Shengli coal mine of Linfen, Shanxi, plate-shells theory and fracture mechanics theory were used to establish the mechanics model of the development height of water-conducting fissure zone and the rupture depth of the floor. The water conducting fissure zone developmental height in districts I-VI of coal seam 10 is 46.77 m, 48.86 m, 56.05 m, 56.14 m, 56.33 m and 55.20 m, and the rupture zone depth of the floor in districts I-IV areas of coal seam 6 is 1.57 m, 1.14 m, 1.85 m and 1.26 m. By structuring criteria for water accumulation risk classification of overlying goaf and to determine the risk of accumulated water in the goaf of coal seam 6 during the mining process of coal seam10, the determination result shows that the water accumulation risk in districts I-IV areas of coal seam 6 is of the type of water inrush for seam 10, and would threaten the mining of coal seam10. The influence of the unminable area of seam 6 on the districts V-VI of seam 10 is of permeability of primary rock, and wouldn't threaten the coal extraction in the districts V-VI of coal seam 10.
-
-
[1] 钱鸣高. 煤炭的科学开采[J]. 煤炭学报,2010,35(4):529-534. QIAN Minggao. On sustainable coal mining in China[J]. Journal of China Coal Society,2010,35(4):529-534.
[2] 李永明. 水体下急倾斜煤层充填开采覆岩稳定性及合理防水煤柱研究[D]. 徐州:中国矿业大学,2012. [3] 李涛. 陕北煤炭大规模开采含隔水层结构变异及水资源动态研究[D]. 徐州:中国矿业大学,2012. [4] 符辉. 矿井突水及避灾仿真算法的研究与实现[D]. 北京:中国矿业大学(北京),2013. [5] 乔伟,李文平,李小琴. 采场顶板离层水"静水压涌突水"机理及防治[J]. 采矿与安全工程学报,2011,28(1):96-104. QIAO Wei,LI Wenping,LI Xiaoqin. Mechanism of "hydrostatic water-inrush" and countermeasures for water inrush in roof bed separation of a mining face[J]. Journal of Mining and Safety Engineering,2011,28(1):96-104.
[6] 施龙青,辛恒奇,翟培合,等. 大采深条件下导水裂隙带高度计算研究[J]. 中国矿业大学学报,2012,41(1):37-41. SHI Longqing,XIN Hengqi,ZHAI Peihe,et al. Calculating the height of water flowing fracture zone in deep mining[J]. Journal of China University of Mining and Technology,2012,41(1):37-41.
[7] 陈荣华,白海波,冯梅梅. 综放面覆岩导水裂隙带高度的确定[J]. 采矿与安全工程学报,2006,23(2):220-223. CHEN Ronghua,BAI Haibo,FENG Meimei. Determination of the height of water flowing fractured zone in overburden strata above fully mechanized top coal caving face[J]. Journal of Mining & Safety Engineering,2006,23(2):220-223.
[8] 许家林,朱卫兵,王晓振. 基于关键层位置的导水裂隙带高度预计方法[J]. 煤炭学报,2012,37(5):762-769. XU Jialin,ZHU Weibing,WANG Xiaozhen. New method to predict the height of fractured water-conducting zone by location of key strata[J]. Journal of China Coal Society,2012,37(5):762-769.
[9] 王晓振. 松散承压含水层下采煤压架突水灾害发生条件及防治研究[D]. 徐州:中国矿业大学,2012. [10] 桂和荣,周庆富,廖多荪,等. 综放开采最大导水裂隙带高度的应力法预测[J]. 煤炭学报,1997,22(4):375-379. GUI Herong,ZHOU Qingfu,LIAO Duosun,et al. Prediction of maximum height of the fractured zone by stressing method for sub-levels caving mining[J]. Journal of China Coal Society, 1997,22(4):375-379.
[11] 李剑. 含水层下矸石充填采煤覆岩导水裂隙演化机理及控制研究[D]. 徐州:中国矿业大学,2013. [12] 冯梅梅,茅献彪,白海波. 带压开采煤层底板阻隔水性能的力学分析及应用[M]. 徐州:中国矿业大学出版社,2013. [13] 张好,姚多喜,鲁海峰,等. 主成分分析与Bayes判别法在突水水源判别中的应用[J]. 煤田地质与勘探,2017, 45(5):87-93. ZHANG Hao,YAO Duoxi,LU Haifeng,et al. Application of principal component analysis and Bayes discrimination approach in water source identification[J]. Coal Geology & Exploration, 2017,45(5):87-93.
[14] 孙福勋,魏久传,万云鹏,等. 基于Fisher判别分析和质心距评价法的矿井水源判别[J]. 煤田地质与勘探,2017,45(1):80-84. SUN Fuxun,WEI Jiuchuan,WAN Yunpeng,et al. Recognition method of mine water source based on Fisher's discriminant analysis and centroid distance evaluation[J]. Coal Geology & Exploration,2017,45(1):80-84.
[15] 牟林. 水质动态曲线预测在突水水源判别中的应用[J]. 煤田地质与勘探,2016,44(3):70-74. MOU Lin. Application of dynamic curve prediction method in discriminating water-bursting source[J]. Coal Geology & Exploration,2016,44(3):70-74.
[16] 于雯琪,钱家忠,马雷,等. 基于GIS和AHP的谢桥煤矿13-1煤顶板突水危险性评价[J]. 煤田地质与勘探,2016,44(1):69-73. YU Wenqi,QIAN Jiazhong,MA Lei,et al. The water inrush risk assessment of roof of seam 13-1 in Xieqiao mine based on GIS and AHP[J]. Coal Geology & Exploration,2016, 44(1):69-73.
-
期刊类型引用(9)
1. 樊振丽,曹路通,申晨辉,邵远洋. 近距离煤层垂向采空区高静储瞬态充水模式与解危技术. 能源与环保. 2024(05): 1-7 . 百度学术
2. 张勃阳,张宇科,黄虎威,林志斌,李亚超. 基于相似模拟试验的顶板导水裂隙带高度及发育形态研究. 河南理工大学学报(自然科学版). 2024(04): 29-38 . 百度学术
3. 黄东兴,阳元中. 煤层群下煤层开采对上覆采空区积水影响程度研究. 煤炭技术. 2024(09): 68-71 . 百度学术
4. 李金华,郑承先,谷拴成,吴宝林,王雄,宋勇军. 直接顶-基本顶耦合作用下采场顶板断裂力学模型研究与应用. 煤田地质与勘探. 2023(07): 123-129 . 本站查看
5. 李星亮,黄庆享. 水体下特厚煤层综放开采导水裂隙带高度发育特征研究. 采矿与安全工程学报. 2022(01): 54-61 . 百度学术
6. 张兆宏,杨昌武,杨奋飞,王英伟. 煤矿采空塌陷区危险性预测模型构建及其防治措施. 能源与环保. 2022(12): 278-283 . 百度学术
7. 张真宁,庹云升,周诗楠,王涛. 老空区下煤炭资源开采覆岩导水裂隙发育规律数值模拟. 科技风. 2020(08): 204-205 . 百度学术
8. 杨天艺,秦洪岩. 1930煤矿河道下开采地表沉陷预计分析. 煤炭与化工. 2019(06): 48-50+53 . 百度学术
9. 田振焘,邢延团,张同俊. 大采空区强冲击地压条件下低位泄水技术与应用. 煤田地质与勘探. 2019(S1): 70-74 . 本站查看
其他类型引用(5)
计量
- 文章访问数: 151
- HTML全文浏览量: 7
- PDF下载量: 15
- 被引次数: 14