基于WOE-PPMCC模型的区域滑坡敏感性分析

岩温香, 郭婷婷, 杨彦武, 华勇, 周旭萌, 张智伟. 2024. 基于WOE-PPMCC模型的区域滑坡敏感性分析. 地质科学, 59(6): 1775-1785. doi: 10.12017/dzkx.2024.121
引用本文: 岩温香, 郭婷婷, 杨彦武, 华勇, 周旭萌, 张智伟. 2024. 基于WOE-PPMCC模型的区域滑坡敏感性分析. 地质科学, 59(6): 1775-1785. doi: 10.12017/dzkx.2024.121
Yan Wenxiang, Guo Tingting, Yang Yanwu, Hua Yong, Zhou Xumeng, Zhang Zhiwei. 2024. Regional landslide susceptibility analysis based on the WOE-PPMCC model. Chinese Journal of Geology, 59(6): 1775-1785. doi: 10.12017/dzkx.2024.121
Citation: Yan Wenxiang, Guo Tingting, Yang Yanwu, Hua Yong, Zhou Xumeng, Zhang Zhiwei. 2024. Regional landslide susceptibility analysis based on the WOE-PPMCC model. Chinese Journal of Geology, 59(6): 1775-1785. doi: 10.12017/dzkx.2024.121

基于WOE-PPMCC模型的区域滑坡敏感性分析

  • 基金项目:

    国家自然科学基金项目(编号:41861134008)、云南省Muhammad Asif Khan院士工作站项目(编号:202105AF150076)、云南省重点研发计划项目(编号:202003AC100002)和云南省基础研究计划项目(编号:202001AT070043)资助

详细信息
    作者简介:

    岩温香,男,2000年生,硕士研究生,地质工程学专业。E-mail:1939926004@qq.com

    通讯作者: 郭婷婷,女,1984年生,博士,副教授,地质工程学专业。本文通讯作者。E-mail:181604785@qq.com
  • 中图分类号: P642.22

Regional landslide susceptibility analysis based on the WOE-PPMCC model

More Information
  • 为了使滑坡敏感性分析结果更为准确,选取科学的分级方法以及构建合理的评价模型是关键。以云南省墨江县作为研究区,选取9项影响因子,通过频率比法对滑坡影响因子进行分级,利用证据权法—皮尔逊积矩相关系数模型(WOE-PPMCC)对滑坡影响因子敏感性进行分析,并验证分析结果的准确性,对墨江县滑坡进行敏感性分区。研究结果表明:1)影响因子敏感性由高到低分别为坡向、断层、道路、坡度、河流、高程、地形起伏度、地层岩性、NDVI;2)研究区域可划分为低敏感区、中敏感区、高敏感区,分别占总面积的40.69%、30.56%、28.75%,各分区分别发育有8处、43处、332处滑坡,各敏感性分区内滑坡点的比例呈现出随敏感性等级的升高而依次递增的良好正相关性;3)WOE-PPMCC模型精度高,数据分析结果准确可靠,实现了用较少的高敏感区来尽可能多地体现已知滑坡点的目的。该方法适用于指导防灾减灾实际工作,研究结果可为滑坡灾害的综合防治提供依据。

  • 加载中
  • 图 1 

    墨江县滑坡分布图

    Figure 1. 

    Distribution map of landslide in Mojiang County

    图 2 

    滑坡敏感性影响因子

    Figure 2. 

    Influencing factors for landslide susceptibility

    图 3 

    影响因子分级统计结果图

    Figure 3. 

    The results of statistical classification of influencing factors

    图 4 

    墨江县滑坡敏感性分区图

    Figure 4. 

    Landslide susceptibility regionalization in Mojiang County

    表 1 

    高程频率比法计算结果

    Table 1. 

    Calculation results of elevation frequency ratio

    高程/m 区间面积/km2 滑坡面积/m2 FR
    400~600 22.46 750 0.01
    600~800 135.69 205400 0.67
    800~1000 458.60 677430 0.66
    1000~1200 932.61 2602363 1.24
    1200~1400 1262.32 2941569 1.04
    1400~1600 1265.55 3367662 1.18
    1600~1800 810.41 1689357 0.83
    1800~2000 350.93 461769 0.69
    2000~2200 70.50 0 0
    2200~2400 2.21 0 0
    下载: 导出CSV

    表 2 

    影响因子分级结果

    Table 2. 

    Classification results of hazard-inducing factors

    分级 影响因子
    高程/m FR 坡度/° FR 坡度/° FR 地形起伏度/m FR NDVI FR 地层岩性 断层距离/m FR 道路距离/m FR 河流距离/m FR
    400~600 0.01 0~10 0.38 0~60 1.07 0~15 0.53 0.159~0.332 0 粘土、砂土、卵砾石多层土体(Qal 0~250 0.83 0~200 0.75 0~200 1.15
    600~1000 0.66 10~30 1.23 60~150 0.7 15~30 1.54 0.332~0.506 1.29 粘质砂土、砂质粘土、砾石多层土体(Qal+pl 250~1500 1.25 200~400 2.53 200~400 0.60
    1000~1600 1.15 30~50 0.72 150~180 1.04 30~90 0.61 0.506~0.593 2.74 较软中厚层泥岩、粉砂岩(J2h 1500~2250 0.74 400~1000 1.30 400~1200 1.43
    1600~2000 0.76 50~80 0 180~240 0.69 90~210 0 0.593~0.680 1.34 较坚硬中厚层砂岩、泥岩(D2b 2250~2500 1.13 1000~1400 0.65 1200~1600 0.65
    2000~2400 0 - - 240~270 1.12 - - 0.680~0.853 0.27 较坚硬中厚层千枚岩、石英砂岩(S3 >2500 0.1 1400~1800 1.00 1600~1800 2.11
    - - - - 270~330 0.77 - - - 坚硬层状灰岩、白云岩(D2a - - >1800 0.15 >1800 0.42
    - - - - 330~360 2.63 - - - 坚硬块状砂岩、长石石英砂岩(T3y - - - - - -
    - - - - - - - 坚硬块状岩浆岩(K1s - - - - - -
    下载: 导出CSV

    表 3 

    各影响因子分类等级Wc值计算结果表

    Table 3. 

    Calculation results table of Wc of classification level of each evaluation factor

    影响因子 分级 灾害点/处 Wc 影响因子 分级 灾害点/处 Wc
    高程/m 400~600 2 0.214 地层岩性 Qal 1 0.642
    600~1000 24 -0.627 Qal+pl 1 0.358
    1000~1600 277 1.31 J2h 265 1.298
    1600~2000 80 -1.159 D2b 25 -0.631
    2000~2400 0 -0.014 S3 4 -0.391
    坡度/° 0~10 22 -0.286 D2a 2 -1.027
    10~30 303 0.735 T3y 82 0.699
    30~50 58 -0.004 K1s 3 -0.230
    50~80 0 -0.759 距断层距离/m 0~250 70 0.038
    坡向/° 0~60 79 0.215 250~1500 235 0.207
    60~150 89 0.075 1500~2250 39 -0.438
    150~180 32 -0.109 2250~2500 8 -0.352
    180~240 68 -0.097 >2500 31 0.009
    240~270 25 -0.212 距道路距离/m 0~200 121 0.847
    270~330 60 -0.016 200~400 64 0.328
    330~360 30 -0.087 400~1000 89 -0.270
    地形起伏度/m 0~15 23 -0.338 1000~1400 44 -0.168
    15~30 172 0.410 1400~1800 24 -0.464
    30~90 188 0.296 >1800 41 -0.706
    90~210 0 -0.002 距河流距离/m 0~200 31 -0.525
    NDVI 0.159~0.332 0 0.000 200~400 56 0.226
    0.332~0.506 9 1.053 400~1200 180 0.377
    0.506~0.593 92 0.391 1200~1600 37 -0.209
    0.593~0.680 185 1.229 1600~1800 11 -0.459
    0.680~0.853 97 -1.160 >1800 68 -0.212
    下载: 导出CSV

    表 4 

    滑坡影响因子敏感性分析表

    Table 4. 

    Analysis of susceptibility of disaster-causing factors

    相关系数 高程 坡度 坡向 地形起伏度 NDVI 地层岩性 断层 道路 河流
    Rxy 0.623 0.781 0.815 0.375 -0.133 0.273 0.796 0.787 0.775
    下载: 导出CSV
  •  

    傅鹏辉, 郭璐, 贺可强. 2019. 基于数量化理论Ⅰ的库岸堆积层滑坡致滑因子敏感性分析. 水电能源科学, 37(6): 128-131.

    Fu Penghui, Guo Lu and He Keqiang. 2019. Sensitivity analysis of reservoir accumulation landslide induced sliding factors based on theory of quantification Ⅰ. Water Resources and Power, 37(6): 128-131.

     

    黄润秋. 2007. 20世纪以来中国的大型滑坡及其发生机制. 岩石力学与工程学报, 26(3): 433-454. doi: 10.3321/j.issn:1000-6915.2007.03.001

    Huang Runqiu. 2007. Large-scale landslides and their sliding mechanisms in China since the 20th century. Chinese Journal of Rock Mechanics and Engineering, 26(3): 433-454. doi: 10.3321/j.issn:1000-6915.2007.03.001

     

    李霞, 宿星, 张满银等. 2023. 基于证据权法与多源数据的陇中生态脆弱区滑坡敏感性评价——以天水市为例. 冰川冻土, 45(1): 67-79.

    Li Xia, Su Xing, Zhang Manyin et al. 2023. Landslide susceptibility using weights-of-evidence approach and multi-source data in Longzhong ecologically vulnerable area: A case study of Tianshui City. Journal of Glaciology And Geocryology, 45(1): 67-79.

     

    申怀飞, 董雨, 杨梅等. 2021. 基于AHP与信息量法的甘肃省滑坡易发性评估. 水土保持研究, 28(6): 412-419.

    Shen Huaifei, Dong Yu, Yang Mei et al. 2021. Assessment on landslide susceptibility in Gansu Province based on AHP and information quantity method. Research of Soil and Water Conservation, 28(6): 412-419.

     

    王文坡, 韩爱果, 任光明等. 2018. 四川省普格县滑坡孕灾环境因子敏感性分析. 长江科学院院报, 35(9): 63-67.

    Wang Wenpo, Han Aiguo, Ren Guangming et al. 2018. Sensitivity analysis of hazard-brewing environmental factors of landslides in Puge County of Sichuan Province. Journal of Yangtze River Scientific Research Institute, 35(9): 63-67.

     

    吴森, 李虎杰, 陈国辉等. 2016. 基于贡献率权重法的区域滑坡影响因子敏感性分析. 中国地质灾害与防治学报, 27(1): 26-31.

    Wu Sen, Li Hujie, Chen Guohui et al. 2016. Regional landslides influence factors sensitivity analysis based on contributing weight method. The Chinese Journal of Geological Hazard and Control, 27(1): 26-31.

     

    杨光, 徐佩华, 曹琛等. 2019. 基于确定性系数组合模型的区域滑坡敏感性评价. 工程地质学报, 27(5): 1153-1163.

    Yang Guang, Xu Peihua, Cao Chen et al. 2019. Assessment of regional landslide susceptibility based on combined model of certainty factor method. Journal of Engineering Geology, 27(5): 1153-1163.

     

    尹超, 李仲波, 张凯等. 2023. 基于Inter. iamb-Tabu算法的区域滑坡敏感性评价. 山地学报, 41(4): 608-620.

    Yin Chao, Li Zhongbo, Zhang Kai et al. 2023. Regional landslide susceptibility assessment based on Inter. iamb-Tabu algorithm. Mountain Research, 41(4): 608-620.

     

    郑景莹, 谈树成, 王超等. 2023. 基于CF-PCCs模型的维西县滑坡致灾因子敏感性分析. 云南大学学报(自然科学版), 45(2): 369-378.

    Zheng Jingying, Tan Shucheng, Wang Chao et al. 2023. Susceptibility of landslide disaster-causing factors based on CF-PCCs model in Weixi County, Yunnan Province, China. Journal of Yunnan University (Natural Sciences Edition), 45(2): 369-378.

     

    Agterberg F P. 1992. Combining indicator patterns in weights of evidence modeling for resource evaluation. Nonrenewable Resources, 1: 39-50. DOI: 10.1007/BF01782111.

     

    Baeza C, Lantada N and Amorim S. 2016. Statistical and spatial analysis of landslide susceptibility maps with different classification systems. Environmental Earth Sciences, 75: 1318. DOI: 10.1007/s12665-016-6124-1.

     

    Bonham-Carter G F, Agterberg F P and Wright D F. 1989. Integration of geological datasets for gold exploration in Nova Scotia. // Nicholas Van Driel J and Davis J C. Digital Geologic and Geographic Information Systems. Washington D.C. : American Geophysical Union. 15-23. DOI: 10.1029/SC010p0015.

     

    Chen W, Ding X, Zhao R X et al. 2016. Application of frequency ratio and weights of evidence models in landslide susceptibility mapping for the Shangzhou District of Shangluo City, China. Environmental Earth Sciences, 75: 64. DOI: 10.1007/s12665-015-4829-1.

     

    Chen W, Peng J B, Hong H Y et al. 2018. Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China. Science of the Total Environment, 626: 1121-1135. DOI: 10.1016/j.scitotenv.2018.01.124.

     

    Moghaddam S H A, Mokhtarzade M and Beirami B A. 2020. A feature extraction method based on spectral segmentation and integration of hyperspectral images. International Journal of Applied Earth Observation and Geoinformation, 89: 102097. DOI: 10.1016/j.jag.2020.102097.

     

    Ouyang C J, Wang Z W, An H C et al. 2019. An example of a hazard and risk assessment for debris flows: A case study of Niwan gully, Wudu, China. Engineering Geology, 263: 105351. DOI: 10.1016/j.enggeo.2019.105351.

     

    Ozdemir A and Altural T. 2013. A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. Journal of Asian Earth Sciences, 64: 180-197. DOI: 10.1016/j.jseaes.2012.12.014.

     

    Regmi N R, Giardino J R and Vitek J D. 2010. Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado, USA. Geomorphology, 115(1-2): 172-187. DOI: 10.1016/j.geomorph.2009.10.002.

     

    Tsangaratos P and Ilia I. 2016. Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments: The influence of models complexity and training dataset size. CATENA, 145: 164-179. DOI: 10.1016/j.catena.2016.06.004.

     

    Wu Z N, Shen Y X, Wang H L et al. 2020. Urban flood disaster risk evaluation based on ontology and Bayesian network. Journal of Hydrology, 583: 124596. DOI: 10.1016/j.jhydrol.2020.124596.

     

    Zhang T Y, Mao Z A and Wang T. 2020. GIS-based evaluation of landslide susceptibility using a novel hybrid computational intelligence model on different mapping units. Journal of Mountain Science, 17: 2929-2941. DOI: 10.1007/s11629-020-6393-8.

     

    Zhao X and Chen W. 2020. Optimization of computational intelligence models for landslide susceptibility evaluation. Remote Sensing, 12(14): 2180. DOI: 10.3390/rs12142180.

     

    Zhou C, Yin K L, Cao Y et al. 2018. Landslide susceptibility modeling applying machine learning methods: A case study from Longju in the Three Gorges Reservoir area, China. Computers & Geosciences, 112: 23-37. DOI:10.1016/j.cageo.2017.11.019.

  • 加载中

(4)

(4)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2024-05-30
修回日期:  2024-07-15
刊出日期:  2024-11-01

目录