首页 | 本学科首页   官方微博 | 高级检索  
     

基于卷积神经网络的智能找矿预测方法:以甘肃龙首山地区铜矿为例
引用本文:李忠潭,薛林福,冉祥金,李永胜,董国强,李玉博,戴均豪. 基于卷积神经网络的智能找矿预测方法:以甘肃龙首山地区铜矿为例[J]. 吉林大学学报(地球科学版), 2022, 52(2): 418-433. DOI: 10.13278/j.cnki.jjuese.20210081
作者姓名:李忠潭  薛林福  冉祥金  李永胜  董国强  李玉博  戴均豪
作者单位:1.吉林大学地球科学学院,长春1300612.中国地质调查局发展研究中心,北京1000373.自然资源部矿产勘查技术指导中心,北京1000834.甘肃省地质调查院,兰州730000
基金项目:中国地质调查局矿调项目(DD20190159)
摘    要:智能找矿预测是数字地质科学的前沿领域。本文基于一种二维卷积神经网络的智能找矿预测方法,以25种元素的水系沉积物数据和航磁数据为找矿预测数据,将已知的矿点作为监督样本,利用步长平移数据增强方法获取了训练数据集,对卷积神经网络进行训练后,将其应用于未知区域的找矿预测。应用该方法对甘肃省龙首山西段高台县臭泥墩—西小口子地区进行了铜矿智能找矿预测,根据已知的3个铜矿点,获取了22 934个训练数据,经过200轮训练之后,预测精度能够达到98.1%,最终圈定了5个预测区,5个预测区均具有良好的铜矿找矿远景。

关 键 词:二维卷积神经网络;数据增强;龙首山西段;铜矿;智能找矿预测   

Intelligent Prospect Prediction Method Based on Convolutional Neural Network:A Case Study of Copper Deposits in Longshoushan Area,Gansu Province
Li Zhongtan,Xue Linfu,Ran Xiangjin,Li Yongsheng,Dong Guoqiang,Li Yubo,Dai Junhao. Intelligent Prospect Prediction Method Based on Convolutional Neural Network:A Case Study of Copper Deposits in Longshoushan Area,Gansu Province[J]. Journal of Jilin Unviersity:Earth Science Edition, 2022, 52(2): 418-433. DOI: 10.13278/j.cnki.jjuese.20210081
Authors:Li Zhongtan  Xue Linfu  Ran Xiangjin  Li Yongsheng  Dong Guoqiang  Li Yubo  Dai Junhao
Affiliation:1. College of Earth Sciences, Jilin University, Changchun 130061, China
2. Development and Research Center of China Geological Survey, Beijing 100037, China
3. Mineral Exploration Technical Guidance Center, Ministry of Natural Resources, Beijing 100083, China
4. Geological Survey Institute of Gansu, Lanzhou 730000, China
Abstract:Intelligent prospect prediction method is the leading edge of digital geoscience. In this paper, an intelligent prospect prediction method based on two-dimensional convolutional neural network is used. On the basis of 25 elements and aeromagnetic data on geochemical survey of stream sediments and taking known ore occurrences as monitoring samples, the training data set is obtained by step shift data enhancement. After training the convolutional neural network, it is applied to prospect prediction of unknown areas. The intelligent prospecting of copper deposits in the area of Chounidun-Xixiaokouzi, Gaotai County, west Longshoushan, Gansu Province is predicted. From 3 known copper occurrences, 22 934 training data are obtained. After 200 rounds of training, the prediction accuracy reaches 98.1%, and 5 prediction areas are delineated. In consideration with the previous research results and field work, the delineated areas have good prospect for copper mineralization.
Keywords:convolutional neural network  data enhancement  western Longshoushan  copper deposit  intelligent prospecting and prediction  
点击此处可从《吉林大学学报(地球科学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(地球科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号