Citation: | Huan Zeng, Maining Ma, Yongbing Li, Jialei Zhang, Hao Guan, Xiao Li. The effect of antigorite dehydration on velocity structure and water migration in subduction zones[J]. Geoscience Frontiers, 2025, 16(1): 101923. DOI: 10.1016/j.gsf.2024.101923 |
[1] |
Abers, G., van Keken, P., Hacker, B., 2017. The cold and relatively dry nature of mantle forearcs in subduction zones. Nat. Geosci. 10, 333-337, https://doi.org/10.1038/ngeo2922.
|
[2] |
Aizawa, Y., Ito, K., Tatsumi, Y., 2001. Experimental determination of compressional wave velocities of olivine aggregate up to 1000℃ at 1 GPa. Tectonophysics 339, 473-478.
|
[3] |
Allen, D., Seyfried, Jr. W., 2003. Compositional controls on vent fluids from ultramafic-hosted hydrothermal systems at mid-ocean ridges: An experimental study at 400℃, 500bars. Geochim. Cosmochim. Acta 67(8), 1531-1542.
|
[4] |
Bailey, E., Holloway, J., 2000. Experimental determination of elastic properties of talc to 800℃, 0.5 GPa; calculations of the effect on hydrated peridotite, and implications for cold subduction zones. Earth Planet. Sci. Lett. 183, 487-498, https://doi.org/10.1016/S0012-821X(00)00288-0.
|
[5] |
Bauer, J.F., Sclar, C.B., 1981. The 10-Å phase in the system MgO-SiO2-H2O. American Mineralogist 66, 576-585.
|
[6] |
Bezacier, L., Reynard, B., Cardon, H., Montagnac, G., Bass, J.D., 2013. High-pressure elasticity of serpentine and seismic properties of the hydrated mantle wedge. J. Geophys. Res.: Solid Earth 118(2), 527-535, https://doi.org/10.1002/jgrb.50076.
|
[7] |
Bie, L., Hicks, S., Rietbrock, A., Goes, S., Collier, J., Rychert, C., Harmon, N., Maunder, B., Consortium, V., 2022. Imaging slab-transported fluids and their deep dehydration from seismic velocity tomography in the Lesser Antilles subduction zone. Earth Planet. Sci. Lett. 586, 117535.
|
[8] |
Bose, K., Ganguly, J., 1995. Experimental and theoretical studies of the stabilities of talc, antigorite and phase A at high pressures with applications to subduction processes. Earth Planet. Sci. Lett. 136, 109-121, https://doi.org/10.1016/0012-821X(95)00188-I.
|
[9] |
Bostock, M., Hyndman, R., Rondenay, S., Peacock, S.M., 2002. An inverted continental Moho and serpentinization of the forearc mantle. Nature 417(6888), 536-538, https://doi.org/10.1038/417536a.
|
[10] |
Bostroem, D., 1987. Single-crystal X-ray diffraction studies of synthetic Ni-Mg olivine solid solutions. Am. Mineral. 72(9-10), 965-972.
|
[11] |
Cai, C., Wiens, D., Shen, W., Eimer, M., 2018. Water input into the Mariana subduction zone estimated from ocean-bottom seismic data. Nature 563(7731), 389-392, https://doi.org/10.1038/s41586-018-0655-4.
|
[12] |
Chen, Z., Du, J., Zhou, W., Liu, Y., Li, Y., 2009. Wave velocity and attenuation characteristics of Gabbro at 100~300℃ and 0.5 ~ 4.0 GPa. Chinese Journal of High Pressure Physics 23(5), 338-344 (in Chinese with English abstract).
|
[13] |
Chichagov, A., 1990. Information-calculating system on crystal structure data of minerals. Kristallographiya 35, 610-616.
|
[14] |
Christensen, N., 2004. Serpentinites, peridotites, and seismology. Int. Geol. Rev. 46, 795-816.
|
[15] |
Debret, B., Andreani, M., Muñoz, M., Bolfan-Casanova, N., Carlut, J., Nicollet, C., Schwartz, S., Trcera, N., 2014. Evolution of Fe redox state in serpentine during subduction. Earth Planet. Sci. Lett. 400, 206-218, https://doi.org/10.1016/j.epsl.2014.05.038.
|
[16] |
Deschamps, F., Godard, M., Guillo, S., Hattori, K., 2013. Geochemistry of subduction zone serpentinites: A review. Lithos 178, 96-172, https://doi.org/10.1016/j.lithos.2013.05.019.
|
[17] |
Deshon, H., Schwartz, S., 2004. Evidence for serpentinization of the forearc mantle wedge along the Nicoya Peninsula, Costa Rica. Geophys. Res. Lett. 31(21), 163-183, https://doi.org/10.1029/2004GL021179.
|
[18] |
Downs, R.T., Zha, C.-S., Duffy, T.S., Finger, L.W., 1996. The equation of state of forsterite to 17.2 GPa and effects of pressure media. Am. Mineral. 81, 51-55.
|
[19] |
Evans, B., 2004. The serpentinite multisystem revisited: Chrysotile is metastable. Int. Geol. Rev. 46(6), 479-506.
|
[20] |
Evans, B.W., Johannes, W., Oterdoom, H., Trommsdorff, V., 1976. Stability of chrysotile and antigorite in the serpentinite multisystem. Schweiz. mineral. petrogr. Mitt. 56, 79-93.
|
[21] |
Faccenda, M., Burlini, L., Gerya, T.V., Mainprice, D., 2008. Fault-induced seismic anisotropy by hydration in subducting oceanic plates. Nature 455, 1097-1100, https://doi.org/10.1038/nature07376.
|
[22] |
Fan, D.W., Fu, S.Y., Lu, C., Xu, J.G., Zhang, Y.Y., Tkachev, S.N., Prakapenka, V.B., Lin, J.-F., 2020. Elasticity of single-crystal Fe-enriched diopside at high-pressure conditions: Implications for the origin of upper mantle low-velocity zones. Am. Mineral. 105(3), 363-374.
|
[23] |
Fumagalli, P., Stixrude, L., Poli, S., Snyder, D., 2001. The 10-Å phase: a high-pressure expandable sheet silicate stable during subduction of hydrated lithosphere. Earth Planet. Sci. Lett. 186(2), 125-141.
|
[24] |
Gatta, G.D., Merlini, M., Valdrè, G., Liermann, H., Nénert, G., Rothkirch, A., Kahlenberg, V., Pavese, A., 2013. On the crystal structure and compressional behavior of talc: a mineral of interest in petrology and material science. Phys Chem Minerals 40 (2), 145-156, https://doi.org/10.1007/s00269-012-0554-4.
|
[25] |
Gleason, A.E., Parry, S.A., Pawley, A.R., Jeanloz, R., Clark, S.M., 2009. Pressure-temperature studies of talc plus water using X-ray diffraction. Am. Mineral. 93(7), 1043-1050, https://doi.org/10.2138/am.2008.2742.
|
[26] |
Grevemeyer, I., Tiwari, V., 2006. Overriding plate controls spatial distribution of megathrust earthquakes in the Sunda-Andaman subduction zone. Earth Planet. Sci. Lett. 251, 199-208, https://doi.org/10.1016/j.epsl.2006.08.021.
|
[27] |
Hacker, B., Abers, G., Peacock, S., 2003. Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents. J. Geophys. Res.: Solid Earth 108(B1), 2169-9313, https://doi.org/10.1029/2001JB001127.
|
[28] |
Henjes-Kunst, F., Altherr, R., 1992. Metamorphic petrology of xenoliths from Kenya and Northern Tanzania and implications for geotherms and lithospheric structures. J. Petrol. 33(5), 1125-1156.
|
[29] |
Higo, Y., Inoue, T., Li, B.S., Irifune, T., Liebermann, R.C., 2006. The effect of iron on the elastic properties of ringwoodite at high pressure. Phys. Earth Planet. Inter. 159 (3-4), 276-285.
|
[30] |
Hohenberg, P., Kohn, W., 1964. Inhomogeneous electron gas. Phys. Rev. B 136, 864-871, https://doi.org/10.1007/s002149900030.
|
[31] |
Horn, C., Bouilhol, P., Skemer, P., 2020. Serpentinization, deformation, and seismic anisotropy in the subduction mantle wedge. Geochem. Geophys. Geosyst. 21, e2020GC008950, https://doi.org/10.1029/2020GC008950.
|
[32] |
Hyndman, R., Peacock, S., 2003. Serpentinization of the forearc mantle. Earth Planet. Sci. Lett. 212(3-4), 417-432, https://doi.org/10.1016/S0012-821X(03)00263-2.
|
[33] |
Jackson, I., Liebermann, R., Ringwood, A., 1978. The elastic properties of (MgxFe1-x)O solid solutions. Phys. Chem. Minerals 3(1), 11-31.
|
[34] |
Ji, S.C., Shao, T.B., Michibayashi, K., Long, C.X., Wang, Q., Kondo, Y., Zhao, W.H., Wang, H.C., Salisbury, M.H., 2013. A new calibration of seismic velocities, anisotropy, fabrics, and elastic moduli of amphibole-rich rocks. J. Geophys. Res.: Solid Earth 118(9), 4699-4728, https://doi.org/10.1002/jgrb.50110.
|
[35] |
Kamiya, S., Kobayashi, Y., 2000. Seismological evidence for the existence of serpentinized wedge mantle. Geophys. Res. Lett. 27(6), 819-822.
|
[36] |
Kern, H., Liu, B., Popp, T., 1997. Relationship between anisotropy of P and S wave velocities and anisotropy of attenuation in serpentinite and amphibolite. J. Geophys. Res. 102(B2), 3051-3065.
|
[37] |
Kim, Y., Clayton, R.W., Asimow, P.D., Jackson, J.M., 2013. Generation of talc in the mantle wedge and its role in subduction dynamics in central Mexico. Earth Planet. Sci. Lett. 384, 81-87, https://doi.org/10.1016/j.epsl.2013.10.006.
|
[38] |
Kresse, G., Furthmüller, J., 1996. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 169-186.
|
[39] |
Kresse, G., Joubert, D., 1999. From ultrasoft pseudopotentials to the Projector Augmented-Wave method. Phys. Rev. B 59 (3), 1758-1775, https://doi.org/10.1103/PhysRevB.59.1758.
|
[40] |
Lee, J.J., Jung, H., Klemd, R., Tarling, M.S., Konopelko, D., 2020. Lattice preferred orientation of talc and implications for seismic anisotropy in subduction zones. Earth Planet. Sci. Lett. 537, 116178, https://doi.org/10.1016/j.epsl.2020.116178.
|
[41] |
Li, B., Liebermann, R., 2000. Sound velocities of wadsleyite β-(Mg0.88Fe0.12)2SiO4 to 10 GPa. Am. Mineral. 85(2), 292-295.
|
[42] |
Liu, L, Du, J, Zhao, J., Liu, H., Gao, H., Chen, Y., 2009. Elastic properties of hydrous forsterites under high pressure: First-principle calculations. Phys. Earth Planet. Inter. 176, 89-97, https://doi.org/10.1016/j.pepi.2009.04.004.
|
[43] |
Liu, W., Kung, J., Li, B., 2005. Elasticity of San Carlos olivine to 8 GPa and 1073 K. Geophys. Res. Lett. 32(16), 1-4, https://doi.org/10.1029/2005GL023453.
|
[44] |
Mainprice, D., Page, Y., Rodgers, J., Jouanna, P., 2008. Ab initio elastic properties of talc from 0 to 12 GPa: Interpretation of seismic velocities at mantle pressures and prediction of auxetic behavior at low pressure. Earth Planet. Sci. Lett. 274, 327-338, https://doi.org/10.1016/j.epsl.2008.07.047.
|
[45] |
Mao, Z., Fan, D.W., Lin, J.F., Yang, J., Tkachev, S.N., Zhuravlev, K., Prakapenka, V.B., 2015. Elasticity of single-crystal olivine at high pressures and temperatures. Earth Planet. Sci. Lett. 426, 204-215, https://doi.org/10.1016/j.epsl.2015.06.045.
|
[46] |
Marquardt, H., Speziale, S., Koch-Müller, M., Marquardt, K., Capitani, G.C., 2015. Structural insights and elasticity of single-crystal antigorite from high-pressure Raman and Brillouin spectroscopy measured in the (010) plane. Am. Mineral. 100, 1932-1939, https://doi.org/10.2138/am-2015-5198.
|
[47] |
Mavko, G., Mukerji, T., Dvorkin, J., 2009. The Rock Physics Handbook, Second Edition. Cambridge University Press, New York.
|
[48] |
Monkhorst, H., Pack, J., 1976. Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188-5192.
|
[49] |
Mookherjee, M., Capitani, G., 2011. Trench parallel anisotropy and large delay times: Elasticity and anisotropy of antigorite at high pressures. Geophys. Res. Lett. 38(L09315), 1-6, https://doi.org/10.1029/2011gl047160.
|
[50] |
Moore, D., Rymer, M., 2007. Talc-bearing serpentinite and the creeping section of the San Andreas fault. Nature 448(7155), 795-797, https://doi.org/10.1038/nature06064.
|
[51] |
Nakajima, J., Hasegawa, A., 2006. Anomalous low-velocity zone and linear alignment of seismicity along it in the subducted Pacific slab beneath Kanto, Japan: Reactivation of subducted fracture zone? Geophys. Res. Lett. 33, L16309, https://doi.org/10.1029/2006GL026773.
|
[52] |
Núñez-Valdez, M., Wu, Z., Yu, Y.G., Wentzcovitch, R.M., 2013. Thermal elasticity of (Fex,Mg1-x)2SiO4 olivine and wadsleyite. Geophys. Res. Lett. 40, 290-294.
|
[53] |
Parry, S., Pawley, A.R., Jones, R.L., Clark, S.M., 2006. In situ study of the structure of talc and 10-Å phase at high pressure using synchrotron IR spectroscopy and XRD. Geochim. Cosmochim. Acta 70(18Suppl), A474.
|
[54] |
Pawley, A., Holloway, J., 1993. Water Sources for Subduction Zone Volcanism: New Experimental Constraints. Science 260 (5108), 664-667, https://doi.org/10.1126/science.260.5108.664.
|
[55] |
Pawley, A., Wood, B., 1995. The high-pressure stability of talc and 10-Å phase: Potential storage sites for H2O in subduction zones. Am. Mineral. 80, 998-1003.
|
[56] |
Peacock, S.M., 1990. Fluid Processes in Subduction Zones. Science 248, 329-337, https://doi.org/10.1126/science.248.4953.329.
|
[57] |
Peacock, S., M., Hyndman, R.D., 1999. Hydrous minerals in the mantle wedge and the maximum depth of subduction thrust earthquakes. Geophys. Res. Lett. 26, 2517-2520, https://doi.org/10.1029/1999GL900558.
|
[58] |
Peng, Y., Mookherjee, M., Hermann, A., Manthilake, G., Mainprice, D., 2022. Anomalous elasticity of talc at high pressures: Implications for subduction systems. Geosci. Front. 13(4), 101381.
|
[59] |
Perdew, J., Burke, K., Ernzerhof, M., 1996. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865-3868.
|
[60] |
Ramachandran, K., Hyndman, R., Brocher, T., 2006. Regional P wave velocity structure of the Northern Cascadia Subduction Zone. J. Geophys. Res.: Solid Earth 111(12), B12301, https://doi.org/10.1029/2005JB004108.
|
[61] |
Ringwood, A., 1982. Phase Transformations and differentiation in subducted lithosphere: Implications for mantle dynamics, basalt petrogenesis, and crustal evolution. J. Geol. 90(6), 611-643.
|
[62] |
Ringwood, A., Irifune, T., 1988. Nature of the 650-km seismic discontinuity: Implications for mantle dynamics and differentiation. Nature 331(6152), 131-136.
|
[63] |
Scambelluri, M., Fiebig, J., Malaspina, N., Müntener, O., Pettke, T., 2004. Serpentinite subduction: implications for fluid processes and trace-element recycling. International Geology Review 46 (7), 595-613, https://doi.org/10.2747/0020-6814.46.7.595.
|
[64] |
Schmidt, M.W., Poli, S., 1998. Experimentally. based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet. Sci. Lett. 163, 361-379.
|
[65] |
Scott, H.P., Liu, Z., Hemley, R.J., Williams, Q., 2007. High-pressure infrared spectra of talc and lawsonite. Am. Mineral. 92 (11-12), 1814-1820, https://doi.org/10.2138/am.2007.2430.
|
[66] |
Seno, T., Zhao, D.P., Kobayashi, Y., Nakamura, M., 2001. Dehydration of serpentinized slab mantle: Seismic evidence from southwest Japan. Earth Planets Space 53(9), 861-871, https://doi.org/10.1186/BF03351683.
|
[67] |
Sinogeikin, S., Bass, J., Katsura, T., 2003. Single-crystal elasticity of ringwoodite to high pressures and high temperatures: implications for 520 km seismic discontinuity. Phys. Earth Planet. Inter. 136(1-2), 41-66, https://doi.org/10.1016/s0031-9201(03)00022-0.
|
[68] |
Stixrude, L., 2002. Talc under tension and compression: Spinodal instability, elasticity, and structure. J. Geophys. Res.: Solid Earth 107(B12), 2327, doi: 10.1029/2001JB001684.
|
[69] |
Tibi, R., Wiens, D., Yuan, X., 2008. Seismic evidence for widespread serpentinized forearc mantle along the Mariana convergence margin. Geophys. Res. Lett. 35(13), 337-344, https://doi.org/10.1029/2008GL034163.
|
[70] |
Tsuji, Y., Nakajima, J, Hasegawa, A, 2008. Tomographic evidence for hydrated oceanic crust of the Pacific slab beneath northeastern Japan: Implications for water transportation in subduction zones. Geophys. Res. Lett. 35 (14), 236-238. doi, https://doi.org/10.1029/2008GL034461.
|
[71] |
Uchida, N., Nakajima, J., Hasegawa, A., Matsuzawa, T., 2009. What controls interplate coupling?: Evidence for abrupt change in coupling across a border between two overlying plates in the NE Japan subduction zone. Earth Planet. Sci. Lett. 283(1-4), 111-121.
|
[72] |
Ulian, G., Tosoni, S., Valdrè, G., 2014. The compressional behaviour and the mechanical properties of talc [Mg3Si4O10(OH)2]: a density functional theory investigation. Phys. Chem. Minerals 41(8), 639-650, https://doi.org/10.1007/s00269-014-0677-x.
|
[73] |
Ulmer, P., Trommsdorff, V., 1995. Serpentine stability to mantle depths and subduction-related magmatism. Science 268(5215), 858-861, https://doi.org/10.1126/science.268.5212.858.
|
[74] |
Wang, X.B., Chen, T., Zou, Y.T., Liebermann, R.C., Li, B.S., 2015. Elastic wave velocities of peridotite KLB-1 at mantle pressures and implications for mantle velocity modeling. Geophys. Res. Lett. 42(9), 3289-3297, https://doi.org/10.1002/2015GL063436.
|
[75] |
Wang, D.J., Liu, T., Chen, T., Qi, X.T., Li, B.S., 2019. Anomalous sound velocities of antigorite at high pressure and implications for detecting serpentinization at mantle wedges. Geophys. Res. Lett 46 (10), 5153-5160, https://doi.org/10.1029/2019GL082287.
|
[76] |
Wang, D.J., Wang, L.B., Zhang, R., Cai, N., Zhang, J.K., Chen, P., Cao, Y., 2022. Mantle wedge water contents estimated from ultrasonic laboratory measurements of olivine‐antigorite aggregates. Geophys. Res. Lett. 49(10), e2022GL098226, https://doi.org/10.1029/2022GL098226.
|
[77] |
Wang, X.M., Zeng, Z.G., Liu, C.H., Chen, J.B., Yin, X.B., Wang, X.Y., Chen, D.G., Zhang, G.L., Chen, S., Li, K., Ouyang, H.G., 2009. Talc-bearing serpentinized peridotites from the southern Mariana forearc:implications for aseismic character within subduction zones. Chinese Journal of Oceanology and Limnology 27(3), 667-673.
|
[78] |
Wu, Z., Justo, J., Wentzcovitch, R., 2013. Elastic anomalies in a spin-crossover system: ferropericlase at lower mantle conditions. Phys. Rev. Lett. 110(22), 228501.
|
[79] |
Zha, C.S., Duffy, T.S., Downs, R.T., Mao, H.-K., Hemley, R.J., 1996. Sound velocity and elasticity of single-crystal forsterite to 16 GPa. J. Geophys. Res.: Solid Earth 101(B8), 17535-17545.
|
[80] |
Zha, C.S., Duffy, T.S., Downs, R.T., Mao, H.-K., Hemley, R.J., 1998. Brillouin scattering and X-ray diffraction of San Carlos olivine: direct pressure determination to 32 GPa. Earth Planet. Sci. Lett. 159(1-2), 25-33.
|
[81] |
Zhang, Y.Z., Jiang, Z.X., Li, S.Z., Wang, Y.H., Yu, L., 2022. The process of oceanic peridotite serpentinization: From seafloor hydration to subduction dehydration. Acta Petrologica Sinica 38 (4), 1063-1080 (in Chinese).
|
[82] |
Zhang, J.L., Ma, M.N., Zhang, J.K., Zeng, H., 2023. Influences of serpentinization on wave velocities of harzburgite and implications in the mantle wedge. Acta Petrol. Sinica 39 (8), 2533-2540 (in Chinese), https://doi.org/10.1865/1000-0569/2023.08.16.
|
[83] |
Zhang, J.F., Wang, C.G., Xu, H.J., Wang, C., Xu, W.L., 2015. Partial melting and crust-mantle interaction in subduction channels: Constraints from experimental petrology. Science China: Earth Sciences 58, 1700-1712, https://doi.org/10.1007/s11430-015-5186-3.
|
[84] |
Zhao, L., Malusà, M.G., Yuan, H.Y., Paul, A., Guillot, S., Lu, Y., Stehly, L., Solarino, S., Eva, E., Lu, G., Bodin, T., CIFALPS Group, AlpArray Working Group, 2020. Evidence for a serpentinized plate interface favouring continental subduction. Nature Communications 11(1), 1-8, https://doi.org/10.1038/s41467-020-15904-7.
|
[85] |
Zheng, Y.F., Chen, R.X., Xu, Z., Zhang, S.B., 2016. The transport of water in subduction zones. Science China Earth Sciences 59, 651-681 (in Chinese).
|
[86] |
Zhou, S.G., Peng, B., Cao, Y., Xu, Y., Quan, G.L., Ma, S.S., Jiao, Z.K., Luo, K.L., 2019. First-principles investigations on stability, elastic properties and electronic structures of L12-TiAl3 and D022-TiAl3 under pressure. Physica B: Condensed Matter 571, 118-129, https://doi.org/10.1016/j.physb.2019.06.046.
|