煤岩水力压裂起裂压力和裂缝扩展机制实验研究

张帆, 马耕, 刘晓, 冯丹

张帆, 马耕, 刘晓, 冯丹. 煤岩水力压裂起裂压力和裂缝扩展机制实验研究[J]. 煤田地质与勘探, 2017, 45(6): 84-89. DOI: 10.3969/j.issn.1001-1986.2017.06.014
引用本文: 张帆, 马耕, 刘晓, 冯丹. 煤岩水力压裂起裂压力和裂缝扩展机制实验研究[J]. 煤田地质与勘探, 2017, 45(6): 84-89. DOI: 10.3969/j.issn.1001-1986.2017.06.014
ZHANG Fan, MA Geng, LIU Xiao, FENG Dan. Experimental study on initiation pressure and mechanism of fracture propagation of hydraulic fracturing in coal and rock mass[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(6): 84-89. DOI: 10.3969/j.issn.1001-1986.2017.06.014
Citation: ZHANG Fan, MA Geng, LIU Xiao, FENG Dan. Experimental study on initiation pressure and mechanism of fracture propagation of hydraulic fracturing in coal and rock mass[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(6): 84-89. DOI: 10.3969/j.issn.1001-1986.2017.06.014

 

煤岩水力压裂起裂压力和裂缝扩展机制实验研究

基金项目: 

河南省教育厅科学技术研究重点项目(13A440320);2014年度安全生产重大事故防治关键技术重点科技项目(Henan-066-2013AQ);2015年安全生产重大事故防治关键技术重点科技项目(Henan-0007-2015AQ)

详细信息
    作者简介:

    张帆(1990-),男,山西长治人,博士研究生,从事煤层气(瓦斯)抽采理论与技术等研究工作.E-mail:379591198@qq.com

  • 中图分类号: TD313

Experimental study on initiation pressure and mechanism of fracture propagation of hydraulic fracturing in coal and rock mass

Funds: 

Key Project of Science and Technology Research of Henan Provincial Department of Education(13A440320)

  • 摘要: 为了研究煤岩水力压裂的起裂压力和水力压裂裂缝扩展规律,采用型煤试样,利用自主研发的水力压裂实验系统,参照现场压裂施工制定了“施加三向应力-顶部注水”的煤岩水力压裂物理模拟实验方案并开展了水力压裂实验,分析了不同条件下泵注压力和水力压裂裂缝。实验结果表明:压裂液泵注排量越大,起裂压力越大。三向应力满足最大水平主应力σH > 垂向应力σv > 最小水平主应力σh,水力压裂裂缝沿着垂直于σh的方向扩展。σvσh一定,随着σH的增大,煤岩起裂压力先增大后减小,水力压裂裂缝扩展路径越平直。当σH远大于σvσh时,水力压裂裂缝扩展路径越复杂,分叉缝角度越大。研究结果可为煤岩水力压裂理论的完善提供一定的参考和借鉴。
    Abstract: To study the hydraulic fracturing initiation pressure and mechanism of fracture propagation in coal and rock mass, the physical simulation experiment program "exerting three-dimensional stresses-injecting fluid from the top" of coalbed hydraulic fracturing was established based on engineering applications by using briquette samples and self-developed hydraulic fracturing testing system. According to the above program combining the existing experimental conditions, the water pressure and hydraulic fracture were analyzed under varied conditions. The experimental results show that initiation pressure increases in the process of increasing flow rate. Hydraulic fractures propagate along the direction perpendicular to σh under the condition of σH > σv > σh. With the increase of σH, the initiation pressure of coal rock increases at first and then decreases when σv and σh are constant, in addition, the fracture propagation path becomes more straight. As σH is much larger than σv and σh, the fracture propagation path gets more complex and the angle of bifurcate fractures is larger. The results are of significance and importance for the improvement of hydraulic fracturing theory in coal rock mass.
  • [1] 林柏泉. 矿井瓦斯防治理论与技术[M]. 第二版. 徐州:中国矿业大学出版社,2010.
    [2] 谢和平,周宏伟,薛东杰,等. 我国煤与瓦斯共采:理论、技术与工程[J]. 煤炭学报,2014,39(8):1391-1397.

    XIE Heping,ZHOU Hongwei,XUE Dongjie,et al. Theory, technology and engineering of simultaneous exploitation of coal and gas in China[J]. Journal of China Coal Society,2014,39(8):1391-1397.

    [3] 程远平,张晓磊,王亮. 地应力对瓦斯压力及突出灾害的控制作用研究[J]. 采矿与安全工程学报,2013,30(3):408-414.

    CHENG Yuanping,ZHANG Xiaolei,WANG Liang. Controlling effect of ground stress on gas pressure and outburst disaster[J]. Journal of Mining & Safety Engineering,2013,30(3):408-414.

    [4] 吕闰生,倪小明,刘高峰,等. 煤层气井水力压裂有效消突边界物理模型[J]. 煤炭学报,2016,41(9):2273-2280.

    LYU Runsheng,NI Xiaoming,LIU Gaofeng,et al. A physical model of outburst elimination boundary after hydraulic fracturing in coalbed methane well[J]. Journal of China Coal Society, 2016,41(9):2273-2280.

    [5] 林柏泉,孟杰,宁俊,等. 含瓦斯煤体水力压裂动态变化特征研究[J]. 采矿与安全工程学报,2012,29(1):106-110.

    LIN Baiquan,MENG Jie,NING Jun,et al. Research on dynamic characteristics of hydraulic fracturing in coal body containing gas[J]. Journal of Mining & Safety Engineering,2012,29(1):106-110.

    [6] 陶云奇,刘晓,蔺海晓. 煤矿井下钻孔吞吐压裂增透抽采瓦斯技术研究[J]. 煤炭科学技术,2014,42(7):45-48.

    TAO Yunqi,LIU Xiao,LIN Haixiao. Study on gas drainage technology of throughput fracturing permeability improvement by borehole in underground mine[J]. Coal Science and Technology,2014,42(7):45-48.

    [7] 蔡峰,刘泽功. 深部低透气性煤层上向穿层水力压裂强化增透技术[J]. 煤炭学报,2016,41(1):113-119.

    CAI Feng,LIU Zegong. Simulation and experimental research on upward cross-seams hydraulic fracturing in deep and lowpermeability coal seam[J]. Journal of China Coal Society,2016, 41(1):113-119.

    [8] 石欣雨,文国军,白江浩,等. 煤岩水力压裂裂缝扩展物理模拟实验[J]. 煤炭学报,2016,41(5):1145-1151.

    SHI Xinyu,WEN Guojun,BAI Jianghao,et al. A physical simulation experiment on fracture propagation of coal petrography in hydraulic fracturing[J]. Journal of China Coal Society, 2016,41(5):1145-1151.

    [9] 李明,郭培军,梁力,等. 含有硬包裹体分布的非均质岩石水力压裂特性研究[J]. 岩土力学,2016,37(11):1-7.

    LI Ming,GUO Peijun,LIANG Li,et al. Study on the characteristic of hydraulic fractures in heterogeneous rock material with hard inclusions distributed[J]. Rock and Soil Mechanics,2016, 37(11):1-7.

    [10] 严成增,郑宏,孙冠华,等. 基于FDEM-Flow研究地应力对水力压裂的影响[J]. 岩土力学,2016,37(1):237-246.

    YAN Chengzeng,ZHENG Hong,SUN Guanhua,et al. Effect of in-situ stress on hydraulic fracturing based on FDEM-Flow[J]. Rock and Soil Mechanics,2016,37(1):237-246.

    [11] 孙可明,张树翠,辛利伟. 页岩气储层层理方向对水力压裂裂纹扩展的影响[J]. 天然气工业,2016,36(2):45-51.

    SUN Keming,ZHANG Shucui,XIN Liwei. Impacts of bedding direction of shale gas reservoirs on hydraulically induced crack propagation[J]. Natural Gas Industry,2016,36(2):45-51.

    [12]

    GUO Tiankui,ZHANG Shicheng,QU Zhanqing,et al. Experimental study of hydraulic fracturing for shale by stimulated reservoir volume[J]. Fuel,2014,128:373-380.

    [13] 郭印同,杨春和,贾长贵,等. 页岩水力压裂物理模拟与裂缝表征方法研究[J]. 岩石力学与工程学报,2014,33(1):52-59.

    GUO Yintong,YANG Chunhe,JIA Changgui,et al. Research on hydraulic fracturing physical simulation of shale and fracture characterization methods[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(1):52-59.

    [14] 张双斌,苏现波,郭红玉,等. 煤层气井排采过程中压裂裂缝导流能力的伤害与控制[J]. 煤炭学报,2014,39(1):124-128.

    ZHANG Shuangbin,SU Xianbo,GUO Hongyu,et al. Controlling the damage of conductivity of hydraulic factures during the process of drainage in coalbed methane well[J]. Journal of China Coal Society,2014,39(1):124-128.

    [15]

    WANG Tao,ZHOU Weibo,CHEN Jinhua,et al. Simulation of hydraulic fracturing using particle flow method and application in a coal mine[J]. International Journal of Coal Geology,2014, 121(1):1-13.

    [16] 马耕,苏现波,蔺海晓,等. 围岩-煤储层缝网改造增透抽采瓦斯理论与技术[J]. 天然气工业,2014,34(8):53-60.

    MA Geng,SU Xianbo,LIN Haixiao,et al. A theory and technical system of permeability enhancement to extract coal gas by fracture network stimulating in adjacent rocks and coal reservoirs[J]. Natural Gas Industry,2014,34(8):53-60.

    [17]

    HOSSAIN M M,RAHMAN M K,RAHMAN S S. Hydraulic fracture initiation and propagation roles of wellbore trajectory, perforation and stress regimes[J]. Journal of Petroleum Science and Engineering,2000,27:129-149.

    [18] 邱德才,武贵生,陈冬冬,等. 复合水力化增透技术在低渗突出煤层瓦斯抽采中的应用[J]. 煤田地质与勘探,2015,43(1):13-16.

    QIU Decai,WU Guisheng,CHEN Dongdong,et al. Compound-hydraulic technology enhancing permeability in lowly permeable and outburst-prone seam[J]. Coal Geology & Exploration,2015,43(1):13-16.

    [19] 程亮,卢义玉,葛兆龙,等. 倾斜煤层水力压裂起裂压力计算模型及判断准则[J]. 岩土力学,2015,36(2):444-450.

    CHENG Liang,LU Yiyu,GE Zhaolong,et al. Initiation pressure calculation model and judgment criterion for hydraulic fracturing of inclined coal seam[J]. Rock and Soil Mechanics,2015,36(2):444-450.

    [20] 辛新平,高建良,马耕. 穿层孔吞吐压裂水力强化抽采技术研究及应用[J]. 采矿与安全工程学报,2014,31(6):995-1000.

    XIN Xinping,GAO Jianliang,MA Geng. Research and application of gas drainage with hydraulic reinforcement of water stimulation fracture in borehole through strata[J]. Journal of Mining & Safety Engineering,2014,31(6):995-1000.

    [21] 许江,刘义鑫,尹光志,等. 煤岩剪切-渗流耦合试验装置研制[J]. 岩石力学与工程学报,2015,34(增刊1):2987-2995.

    XU Jiang,LIU Yixin,YIN Guangzhi,et al. Development of shear-flow coupling test device for coal rock[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(S1):2987-2995.

  • 期刊类型引用(17)

    1. 单永泉,高登彦,陈建华. 坚硬顶板分段压裂弱化解危技术及应用. 煤矿安全. 2025(03): 177-187 . 百度学术
    2. 陆泳鑫,胡胜勇,李国富,武玺,路佳旗,杨育涛,张村,苏燕. 采空区下伏煤层水力压裂试验研究与应用. 煤炭科学技术. 2024(04): 231-242 . 百度学术
    3. 李小刚,唐政,朱静怡,杨兆中,李扬,谢鹏,廖宇. 深层煤岩气压裂研究进展与展望. 天然气工业. 2024(10): 126-139 . 百度学术
    4. 熊冬,贺甲元,马新仿,曲兆亮,郭天魁,马诗语. 深部煤及顶底板不同射孔位置条件下的压裂模拟——以鄂尔多斯盆地某气田8号深部煤层为例. 煤炭学报. 2024(12): 4897-4914 . 百度学术
    5. 解晨阳,刘博,宋晨鹏. 缝槽形态对水力压裂效果的影响. 西安科技大学学报. 2023(01): 127-134 . 百度学术
    6. 冯国瑞,樊一江,王朋飞,郭军,文晓泽,钱瑞鹏,朱林俊,张鹏飞. 不同材料组合及配比下类岩石试件单轴压缩损伤破坏过程分析. 岩石力学与工程学报. 2023(S1): 3377-3390 . 百度学术
    7. 赵凯凯,王磊,姜鹏飞,孙晓冬,冯彦军,郑仰发. 水力压裂裂缝空间转向特征三维数值模拟研究. 采矿与岩层控制工程学报. 2023(03): 32-42 . 百度学术
    8. 杨俊哲,王振荣,吕情绪,杨森,李果,郑凯歌. 坚硬顶板超前区域治理技术在神东布尔台煤矿的应用. 煤田地质与勘探. 2022(02): 17-23 . 本站查看
    9. 范明福. 煤层气顶板水平井穿层压裂技术的应用. 天然气勘探与开发. 2022(02): 122-132 . 百度学术
    10. 徐学标. 伊田煤业坚硬顶板水力压裂弱化技术研究. 山东煤炭科技. 2022(08): 93-95 . 百度学术
    11. 杨典森,周云,周再乐. 含界面储层水力压裂试验与数值模拟研究进展. 岩石力学与工程学报. 2022(09): 1771-1794 . 百度学术
    12. 郭修成. 单轴应力下的孔洞-裂隙扩展规律数值模拟. 煤田地质与勘探. 2020(02): 179-186+194 . 本站查看
    13. 王志荣,宋沛,温震洋,陈玲霞. 裂隙性储层水平井起裂行为的控制. 工程科学学报. 2020(11): 1449-1456 . 百度学术
    14. 张帆,马耕,刘晓,陶云奇,冯丹. 基于不同应力的水力裂缝形态试验研究. 煤矿安全. 2019(01): 1-3+8 . 百度学术
    15. 李国营,张呈祥,杨勇. 水压裂技术在某“三硬”结构煤层顶板治理中的应用. 现代矿业. 2019(01): 56-59+72 . 百度学术
    16. 贾慧敏,胡秋嘉,祁空军,刘春春,樊彬,何军. 高阶煤煤层气直井低产原因分析及增产措施. 煤田地质与勘探. 2019(05): 104-110 . 本站查看
    17. 王建利,陈冬冬,贾秉义. 韩城矿区碎软煤层顶板梳状孔水力压裂瓦斯抽采工程实践. 煤田地质与勘探. 2018(04): 17-21 . 本站查看

    其他类型引用(15)

计量
  • 文章访问数:  172
  • HTML全文浏览量:  7
  • PDF下载量:  29
  • 被引次数: 32
出版历程
  • 收稿日期:  2016-12-09
  • 发布日期:  2017-12-24

目录

    /

    返回文章
    返回