STUDY ON GROUND SUBSIDENCE LAW OF SHIELD TUNNEL CON-STRUC-TION IN KARST AREA
-
摘要: 隧道建设过程中,地下岩溶是诱发地面塌陷事故的主要原因之一。针对盾构隧道周围土层含有隐伏溶洞的情况,通过GTS/NX有限元数值分析软件,研究了相同断面面积下不同形状、不同位置、不同水平长度的岩溶对地表沉降的影响程度。研究结果表明:横向椭圆形溶洞是最不利的溶洞形状;水平位置中,溶洞位于隧道一侧特别是在隧道40°~50°方向上,地表沉降显著增大;竖向位置上存在一个"临界净距",使得地表沉降量最小;溶洞水平长度超出某一定值后,地表沉降量急剧增加。研究所得到的地表沉降规律为溶洞所在地层的变形、事故的预测及处理方案的制定提供依据。Abstract: In the process of tunnel construction, underground karst is one of the main causes of ground collapse. In view of the situation that there are hidden karst caves in the soil layer around the shield tunnel, to explore the influence of karst caves on the law of surface settlement, this paper carries out research from the aspects of karst cave shape, different positions and different horizontal lengths by using GTS/NX finite element software. The results show that the lateral ellipse cave is the most unfavorable shape. In the horizontal position, the karst cave is located on one side of the tunnel, especially in the direction of 40°~50°, and the surface settlement increases significantly. There is a "critical clear distance" in the vertical position, which minimizes the surface settlement. When the horizontal length of the cave exceeds a certain value, the surface settlement increases sharply. The surface settlement law obtained by the research provides the basis for the deformation of the stratum where the karst cave is located, the prediction of the accident and the formulation of the treatment scheme.
-
Keywords:
- Karst /
- Surface subsidence /
- Shield tunnel
-
-
Cai Y, Zhang C P, Min B, et al. 2019a. Analysis of deformation characteristics of karst cave bearing strata under the influence of shallow underground tunnel construction[J]. Chinese Journal of Geotechnical Engineering, 41(3):534-543.
Cai Y, Zhang C P, Min B. 2019b. Formation deformation and failure characteristics caused by shallow buried tunnel construction near overlying karst cave[J]. Journal of China Railway Society, 41(9):118-127.
Hou Y J, Zhang D L, Li P F. 2009. Safety accident analysis and prevention countermeasures of Beijing subway construction[J]. Journal of Beijing Jiaotong University, 33(3):52-59.
Li Q Q, Zhang D L, Fang Q. 2014. An analytical study on initial failure of karst cave bearing strata by complex variable function[J]. Chinese Journal of Geotechnical Engineering, 36(11):21010-2117.
Liu D Y, Xie J B, Li Z, et al. 2020. Numerical analysis of the influence of hidden karst cave on the stability of metro shield tunnel[J]. Tunnel Construction(In Chinese and English), 40(S2):151-160.
Song Z P, Qi Y B, Li N. 2007. Numerical analysis of the influence of existing concealed cave on the stability of circular tunnel[J]. Rock and Soil Mechanics, 28(S1):485-489.
Wang S M, Yu Q Y, Peng B, et al. 2017. Model test study on influence of karst cave on shield tunnel structure stress and failure[J]. Chinese Journal of Geotechnical Engineering, 39(1):89-98.
Xie J F, Tan F, Jiao Y Y, et al. 2021. Prediction of karst ground collapse based on factor analysis-GA-ELM model[J]. Journal of Engineering Geology, 29(2):536-544.
Xiong S Z, Shi W B, Wang X M. 2020. Damage and failure characteristics of karstic fractured rock mass under uniaxial compression[J/OL].Journal of Engineering Geology, 2020-11-04, https://doi.org/10.13544/j.cnki.jeg.2020-158.
Yi J M. 2011. Numerical simulation analysis of subway tunnel stability in karst area[D]. Guangzhou:South China University of Technology.
Zhang C P, Zhang D L, Wang M S, et al. 2010. Study on the mechanism and control of ground collapse induced by urban tunnel construction[J]. Rock and Soil Mechanics, 31(S1):303-309.
Zhang C P, Zhang X, Li H, et al. 2016. Model tests on failure laws of ground with voids induced by shallow tunnelling[J]. Chinese Journal of Geotechnical Engineering, 38(2):263-270.
Zhang Y, Zhu W, Zhao Y C, et al. 2021. Monitoring and inversion of FoShan metro collapse with multi-temporal INSAR[J]. Journal of Engineering Geology, 29(4):1167-1177.
Zhao M J, Ao J h, Liu X H, et al. 2004a. Model test study on influence of karst size on stability of tunnel surrounding rock[J]. Chinese Journal of Rock Mechanics and Engineering, (2):213-217.
Zhao M J, Xu R, Xu X B. 2004b. Simulation of surrounding rock deformation characteristics of full-section excavation tunnel in karst area[J]. Journal of Tongji University(Natural Science Edition), (6):710-715.
Zhao M J, Xu R, Liu X H, et al. 2003. Model test study on the influence of karst cave on the stability of surrounding rock[J]. Underground Space, (2):153-157, 225.
Zhao W Q. 2020. Effect of arch cave on shallow buried tunnel and its control[J]. Journal of Railway Engineering, 37(2):63-68.
蔡义, 张成平, 闵博, 等. 2019a. 浅埋地铁隧道施工影响下含溶洞地层的变形特征分析[J]. 岩土工程学报, 41(3):534-543. 蔡义, 张成平, 闵博. 2019b. 邻近上覆溶洞浅埋隧道施工引起的地层变形和破坏特征[J]. 铁道学报, 41(9):118-127. 侯艳娟, 张顶立, 李鹏飞. 2009. 北京地铁施工安全事故分析及防治对策[J]. 北京交通大学学报, 33(3):52-59. 李倩倩, 张顶立, 房倩. 2014. 含溶洞地层初始破坏的复变函数解析研究[J]. 岩土工程学报, 36(11):2110-2117. 刘道炎, 谢建斌, 黎忠, 等. 2020. 隐覆溶洞对地铁盾构隧道稳定性影响的数值分析[J]. 隧道建设(中英文), 40(S2):151 -160.
宋战平, 綦彦波, 李宁. 2007. 顶部既有隐伏溶洞对圆形隧道稳定性影响的数值分析[J]. 岩土力学, 28(S1):485-489. 王士民, 于清洋, 彭博, 等. 2017. 溶洞对盾构隧道结构受力与破坏影响模型试验研究[J]. 岩土工程学报, 39(1):89-98. 谢静峰, 谭飞, 焦玉勇, 等. 2021. 基于因子分析的GA-ELM模型岩溶地面塌陷预测[J]. 工程地质学报, 29(2):536-544. 熊绍真, 史文兵, 王小明. 2020. 单轴压缩条件下岩溶化裂隙岩体损伤破坏特征研究[J/OL]. 工程地质学报, 2020-11-04, https://doi.org/10.13544 /j.cnki.jeg.2020-158.
易介民. 2011. 岩溶地区地铁隧道稳定性的数值模拟分析[D]. 广州:华南理工大学.
张成平, 张顶立, 王梦恕, 等. 2010. 城市隧道施工诱发的地面塌陷灾变机制及其控制[J]. 岩土力学, 31(S1):303-309. 张成平, 张旭, 李贺, 等. 2016. 浅埋隧道施工扰动下含溶洞地层破坏演化规律试验研究[J]. 岩土工程学报, 38(2):263-270. 张严, 朱武, 赵超英, 等. 2021. 佛山地铁塌陷InSAR时序监测及机理分析[J]. 工程地质学报, 29(4):1167-1177. 赵明阶, 敖建华, 刘绪华, 等. 2004a. 岩溶尺寸对隧道围岩稳定性影响的模型试验研究[J]. 岩石力学与工程学报, (2):213-217. 赵明阶, 徐容, 许锡宾. 2004b. 岩溶区全断面开挖隧道围岩变形特性模拟[J]. 同济大学学报(自然科学版), (6):710-715. 赵明阶, 徐容, 刘绪华, 等. 2003. 隧道顶部溶洞影响围岩稳定性的模型试验研究[J]. 地下空间, (2):153-157 +225.
赵文强. 2020. 拱顶溶洞对浅埋暗挖隧道的影响及其防制[J]. 铁道工程学报, 37(2):63-68.
计量
- 文章访问数: 358
- HTML全文浏览量: 45
- PDF下载量: 42