大型地下厂房洞室群围岩参数反演与稳定性研究

严鸿川, 石安池, 谢红强, 肖明砾, 周家文

严鸿川, 石安池, 谢红强, 肖明砾, 周家文. 2021: 大型地下厂房洞室群围岩参数反演与稳定性研究. 工程地质学报, 29(S1): 53-60. DOI: 10.13544/j.cnki.jeg.2021-0515
引用本文: 严鸿川, 石安池, 谢红强, 肖明砾, 周家文. 2021: 大型地下厂房洞室群围岩参数反演与稳定性研究. 工程地质学报, 29(S1): 53-60. DOI: 10.13544/j.cnki.jeg.2021-0515
YAN Hongchuan, SHI Anchi, XIE Hongqiang, XIAO Mingli, ZHOU Jiawen. 2021: MECHANICAL PARAMETER INVERSION AND EXCAVATION STABILITY OF THE SURROUNDING ROCK FOR BAIHETAN UNDERGROUND POWERHOUSE CAVERNS. JOURNAL OF ENGINEERING GEOLOGY, 29(S1): 53-60. DOI: 10.13544/j.cnki.jeg.2021-0515
Citation: YAN Hongchuan, SHI Anchi, XIE Hongqiang, XIAO Mingli, ZHOU Jiawen. 2021: MECHANICAL PARAMETER INVERSION AND EXCAVATION STABILITY OF THE SURROUNDING ROCK FOR BAIHETAN UNDERGROUND POWERHOUSE CAVERNS. JOURNAL OF ENGINEERING GEOLOGY, 29(S1): 53-60. DOI: 10.13544/j.cnki.jeg.2021-0515

大型地下厂房洞室群围岩参数反演与稳定性研究

详细信息
    作者简介:

    严鸿川(1995-),男,博士生,主要从事岩石力学与数值模拟研究.E-mail:yanhongchuans@qq.com

    通讯作者:

    谢红强(1971-),男,博士,教授,主要从事岩土工程、地下工程的科研、教学工作.E-mail:alex_xhg@126.com

  • 中图分类号: U45

MECHANICAL PARAMETER INVERSION AND EXCAVATION STABILITY OF THE SURROUNDING ROCK FOR BAIHETAN UNDERGROUND POWERHOUSE CAVERNS

  • 摘要: 在地下洞室围岩稳定研究中,岩体力学参数选取的合理性直接关系着整个分析计算的正确性,本文采用正交设计-BP神经网络位移反分析方法,基于现场监测数据,对白鹤滩水电站右岸地下厂房洞室群施工期围岩力学参数进行了反演分析。利用反演参数对地下厂房施工期洞室群围岩的应力、变形演化特征进行了研究。研究表明:有限元计算位移值与现场监测值一致性较高,验证了反演方法的合理性;厂区围岩总体变形呈"阶段性"特征,变形增长主要是由开挖卸荷引起,而蠕变产生的变形量相对较小;受地应力与断层影响,厂房小桩号区域附近围岩较大桩号区域总体应力更大,上游侧位移变形更大,而下游侧围岩则应力集中更为明显,应加强对这附近围岩的变形监测。
    Abstract: In the study of the stability of the underground cavern chamber surrounding rock, the reasonableness of the selection of rock mechanical parameters is directly related to the correctness of the whole analysis and calculation. In this paper, the inverse analysis of the mechanical parameters of the surrounding rock during the construction period of the right bank underground plant cavern group of Baihetan Hydropower Station is carried out using the orthogonal design-BP neural network displacement inverse analysis method and based on the field monitoring data. The inverse parameters were used to study the stress and deformation evolution characteristics of the surrounding rocks of the cavern group during the construction period of the underground plant. The study shows that:the consistency between the finite element calculated displacement values and the field monitoring values is high, which verifies the reasonableness of the inversion method; the overall deformation of the surrounding rocks in the plant area is "phased", and the deformation growth is mainly caused by excavation and unloading, while the deformation produced by creep is relatively small; due to the influence of faults and fault zones, the overall stress in the surrounding rocks near the small pile number area of the plant is higher than that in the larger pile. The overall stress is greater in the area of small pile number, and the upstream displacement deformation is greater while the downstream side of the surrounding rock is more obvious stress concentration, so the monitoring of the deformation of the surrounding rock in this vicinity should be strengthened.
  • Deng J H, Lee C F, et al. 2001. Application of BP network and genetic algorithm to displacement back analysis of rock slopes[J]. Chinese Journal of Rock Mechanics and Engineering, (1):1-5.

    Fan Q X, Wang Y F. 2010. Stability analysis of layered surrounding rock mass of large underground powerhouse of Xiangjiaba hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 29(7):1307-1313.

    Fan Y, Lu W B, Zhou C J, et al. 2017. Evolution mechanism of damage zone in surrounding rock mass during excavation of deep tunnels under high geostress condition[J]. Journal of Engineering Geology, 25(2):308-316.

    Huang S L, Feng X T, Hang C Q, et al. 2008. Study of method of comprehensive evaluation for parameters of constitutive model of rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, (S1):2624-2630.

    Li Z P, Xu G L, Dong J X, et al. 2014. Deformation and fracture of surrounding rock mass of underground caverns at Huziyan hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 33(11):2291-2300.

    Liu J, Zhu Z H, Cai H, et al. 2018. Deformation and failure characteristics of top arch surrounding rock of super large underground caverns[J]. Chinese Journal of Rock Mechanics and Engineering, 40(7):1257-1267.

    Shi A C, Li S Q, Song G, et al. 2019. Volume I Engineering geology, Volume II Design report, Special acceptance of the underground powerhouse of the Baihetan Hydropower Station on the Jinsha River during the excavation and support phase[R]. Hangzhou:PowerChina Huadong Engineering Corporation Limited.

    Wang H, Chen W Z, Zheng P Q, et al. 2017. Deformation characteristics and stability of surrounding rock of underground powerhouse group of hydropower station during construction[J]. Journal of Central South University(Science and Technology), 48(4):1096-1103.

    Wang K H, Luo X Q, Shen H, et al. 2016. GSA-BP neural network model for back analysis of surrounding rock mechanical parameters and its application[J]. Rock and Soil Mechanics, 37(S1):631-638.

    Wen X, Zhang X W, et al. 2015. Intelligent fault diagnosis technology:MATLAB application[M]. Beijing:Beijing University of Aeronautics and Astronautics Press.

    Xie H Q, He J D, Xiao M L. 2009. Regression analysis of 3D initial geostress in region of underground powerhouse for large hydropower station[J]. Rock and Soil Mechanics, 30(8):2471-2476.

    Yang J X, Liu Z X, Huang S L. 2016. Relaxation depth and supporting time of underground power house surrounding rock under high geostress at Jinping I hydropower station[J]. Journal of Engineering Geology, 24(5):775-787.

    Zhang N, Wang L Q, Ge Y F, et al. 2016. Application of BP neural network based on factor analysis to prediction of rock mass deformation modulus[J]. Journal of Engineering Geology, 24(1):87-95.

    Zhang Q Y, Xiang W, Yang J, et al. 2015. Dynamic inversion of mechanical parameters for surrounding rock mass and excavation stability analysis for Dagangshan underground powerhouse caverns[J]. China Civil Engineering Journal, 48(5):90-97.

    Zhou Z F, Shen Q, Shi A C, et al. 2020. Prediction and prevention of seepage failure in interlayer staggered zone at left bank of Baihetan hydropower station[J]. Journal of Engineering Geology, 28(2):211-220.

    邓建辉, 李焯芬, 葛修润. 2001. BP网络和遗传算法在岩石边坡位移反分析中的应用[J]. 岩石力学与工程学报, (1):1-5.
    樊启祥, 王义锋. 2010. 向家坝水电站地下厂房缓倾角层状围岩稳定分析[J]. 岩石力学与工程学报, 29(7):1307-1313.
    范勇, 卢文波, 周宜红, 等. 2017. 高地应力条件下深埋洞室围岩损伤区孕育机制[J]. 工程地质学报, 25(2):308-316.
    黄书岭, 冯夏庭, 张传庆. 2008. 岩体力学参数的敏感性综合评价分析方法研究[J]. 岩石力学与工程学报, (S1):2624-2630.
    李志鹏, 徐光黎, 董家兴, 等. 2014. 猴子岩水电站地下厂房洞室群施工期围岩变形与破坏特征[J]. 岩石力学与工程学报, 33(11):2291-2300.
    刘健, 朱赵辉, 蔡浩, 等. 2018. 超大型地下洞室拱圈围岩变形、破坏特性研究[J]. 岩土工程学报, 40(7):1257-1267.
    石安池, 李孙权, 宋刚, 等. 2019.

    金沙江白鹤滩水电站地下电站工程开挖支护阶段专项验收第二册设计报告第一分册工程地质[R]. 杭州:中国电建集团华东勘测设计研究院有限公司.

    王辉, 陈卫忠, 郑朋强, 等. 2017. 水电站地下厂房洞室群施工期围岩变形特征与稳定性[J]. 中南大学学报(自然科学版), 48(4):1096

    -1103.

    王开禾, 罗先启, 沈辉, 等. 2016. 围岩力学参数反演的GSA-BP神经网络模型及应用[J]. 岩土力学, 37(S1):631-638.
    闻新, 张兴旺, 朱亚萍, 等著. 2015.

    智能故障诊断技术:MATLAB应用[M]. 北京:北京航空航天大学出版社.

    谢红强, 何江达, 肖明砾. 2009. 大型水电站厂区三维地应力场回归反演分析[J]. 岩土力学, 30(8):2471-2476.
    杨静熙, 刘忠绪, 黄书岭. 2016. 高地应力条件下锦屏一级主厂房围岩松弛深度形成规律和支护时机研究[J]. 工程地质学报, 24(5):775-787.
    张楠, 王亮清, 葛云峰, 等. 2016. 基于因子分析的BP神经网络在岩体变形模量预测中的应用[J]. 工程地质学报, 24(1):87-95.
    张强勇, 向文, 杨佳. 2015. 大岗山地下厂房洞室群围岩力学参数的动态反演与开挖稳定性分析研究[J]. 土木工程学报, 48(5):90-97.
    周志芳, 沈琪, 石安池, 等. 2020. 白鹤滩水电工程左岸玄武岩层间错动带渗透破坏预测与防治模拟[J]. 工程地质学报, 28(2):211-220.
计量
  • 文章访问数:  402
  • HTML全文浏览量:  152
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-19
  • 修回日期:  2021-08-09
  • 网络出版日期:  2021-11-11
  • 刊出日期:  2021-11-11

目录

    /

    返回文章
    返回