Huan Zeng, Maining Ma, Yongbing Li, Jialei Zhang, Hao Guan, Xiao Li. The effect of antigorite dehydration on velocity structure and water migration in subduction zones[J]. Geoscience Frontiers, 2025, 16(1): 101923. DOI: 10.1016/j.gsf.2024.101923
Citation: Huan Zeng, Maining Ma, Yongbing Li, Jialei Zhang, Hao Guan, Xiao Li. The effect of antigorite dehydration on velocity structure and water migration in subduction zones[J]. Geoscience Frontiers, 2025, 16(1): 101923. DOI: 10.1016/j.gsf.2024.101923

The effect of antigorite dehydration on velocity structure and water migration in subduction zones

Funds: 

This study was supported by the National Natural Science Foundation of China (Grant No. 42174114, 41674089).

More Information
  • Corresponding author:

    Maining Ma,E-mail:mamn@ucas.ac.cn

  • Received Date: April 25, 2024
  • Revised Date: June 17, 2024
  • Accepted Date: August 30, 2024
  • Published Date: September 01, 2024
  • The water migration in subduction zones, primarily driven by the phase transition in hydrous minerals, can give rise to hydrated regions with reduced velocity. A fundamental element in comprehending and deciphering these low-velocity zones revolves around acquiring insights into the stability and elasticity of relevant hydrous minerals. As one of the main water carriers in shallow areas, antigorite can dehydrate to form talc, forsterite, and fluid (talc-bearing peridotites) in deep areas of subduction zones, and then the talc thus serves as one of the minerals that can bring water to the deep Earth. Here, the elasticity of talc up to 24 GPa and forsterite up to 12 GPa are calculated by using the first principles method. The result supposes that the talc structure transforming from talc I to talc II is at a pressure between 6 GPa and 8 GPa, impacting the trend of elastic wave velocity in response to pressure. Furthermore, the elastic wave velocity of forsterite can be significantly affected by iron concentration. Meanwhile, a variation velocity model with antigorite consumption and talc content is set up for talc-bearing serpentinized peridotite based on the elastic properties of talc and forsterite in this study, and antigorite in Wang et al. (2022). The results of our model demonstrate a decrease in the low-velocity anomaly in subduction zones, particularly in deep regions or areas with higher initial serpentinization degrees. The results also suggest that the mode of antigorite dehydration can diminish the estimation of water content transported to depths of subduction zones, such as the Mariana Trench and Northern Japan subduction zones. The mode of antigorite dehydration thus provides a useful tool for constraining the composition, seismic velocity structure, and water migration in subduction zones.
  • [1]
    Abers, G., van Keken, P., Hacker, B., 2017. The cold and relatively dry nature of mantle forearcs in subduction zones. Nat. Geosci. 10, 333-337, https://doi.org/10.1038/ngeo2922.
    [2]
    Aizawa, Y., Ito, K., Tatsumi, Y., 2001. Experimental determination of compressional wave velocities of olivine aggregate up to 1000℃ at 1 GPa. Tectonophysics 339, 473-478.
    [3]
    Allen, D., Seyfried, Jr. W., 2003. Compositional controls on vent fluids from ultramafic-hosted hydrothermal systems at mid-ocean ridges: An experimental study at 400℃, 500bars. Geochim. Cosmochim. Acta 67(8), 1531-1542.
    [4]
    Bailey, E., Holloway, J., 2000. Experimental determination of elastic properties of talc to 800℃, 0.5 GPa; calculations of the effect on hydrated peridotite, and implications for cold subduction zones. Earth Planet. Sci. Lett. 183, 487-498, https://doi.org/10.1016/S0012-821X(00)00288-0.
    [5]
    Bauer, J.F., Sclar, C.B., 1981. The 10-Å phase in the system MgO-SiO2-H2O. American Mineralogist 66, 576-585.
    [6]
    Bezacier, L., Reynard, B., Cardon, H., Montagnac, G., Bass, J.D., 2013. High-pressure elasticity of serpentine and seismic properties of the hydrated mantle wedge. J. Geophys. Res.: Solid Earth 118(2), 527-535, https://doi.org/10.1002/jgrb.50076.
    [7]
    Bie, L., Hicks, S., Rietbrock, A., Goes, S., Collier, J., Rychert, C., Harmon, N., Maunder, B., Consortium, V., 2022. Imaging slab-transported fluids and their deep dehydration from seismic velocity tomography in the Lesser Antilles subduction zone. Earth Planet. Sci. Lett. 586, 117535.
    [8]
    Bose, K., Ganguly, J., 1995. Experimental and theoretical studies of the stabilities of talc, antigorite and phase A at high pressures with applications to subduction processes. Earth Planet. Sci. Lett. 136, 109-121, https://doi.org/10.1016/0012-821X(95)00188-I.
    [9]
    Bostock, M., Hyndman, R., Rondenay, S., Peacock, S.M., 2002. An inverted continental Moho and serpentinization of the forearc mantle. Nature 417(6888), 536-538, https://doi.org/10.1038/417536a.
    [10]
    Bostroem, D., 1987. Single-crystal X-ray diffraction studies of synthetic Ni-Mg olivine solid solutions. Am. Mineral. 72(9-10), 965-972.
    [11]
    Cai, C., Wiens, D., Shen, W., Eimer, M., 2018. Water input into the Mariana subduction zone estimated from ocean-bottom seismic data. Nature 563(7731), 389-392, https://doi.org/10.1038/s41586-018-0655-4.
    [12]
    Chen, Z., Du, J., Zhou, W., Liu, Y., Li, Y., 2009. Wave velocity and attenuation characteristics of Gabbro at 100~300℃ and 0.5 ~ 4.0 GPa. Chinese Journal of High Pressure Physics 23(5), 338-344 (in Chinese with English abstract).
    [13]
    Chichagov, A., 1990. Information-calculating system on crystal structure data of minerals. Kristallographiya 35, 610-616.
    [14]
    Christensen, N., 2004. Serpentinites, peridotites, and seismology. Int. Geol. Rev. 46, 795-816.
    [15]
    Debret, B., Andreani, M., Muñoz, M., Bolfan-Casanova, N., Carlut, J., Nicollet, C., Schwartz, S., Trcera, N., 2014. Evolution of Fe redox state in serpentine during subduction. Earth Planet. Sci. Lett. 400, 206-218, https://doi.org/10.1016/j.epsl.2014.05.038.
    [16]
    Deschamps, F., Godard, M., Guillo, S., Hattori, K., 2013. Geochemistry of subduction zone serpentinites: A review. Lithos 178, 96-172, https://doi.org/10.1016/j.lithos.2013.05.019.
    [17]
    Deshon, H., Schwartz, S., 2004. Evidence for serpentinization of the forearc mantle wedge along the Nicoya Peninsula, Costa Rica. Geophys. Res. Lett. 31(21), 163-183, https://doi.org/10.1029/2004GL021179.
    [18]
    Downs, R.T., Zha, C.-S., Duffy, T.S., Finger, L.W., 1996. The equation of state of forsterite to 17.2 GPa and effects of pressure media. Am. Mineral. 81, 51-55.
    [19]
    Evans, B., 2004. The serpentinite multisystem revisited: Chrysotile is metastable. Int. Geol. Rev. 46(6), 479-506.
    [20]
    Evans, B.W., Johannes, W., Oterdoom, H., Trommsdorff, V., 1976. Stability of chrysotile and antigorite in the serpentinite multisystem. Schweiz. mineral. petrogr. Mitt. 56, 79-93.
    [21]
    Faccenda, M., Burlini, L., Gerya, T.V., Mainprice, D., 2008. Fault-induced seismic anisotropy by hydration in subducting oceanic plates. Nature 455, 1097-1100, https://doi.org/10.1038/nature07376.
    [22]
    Fan, D.W., Fu, S.Y., Lu, C., Xu, J.G., Zhang, Y.Y., Tkachev, S.N., Prakapenka, V.B., Lin, J.-F., 2020. Elasticity of single-crystal Fe-enriched diopside at high-pressure conditions: Implications for the origin of upper mantle low-velocity zones. Am. Mineral. 105(3), 363-374.
    [23]
    Fumagalli, P., Stixrude, L., Poli, S., Snyder, D., 2001. The 10-Å phase: a high-pressure expandable sheet silicate stable during subduction of hydrated lithosphere. Earth Planet. Sci. Lett. 186(2), 125-141.
    [24]
    Gatta, G.D., Merlini, M., Valdrè, G., Liermann, H., Nénert, G., Rothkirch, A., Kahlenberg, V., Pavese, A., 2013. On the crystal structure and compressional behavior of talc: a mineral of interest in petrology and material science. Phys Chem Minerals 40 (2), 145-156, https://doi.org/10.1007/s00269-012-0554-4.
    [25]
    Gleason, A.E., Parry, S.A., Pawley, A.R., Jeanloz, R., Clark, S.M., 2009. Pressure-temperature studies of talc plus water using X-ray diffraction. Am. Mineral. 93(7), 1043-1050, https://doi.org/10.2138/am.2008.2742.
    [26]
    Grevemeyer, I., Tiwari, V., 2006. Overriding plate controls spatial distribution of megathrust earthquakes in the Sunda-Andaman subduction zone. Earth Planet. Sci. Lett. 251, 199-208, https://doi.org/10.1016/j.epsl.2006.08.021.
    [27]
    Hacker, B., Abers, G., Peacock, S., 2003. Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents. J. Geophys. Res.: Solid Earth 108(B1), 2169-9313, https://doi.org/10.1029/2001JB001127.
    [28]
    Henjes-Kunst, F., Altherr, R., 1992. Metamorphic petrology of xenoliths from Kenya and Northern Tanzania and implications for geotherms and lithospheric structures. J. Petrol. 33(5), 1125-1156.
    [29]
    Higo, Y., Inoue, T., Li, B.S., Irifune, T., Liebermann, R.C., 2006. The effect of iron on the elastic properties of ringwoodite at high pressure. Phys. Earth Planet. Inter. 159 (3-4), 276-285.
    [30]
    Hohenberg, P., Kohn, W., 1964. Inhomogeneous electron gas. Phys. Rev. B 136, 864-871, https://doi.org/10.1007/s002149900030.
    [31]
    Horn, C., Bouilhol, P., Skemer, P., 2020. Serpentinization, deformation, and seismic anisotropy in the subduction mantle wedge. Geochem. Geophys. Geosyst. 21, e2020GC008950, https://doi.org/10.1029/2020GC008950.
    [32]
    Hyndman, R., Peacock, S., 2003. Serpentinization of the forearc mantle. Earth Planet. Sci. Lett. 212(3-4), 417-432, https://doi.org/10.1016/S0012-821X(03)00263-2.
    [33]
    Jackson, I., Liebermann, R., Ringwood, A., 1978. The elastic properties of (MgxFe1-x)O solid solutions. Phys. Chem. Minerals 3(1), 11-31.
    [34]
    Ji, S.C., Shao, T.B., Michibayashi, K., Long, C.X., Wang, Q., Kondo, Y., Zhao, W.H., Wang, H.C., Salisbury, M.H., 2013. A new calibration of seismic velocities, anisotropy, fabrics, and elastic moduli of amphibole-rich rocks. J. Geophys. Res.: Solid Earth 118(9), 4699-4728, https://doi.org/10.1002/jgrb.50110.
    [35]
    Kamiya, S., Kobayashi, Y., 2000. Seismological evidence for the existence of serpentinized wedge mantle. Geophys. Res. Lett. 27(6), 819-822.
    [36]
    Kern, H., Liu, B., Popp, T., 1997. Relationship between anisotropy of P and S wave velocities and anisotropy of attenuation in serpentinite and amphibolite. J. Geophys. Res. 102(B2), 3051-3065.
    [37]
    Kim, Y., Clayton, R.W., Asimow, P.D., Jackson, J.M., 2013. Generation of talc in the mantle wedge and its role in subduction dynamics in central Mexico. Earth Planet. Sci. Lett. 384, 81-87, https://doi.org/10.1016/j.epsl.2013.10.006.
    [38]
    Kresse, G., Furthmüller, J., 1996. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 169-186.
    [39]
    Kresse, G., Joubert, D., 1999. From ultrasoft pseudopotentials to the Projector Augmented-Wave method. Phys. Rev. B 59 (3), 1758-1775, https://doi.org/10.1103/PhysRevB.59.1758.
    [40]
    Lee, J.J., Jung, H., Klemd, R., Tarling, M.S., Konopelko, D., 2020. Lattice preferred orientation of talc and implications for seismic anisotropy in subduction zones. Earth Planet. Sci. Lett. 537, 116178, https://doi.org/10.1016/j.epsl.2020.116178.
    [41]
    Li, B., Liebermann, R., 2000. Sound velocities of wadsleyite β-(Mg0.88Fe0.12)2SiO4 to 10 GPa. Am. Mineral. 85(2), 292-295.
    [42]
    Liu, L, Du, J, Zhao, J., Liu, H., Gao, H., Chen, Y., 2009. Elastic properties of hydrous forsterites under high pressure: First-principle calculations. Phys. Earth Planet. Inter. 176, 89-97, https://doi.org/10.1016/j.pepi.2009.04.004.
    [43]
    Liu, W., Kung, J., Li, B., 2005. Elasticity of San Carlos olivine to 8 GPa and 1073 K. Geophys. Res. Lett. 32(16), 1-4, https://doi.org/10.1029/2005GL023453.
    [44]
    Mainprice, D., Page, Y., Rodgers, J., Jouanna, P., 2008. Ab initio elastic properties of talc from 0 to 12 GPa: Interpretation of seismic velocities at mantle pressures and prediction of auxetic behavior at low pressure. Earth Planet. Sci. Lett. 274, 327-338, https://doi.org/10.1016/j.epsl.2008.07.047.
    [45]
    Mao, Z., Fan, D.W., Lin, J.F., Yang, J., Tkachev, S.N., Zhuravlev, K., Prakapenka, V.B., 2015. Elasticity of single-crystal olivine at high pressures and temperatures. Earth Planet. Sci. Lett. 426, 204-215, https://doi.org/10.1016/j.epsl.2015.06.045.
    [46]
    Marquardt, H., Speziale, S., Koch-Müller, M., Marquardt, K., Capitani, G.C., 2015. Structural insights and elasticity of single-crystal antigorite from high-pressure Raman and Brillouin spectroscopy measured in the (010) plane. Am. Mineral. 100, 1932-1939, https://doi.org/10.2138/am-2015-5198.
    [47]
    Mavko, G., Mukerji, T., Dvorkin, J., 2009. The Rock Physics Handbook, Second Edition. Cambridge University Press, New York.
    [48]
    Monkhorst, H., Pack, J., 1976. Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188-5192.
    [49]
    Mookherjee, M., Capitani, G., 2011. Trench parallel anisotropy and large delay times: Elasticity and anisotropy of antigorite at high pressures. Geophys. Res. Lett. 38(L09315), 1-6, https://doi.org/10.1029/2011gl047160.
    [50]
    Moore, D., Rymer, M., 2007. Talc-bearing serpentinite and the creeping section of the San Andreas fault. Nature 448(7155), 795-797, https://doi.org/10.1038/nature06064.
    [51]
    Nakajima, J., Hasegawa, A., 2006. Anomalous low-velocity zone and linear alignment of seismicity along it in the subducted Pacific slab beneath Kanto, Japan: Reactivation of subducted fracture zone? Geophys. Res. Lett. 33, L16309, https://doi.org/10.1029/2006GL026773.
    [52]
    Núñez-Valdez, M., Wu, Z., Yu, Y.G., Wentzcovitch, R.M., 2013. Thermal elasticity of (Fex,Mg1-x)2SiO4 olivine and wadsleyite. Geophys. Res. Lett. 40, 290-294.
    [53]
    Parry, S., Pawley, A.R., Jones, R.L., Clark, S.M., 2006. In situ study of the structure of talc and 10-Å phase at high pressure using synchrotron IR spectroscopy and XRD. Geochim. Cosmochim. Acta 70(18Suppl), A474.
    [54]
    Pawley, A., Holloway, J., 1993. Water Sources for Subduction Zone Volcanism: New Experimental Constraints. Science 260 (5108), 664-667, https://doi.org/10.1126/science.260.5108.664.
    [55]
    Pawley, A., Wood, B., 1995. The high-pressure stability of talc and 10-Å phase: Potential storage sites for H2O in subduction zones. Am. Mineral. 80, 998-1003.
    [56]
    Peacock, S.M., 1990. Fluid Processes in Subduction Zones. Science 248, 329-337, https://doi.org/10.1126/science.248.4953.329.
    [57]
    Peacock, S., M., Hyndman, R.D., 1999. Hydrous minerals in the mantle wedge and the maximum depth of subduction thrust earthquakes. Geophys. Res. Lett. 26, 2517-2520, https://doi.org/10.1029/1999GL900558.
    [58]
    Peng, Y., Mookherjee, M., Hermann, A., Manthilake, G., Mainprice, D., 2022. Anomalous elasticity of talc at high pressures: Implications for subduction systems. Geosci. Front. 13(4), 101381.
    [59]
    Perdew, J., Burke, K., Ernzerhof, M., 1996. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865-3868.
    [60]
    Ramachandran, K., Hyndman, R., Brocher, T., 2006. Regional P wave velocity structure of the Northern Cascadia Subduction Zone. J. Geophys. Res.: Solid Earth 111(12), B12301, https://doi.org/10.1029/2005JB004108.
    [61]
    Ringwood, A., 1982. Phase Transformations and differentiation in subducted lithosphere: Implications for mantle dynamics, basalt petrogenesis, and crustal evolution. J. Geol. 90(6), 611-643.
    [62]
    Ringwood, A., Irifune, T., 1988. Nature of the 650-km seismic discontinuity: Implications for mantle dynamics and differentiation. Nature 331(6152), 131-136.
    [63]
    Scambelluri, M., Fiebig, J., Malaspina, N., Müntener, O., Pettke, T., 2004. Serpentinite subduction: implications for fluid processes and trace-element recycling. International Geology Review 46 (7), 595-613, https://doi.org/10.2747/0020-6814.46.7.595.
    [64]
    Schmidt, M.W., Poli, S., 1998. Experimentally. based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet. Sci. Lett. 163, 361-379.
    [65]
    Scott, H.P., Liu, Z., Hemley, R.J., Williams, Q., 2007. High-pressure infrared spectra of talc and lawsonite. Am. Mineral. 92 (11-12), 1814-1820, https://doi.org/10.2138/am.2007.2430.
    [66]
    Seno, T., Zhao, D.P., Kobayashi, Y., Nakamura, M., 2001. Dehydration of serpentinized slab mantle: Seismic evidence from southwest Japan. Earth Planets Space 53(9), 861-871, https://doi.org/10.1186/BF03351683.
    [67]
    Sinogeikin, S., Bass, J., Katsura, T., 2003. Single-crystal elasticity of ringwoodite to high pressures and high temperatures: implications for 520 km seismic discontinuity. Phys. Earth Planet. Inter. 136(1-2), 41-66, https://doi.org/10.1016/s0031-9201(03)00022-0.
    [68]
    Stixrude, L., 2002. Talc under tension and compression: Spinodal instability, elasticity, and structure. J. Geophys. Res.: Solid Earth 107(B12), 2327, doi: 10.1029/2001JB001684.
    [69]
    Tibi, R., Wiens, D., Yuan, X., 2008. Seismic evidence for widespread serpentinized forearc mantle along the Mariana convergence margin. Geophys. Res. Lett. 35(13), 337-344, https://doi.org/10.1029/2008GL034163.
    [70]
    Tsuji, Y., Nakajima, J, Hasegawa, A, 2008. Tomographic evidence for hydrated oceanic crust of the Pacific slab beneath northeastern Japan: Implications for water transportation in subduction zones. Geophys. Res. Lett. 35 (14), 236-238. doi, https://doi.org/10.1029/2008GL034461.
    [71]
    Uchida, N., Nakajima, J., Hasegawa, A., Matsuzawa, T., 2009. What controls interplate coupling?: Evidence for abrupt change in coupling across a border between two overlying plates in the NE Japan subduction zone. Earth Planet. Sci. Lett. 283(1-4), 111-121.
    [72]
    Ulian, G., Tosoni, S., Valdrè, G., 2014. The compressional behaviour and the mechanical properties of talc [Mg3Si4O10(OH)2]: a density functional theory investigation. Phys. Chem. Minerals 41(8), 639-650, https://doi.org/10.1007/s00269-014-0677-x.
    [73]
    Ulmer, P., Trommsdorff, V., 1995. Serpentine stability to mantle depths and subduction-related magmatism. Science 268(5215), 858-861, https://doi.org/10.1126/science.268.5212.858.
    [74]
    Wang, X.B., Chen, T., Zou, Y.T., Liebermann, R.C., Li, B.S., 2015. Elastic wave velocities of peridotite KLB-1 at mantle pressures and implications for mantle velocity modeling. Geophys. Res. Lett. 42(9), 3289-3297, https://doi.org/10.1002/2015GL063436.
    [75]
    Wang, D.J., Liu, T., Chen, T., Qi, X.T., Li, B.S., 2019. Anomalous sound velocities of antigorite at high pressure and implications for detecting serpentinization at mantle wedges. Geophys. Res. Lett 46 (10), 5153-5160, https://doi.org/10.1029/2019GL082287.
    [76]
    Wang, D.J., Wang, L.B., Zhang, R., Cai, N., Zhang, J.K., Chen, P., Cao, Y., 2022. Mantle wedge water contents estimated from ultrasonic laboratory measurements of olivine‐antigorite aggregates. Geophys. Res. Lett. 49(10), e2022GL098226, https://doi.org/10.1029/2022GL098226.
    [77]
    Wang, X.M., Zeng, Z.G., Liu, C.H., Chen, J.B., Yin, X.B., Wang, X.Y., Chen, D.G., Zhang, G.L., Chen, S., Li, K., Ouyang, H.G., 2009. Talc-bearing serpentinized peridotites from the southern Mariana forearc:implications for aseismic character within subduction zones. Chinese Journal of Oceanology and Limnology 27(3), 667-673.
    [78]
    Wu, Z., Justo, J., Wentzcovitch, R., 2013. Elastic anomalies in a spin-crossover system: ferropericlase at lower mantle conditions. Phys. Rev. Lett. 110(22), 228501.
    [79]
    Zha, C.S., Duffy, T.S., Downs, R.T., Mao, H.-K., Hemley, R.J., 1996. Sound velocity and elasticity of single-crystal forsterite to 16 GPa. J. Geophys. Res.: Solid Earth 101(B8), 17535-17545.
    [80]
    Zha, C.S., Duffy, T.S., Downs, R.T., Mao, H.-K., Hemley, R.J., 1998. Brillouin scattering and X-ray diffraction of San Carlos olivine: direct pressure determination to 32 GPa. Earth Planet. Sci. Lett. 159(1-2), 25-33.
    [81]
    Zhang, Y.Z., Jiang, Z.X., Li, S.Z., Wang, Y.H., Yu, L., 2022. The process of oceanic peridotite serpentinization: From seafloor hydration to subduction dehydration. Acta Petrologica Sinica 38 (4), 1063-1080 (in Chinese).
    [82]
    Zhang, J.L., Ma, M.N., Zhang, J.K., Zeng, H., 2023. Influences of serpentinization on wave velocities of harzburgite and implications in the mantle wedge. Acta Petrol. Sinica 39 (8), 2533-2540 (in Chinese), https://doi.org/10.1865/1000-0569/2023.08.16.
    [83]
    Zhang, J.F., Wang, C.G., Xu, H.J., Wang, C., Xu, W.L., 2015. Partial melting and crust-mantle interaction in subduction channels: Constraints from experimental petrology. Science China: Earth Sciences 58, 1700-1712, https://doi.org/10.1007/s11430-015-5186-3.
    [84]
    Zhao, L., Malusà, M.G., Yuan, H.Y., Paul, A., Guillot, S., Lu, Y., Stehly, L., Solarino, S., Eva, E., Lu, G., Bodin, T., CIFALPS Group, AlpArray Working Group, 2020. Evidence for a serpentinized plate interface favouring continental subduction. Nature Communications 11(1), 1-8, https://doi.org/10.1038/s41467-020-15904-7.
    [85]
    Zheng, Y.F., Chen, R.X., Xu, Z., Zhang, S.B., 2016. The transport of water in subduction zones. Science China Earth Sciences 59, 651-681 (in Chinese).
    [86]
    Zhou, S.G., Peng, B., Cao, Y., Xu, Y., Quan, G.L., Ma, S.S., Jiao, Z.K., Luo, K.L., 2019. First-principles investigations on stability, elastic properties and electronic structures of L12-TiAl3 and D022-TiAl3 under pressure. Physica B: Condensed Matter 571, 118-129, https://doi.org/10.1016/j.physb.2019.06.046.

Catalog

    Article views (10) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return