基于改进Parker-Oldenburg界面反演方法计算青海省居里面深度

杜威, 董金生, 陈祥忠, 张阳阳, 刘俊成, 惠梦琳. 2022. 基于改进Parker-Oldenburg界面反演方法计算青海省居里面深度. 地球物理学报, 65(3): 1096-1106, doi: 10.6038/cjg2022P0150
引用本文: 杜威, 董金生, 陈祥忠, 张阳阳, 刘俊成, 惠梦琳. 2022. 基于改进Parker-Oldenburg界面反演方法计算青海省居里面深度. 地球物理学报, 65(3): 1096-1106, doi: 10.6038/cjg2022P0150
DU Wei, DONG JinSheng, CHEN XiangZhong, ZHANG YangYang, LIU JunCheng, HUI MengLin. 2022. Calculation of Curie depth in Qinghai Province based on an improved Parker-Oldenburg interface inversion method. Chinese Journal of Geophysics (in Chinese), 65(3): 1096-1106, doi: 10.6038/cjg2022P0150
Citation: DU Wei, DONG JinSheng, CHEN XiangZhong, ZHANG YangYang, LIU JunCheng, HUI MengLin. 2022. Calculation of Curie depth in Qinghai Province based on an improved Parker-Oldenburg interface inversion method. Chinese Journal of Geophysics (in Chinese), 65(3): 1096-1106, doi: 10.6038/cjg2022P0150

基于改进Parker-Oldenburg界面反演方法计算青海省居里面深度

  • 基金项目:

    国家青年科学基金项目(41904129)资助

详细信息
    作者简介:

    杜威, 女, 1990年生, 博士后, 主要从事重磁场数据处理及解释方面的研究.E-mail: duwei0505@yeah.net

    通讯作者: 陈祥忠, 男, 1982年生, 教授, 主要从事物探综合处理方法技术的研究.E-mail: 6447316@163.com
  • 中图分类号: P631

Calculation of Curie depth in Qinghai Province based on an improved Parker-Oldenburg interface inversion method

More Information
  • 居里面深度的起伏可以大致反映地壳深部温度场的分布特征,从而间接指示干热岩的赋存情况,因此研究居里面的起伏特征十分重要.本文针对经典的Parker-Oldenburg界面反演方法存在的计算不稳定、结果精度低的问题,通过公式推导,将界面反演公式与向下延拓公式进行类比,利用稳定的波数域正则-积分迭代下延法对经典的Parker-Oldenburg界面反演方法进行改进.这种迭代算法不仅有效地解决了反演迭代过程中的发散问题,而且对噪声也有很好的压制效果.模型试验说明了该方法在磁界面反演中的良好效果,最后利用青海省航磁数据对进行了居里面深度反演,反演结果可以看出青海省居里面表现为隆起和凹陷相间的条带状或块状构造,初步预测了青海省可能存在干热岩的两个地区,为今后地热资源的勘探、开发和利用提供参考.

  • 加载中
  • 图 1 

    模型位置以及其产生的磁异常图

    Figure 1. 

    The position of the model and the magnetic anomaly map of it

    图 2 

    正则参数的计算

    Figure 2. 

    The calculation of regular parameter

    图 3 

    界面反演结果

    Figure 3. 

    The interface inversion results

    图 4 

    模型添加噪声后的磁异常

    Figure 4. 

    The magnetic anomaly of the model after adding noise

    图 5 

    计算的L曲线图

    Figure 5. 

    Calculated L curve

    图 6 

    含噪声数据反演结果

    Figure 6. 

    The depth inversion of the magnetic anomaly with noise

    图 7 

    青海省主要断裂分布及大地构造区划概况(据雷玉德等,2017修改)

    Figure 7. 

    The distribution of main faults and outline of geotectonic division in Qinghai Province (according to Lei Y D et al., 2017)

    图 8 

    青海省航磁异常等值线图

    Figure 8. 

    The contour map of aeromagnetic RTP anomalies in Qinghai Province

    图 9 

    青海省居里深度反演结果

    Figure 9. 

    The Curie depth inversion of the aeromagnetic anomaly in Qinghai Province

    表 1 

    图 1模型的反演结果

    Table 1. 

    The statistics of inversion results of the model in Fig. 1

    位置A 位置B 位置C 均方根误差/km
    坐标/km 深度/km 坐标/km 深度/km 坐标/km 深度/km
    模型 (21,35) 1.830 (35,25.5) 1.799 (19,14) 2.077 -
    Parker-Oldenburg (22,35) 1.870 (35.5,26.5) 1.838 (19,14) 2.095 0.029
    改进方法 (21,35) 1.838 (35,25.5) 1.817 (19,14) 2.086 0.011
    下载: 导出CSV

    表 2 

    图 5模型的反演结果

    Table 2. 

    The statistics of inversion results of the model in Fig. 5

    位置A 位置B 位置C 均方根误差/km
    坐标/km 深度/km 坐标/km 深度/km 坐标/km 深度/km
    模型 (21,35) 1.830 (35,25.5) 1.799 (19,14) 2.077 -
    Parker-Oldenburg (22,35) 1.865 (35.5,26.5) 1.834 (19.5,14.5) 2.100 0.034
    改进方法 (21,35) 1.850 (35,25.5) 1.816 (19,14) 2.096 0.021
    下载: 导出CSV
  •  

    Aboud E, Salem A, Mekkawi M. 2011. Curie depth map for Sinai Peninsula, Egypt deduced from the analysis of magnetic data. Tectonophysics, 506(1-4): 46-54. doi: 10.1016/j.tecto.2011.04.010

     

    Afshar A, Norouzi G H, Moradzadeh A, et al. 2017. Curie point depth, geothermal gradient and heat-flow estimation and geothermal anomaly exploration from integrated analysis of aeromagnetic and gravity data on the Sabalan Area, NW Iran. Pure and Applied Geophysics, 174(3): 1133-1152. doi: 10.1007/s00024-016-1448-z

     

    Aydinİ, Karat Hİ, Koçak A. 2005. Curie-point depth map of Turkey. Geophysical Journal International, 162(2): 633-640. doi: 10.1111/j.1365-246X.2005.02617.x

     

    Aydinİ, Oksum E. 2010. Exponential approach to estimate the Curie-temperature depth. Journal of Geophysics and Engineering, 7(2): 113-125. doi: 10.1088/1742-2132/7/2/001

     

    Blakely R J. 1995. Potential Theory in Gravity and Magnetic Applications. Cambridge: Cambridge University Press, 278-294.

     

    Chen B F. 2013. Potential analysis of ore prospecting at adjacent area in Narigongma mining area of Zaduo county of Qinghai[Master's thesis](in Chinese). Beijing: China University of Geosciences (Beijing).

     

    ElNabi S H A. 2012. Curie point depth beneath the Barramiya-Red Sea coast area estimated from spectral analysis of aeromagnetic data. Journal of Asian Earth Sciences, 43(1): 254-266. doi: 10.1016/j.jseaes.2011.09.015

     

    Gómez-Ortiz D, Agarwal B N P. 2005. 3DINVER. M: a MATLAB program to invert the gravity anomaly over a 3D horizontal density interface by Parker-Oldenburg's algorithm. Computers & Geosciences, 31(4): 513-520.

     

    Granser H. 1986. Convergence of iterative gravity inversion. Geophysics, 51(5): 1146-1147. doi: 10.1190/1.1442169

     

    Guspí F. 1993. Noniterative nonlinear gravity inversion. Geophysics, 58(7): 935-940. doi: 10.1190/1.1443484

     

    Hansen P C. 1992. Analysis of discrete ill-posed problems by means of the L-curve. SIAM Review, 34(4): 561-580. doi: 10.1137/1034115

     

    Hansen P C, O'Leary D P. 1993. The use of the L-curve in the regularization of discrete Ill-posed problems. SIAM Journal on Scientific Computing, 14(6): 1487-1503. doi: 10.1137/0914086

     

    Hsieh H H, Chen C H, Lin P Y, et al. 2014. Curie point depth from spectral analysis of magnetic data in Taiwan. Journal of Asian Earth Sciences, 90: 26-33. doi: 10.1016/j.jseaes.2014.04.007

     

    Khojamli A, Ardejani F D, Moradzadeh A, et al. 2017. Determining fractal parameter and depth of magnetic sources for Ardabil geothermal area using aeromagnetic data by de-fractal approach. Journal of Mining and Environment, 8(1): 93-101.

     

    Lei Y D, Tong J, Yang Z M, et al. 2017. Resource types and typical geothermal models of hot dry rocks in Qinghai. South-to-North Water Transfers and Water Science & Technology (in Chinese), 15(4): 117-122.

     

    Li C F, Shi X B, Zhou Z Y, et al. 2010. Depths to the magnetic layer bottom in the South China Sea area and their tectonic implications. Geophysical Journal International, 182(3): 1229-1247. doi: 10.1111/j.1365-246X.2010.04702.x

     

    Liang X T, Liu L, Li Y, et al. 2015. Characteristics of curie depth interface and distribution forecast of hot dry rock in Hubei province. Resources Environment & Engineering (in Chinese), 29(6): 999-1005.

     

    Liu L, Zhou J P, Wu T, et al. 2021. Magnetic characteristics of basalt on mid-ocean ridge. Progress in Geophysics (in Chinese), 36(5): 1880-1890, doi: 10.6038/pg2021EE0403.

     

    Liu Z, Zeng Z F, Li J, et al. 2019. Inversion calculation of Curie depth based on dual magnetic interface and variable susceptibility model. Global Geology (in Chinese), 38(3): 795-804.

     

    Obande G E, Lawal K M, Ahmed L A. 2014. Spectral analysis of aeromagnetic data for geothermal investigation of Wikki Warm Spring, north-east Nigeria. Geothermics, 50: 85-90. doi: 10.1016/j.geothermics.2013.08.002

     

    Oldenburg D W. 1974. The inversion and interpretation of gravity anomalies. Geophysics, 39(4): 526-536. doi: 10.1190/1.1440444

     

    Parker R L. 1973. The rapid calculation of potential anomalies. Geophysical Journal International, 31(4): 447-455. doi: 10.1111/j.1365-246X.1973.tb06513.x

     

    Pham L T, Oksum E, Do T D. 2018. GCH_gravinv: A MATLAB-based program for inverting gravity anomalies over sedimentary basins. Computers & Geosciences, 120: 40-47.

     

    Pilkington M. 2006. Joint inversion of gravity and magnetic data for two-layer models. Geophysics, 71(3): L35-L42. doi: 10.1190/1.2194514

     

    Qu N N, Li J B, Zhang X J, et al. 2019. Study of deep structural feature in Guizhou based on gravity and magnetic data. Progress in Geophysics (in Chinese), 34(5): 1785-1793, doi: 10.6038/pg2019CC0310.

     

    Ravat D, Pignatelli A, Nicolosi I, et al. 2007. A study of spectral methods of estimating the depth to the bottom of magnetic sources from near-surface magnetic anomaly data. Geophysical Journal International, 169(2): 421-434. doi: 10.1111/j.1365-246X.2007.03305.x

     

    Reamer S K, Ferguson J F. 1989. Regularized two-dimensional Fourier gravity inversion method with application to the Silent Canyon caldera, Nevada. Geophysics, 54(4): 486-496. doi: 10.1190/1.1442675

     

    Regińska T. 1996. A regularization parameter in discrete ill-posed problems. Siam Journal on Scientific Computing, 17(3): 740-749. doi: 10.1137/S1064827593252672

     

    Ross H E, Blakely R J, Zoback M D. 2006. Testing the use of aeromagnetic data for the determination of Curie depth in California. Geophysics, 71(5): L51-L59. doi: 10.1190/1.2335572

     

    Ruiz F, Introcaso A. 2004. Curie point depths beneath Precordillera Cuyana and Sierras Pampeanas obtained from spectral analysis of magnetic anomalies. Gondwana Research, 7(4): 1133-1142. doi: 10.1016/S1342-937X(05)71089-3

     

    Shuey R T, Schellinger D K, Tripp A C, et al. 1977. Curie depth determination from aeromagnetic spectra. Geophysical Journal International, 50(1): 75-101. doi: 10.1111/j.1365-246X.1977.tb01325.x

     

    Spector A, Grant F S. 1970. Statistical models for interpreting aeromagnetic data. Geophysics, 35(2): 293-302. doi: 10.1190/1.1440092

     

    Tian T, Zhang J F, Jiang W L, et al. 2017. Using gravity and magnetic data to study the crustal structure characteristics of microplates in Yanbian, Jilin, China. Acta Geologica Sinica (in Chinese), 91(9): 1905-1924.

     

    Tselentis G A. 1991. An attempt to define curie point depths in Greece from aeromagnetic and heat flow data. Pure and Applied Geophysics, 136(1): 87-101. doi: 10.1007/BF00878889

     

    Wang D H, Zhang J F, Wang X, et al. 2018. Analysis of aeromagnetic anomalies and deep structures of Jiangsu segment of Tan-Lu fault zone and its adjacent region. Progress in Geophysics (in Chinese), 33(4): 1419-1429, doi: 10.6038/pg2018BB0234.

     

    Wang J Y, Hu S B, Pang Z H, et al. 2012. Estimate of geothermal resources potential for hot dry rock in the continental area of China. Science & Technology Review (in Chinese), 30(32): 25-31.

     

    Xiong S Q, Yang H, Ding Y Y, et al. 2016. Characteristics of Chinese continent Curie point isotherm. Chinese Journal of Geophysics (in Chinese), 59(10): 3604-3617, doi: 10.6038/cjg20161008.

     

    Xiong X S, Gao R, Li Q S, et al. 2009. Moho depth of Qinghai-Tibet plateau revealed by seismic probing. Journal of Earth Science, 20(2): 448-463. doi: 10.1007/s12583-009-0037-9

     

    Xu J R, Zhao Z X, Ishikawa Y. 2005. Extensional stress field in the central and Southern Qinghai-Tibetan Plateau and dynamic mechanism of geothermic anomaly in the Yangbajain area. Chinese Journal of Geophysics (in Chinese), 48(4): 861-869, doi: 10.3321/j.issn:0001-5733.2005.04.018.

     

    Xue G Q, Qian H, Jiang M, et al. 2003. Studies on the velocity structure of crust-upper mantle beneath Northeast Qinghai-Tibet Plateau, China. Acta Geoscientia Sinica (in Chinese), 24(1): 19-26.

     

    Zeng X N, Li X H, Niu C, et al. 2013. Regularization-integral iteration in wavenumber domain for downward continuation of potential fields. Geophysical Prospection for Petroleum (in Chinese), 48(4): 643-650.

     

    Zhang H F, Chen Y L, Xu W C, et al. 2006. Granitoids around Gonghe basin in Qinghai province: Petrogenesis and tectonic implications. Acta Petrologica Sinica (in Chinese), 22(12): 2910-2922.

     

    Zhang S S, Zhang L, Tian C C, et al. 2019. Occurrence geological characteristics and development potential of hot dry rocks in Qinghai Gonghe Basin. Journal of Geomechanics (in Chinese), 25(4): 501-508.

     

    Zhou B, Peng J B, Zhang J. 2009. Development and distribution patterns of active fault zones in Qinghai Province. Journal of Engineering Geology (in Chinese), 17(5): 612-618.

     

    Zhou W S, Dong P, Wang L S, et al. 2014. Gravity and magnetic anomalies and deep structure in the Sanjiang Basin. Progress in Geophysics (in Chinese), 29(6): 2620-2627, doi: 10.6038/pg20140623.

     

    陈秉芳. 2013. 青海省杂多县纳日贡玛矿区外围找矿潜力分析[硕士论文]. 北京: 中国地质大学(北京).

     

    雷玉德, 童珏, 杨占梅等. 2017. 青海省干热岩资源类型及典型地热模式. 南水北调与水利科技, 15(4): 117-122. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201704019.htm

     

    梁学堂, 刘磊, 李义等. 2015. 湖北省居里面特征与干热岩分布预测. 资源环境与工程, 29(6): 999-1005.

     

    刘隆, 周建平, 吴涛等. 2021. 大洋中脊玄武岩磁性特征. 地球物理学进展, 36(5): 1880-1890, doi: 10.6038/pg2021EE0403.

     

    刘卓, 曾昭发, 李静等. 2019. 基于双磁性界面和变磁化率模型的居里面深度反演计算. 世界地质, 38(3): 795-804. doi: 10.3969/j.issn.1004-5589.2019.03.022

     

    屈念念, 李家斌, 张西君等. 2019. 基于重磁资料研究贵州省深部构造特征. 地球物理学进展, 34(5): 1785-1793, doi: 10.6038/pg2019CC0310.

     

    田甜, 张景发, 姜文亮等. 2017. 基于重磁场的延边微板块地壳结构特征研究. 地质学报, 91(9): 1905-1924. doi: 10.3969/j.issn.0001-5717.2017.09.001

     

    王德华, 张景发, 王鑫等. 2018. 郯庐断裂带江苏段及邻区航磁异常与深部构造特征. 地球物理学进展, 33(4): 1419-1429, doi: 10.6038/pg2018BB0234.

     

    汪集旸, 胡圣标, 庞忠和等. 2012. 中国大陆干热岩地热资源潜力评估. 科技导报, 30(32): 25-31. doi: 10.3981/j.issn.1000-7857.2012.32.002

     

    熊盛青, 杨海, 丁燕云等. 2016. 中国陆域居里等温面深度特征. 地球物理学报, 59(10): 3604-3617, doi: 10.6038/cjg20161008. http://www.geophy.cn/article/doi/10.6038/cjg20161008

     

    徐纪人, 赵志新, 石川有三. 2005. 青藏高原中南部岩石圈扩张应力场与羊八井地热异常形成机制. 地球物理学报, 48(4): 861-869, doi: 10.3321/j.issn:0001-5733.2005.04.018. http://www.geophy.cn/article/id/cjg_752

     

    薛光琦, 钱辉, 姜枚等. 2003. 青藏高原东北部天然地震探测与岩石圈深部特征. 地球学报, 24(1): 19-26. doi: 10.3321/j.issn:1006-3021.2003.01.004

     

    曾小牛, 李夕海, 牛超等. 2013. 位场向下延拓的波数域正则-积分迭代法. 石油地球物理勘探, 48(4): 643-650. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201304022.htm

     

    张宏飞, 陈岳龙, 徐旺春等. 2006. 青海共和盆地周缘印支期花岗岩类的成因及其构造意义. 岩石学报, 22(12): 2910-2922. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200612008.htm

     

    张盛生, 张磊, 田成成等. 2019. 青海共和盆地干热岩赋存地质特征及开发潜力. 地质力学学报, 25(4): 501-508. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201904006.htm

     

    周保, 彭建兵, 张骏. 2009. 青海省活动断裂带分布发育特征研究. 工程地质学报, 17(5): 612-618. doi: 10.3969/j.issn.1004-9665.2009.05.005

     

    周稳生, 董平, 王良书等. 2014. 三江盆地重磁场特征与深部结构. 地球物理学进展, 29(6): 2620-2627, doi:10.6038/pg20140623.

  • 加载中

(9)

(2)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2021-03-03
修回日期:  2021-11-22
上线日期:  2022-03-10

目录