西藏班公湖带多不杂超大型富金斑岩铜矿的高温高盐高氧化成矿流体:流体包裹体证据
High temperature,salinity and strong oxidation ore-forming fluid at Duobuza gold-rich porphyry copper deposit in the Bangonghu tectonic belt,Tibet: Evidence from fluid inclusions
-
摘要: 多不杂富金斑岩铜矿床位于斑公湖-怒江缝合带北侧多不杂构造岩浆弧中,成矿与侵位于中侏罗统雁石坪群和早白垩统美日切组地层中的石英闪长玢岩、花岗闪长斑岩有关.由于斑岩体的侵位,在岩体内及其围岩中形成强烈蚀变且分带明显,由含矿斑岩中心向外可划分出钾硅化带、中级泥化带、泥化带、伊利石-水白云母化-褐铁矿化带-角岩带或青磐岩化带(围岩是中基性火山岩时).矿化为细脉-浸染状,含矿斑岩全岩矿化,少量矿化产于围岩中,成矿为铜-金组合,为典型的富金斑岩铜矿.初步识别出(1)钾化带中主要发育M型、EB型、A型及部分B型脉;(2)绿泥石化带(中级泥化带)中发育B型、C型、石英-绿泥石脉及S型、G型脉;(3)在粘土化带(泥化带)中主要发育C型脉、G型脉及S型细网脉;(4)在围岩中主要发育B型、C型、D型及G型细网脉以及碳酸盐脉、M型脉等.矿区范围内发育丰富的热液磁铁矿、赤铁矿、金红石等,铜、金沉淀与热液磁铁矿的形成关系密切;矿石中主要为黄铜矿、少量斑铜矿和辉铜矿,而黄铁矿很少,总体上为黄铜矿>斑铜矿,黄铜矿>黄铁矿.在石英斑晶及各种脉系中识别出三个大类和十个亚类的流体包裹体.包裹体显微测温数据表明最高(达935℃、压力200MPa)的均一温度出现在石英斑晶中,这种由含不透明子矿物、简单多相、含硅酸盐子矿物、赤铁矿多相包裹体类型构成的具45%NaCleq盐度的多相包裹体可能代表本矿床最原始的成矿流体组成;这种成矿流体上升到3km左右、冷却到580℃左右发生沸腾,分离出超高盐度(60%~80%NaCl eq)流体包裹体和富气相包裹体,并导致大量磁铁矿的结晶和还原硫的释放,且伴随部分金属硫化物及部分金沉淀,形成早期的M、A型脉;随着温度的进一步降低和分离出的流体包裹体的聚集,在500℃~480℃之间、22~40MPa之间、深度约1.5km发生沸腾,大量释放出的硫与金属离子结合,导致了大量铜、金的沉淀,形成如B型脉等一系列脉系及浸染状的铜矿化.在450℃~400℃之间、压力20~32MPa之间、深度1.1km左右又发生了明显的沸腾事件,形成了如C型脉、S型等舍铜脉系.在370℃~200℃之间、压力5~30MPa之间,包裹体以液相包裹体和多相包裹体为主,其盐度变化较大,可能是由于岩浆流体的稀释作用或少量大气降水参与循环所致,形成了D型脉及面状硅化.我们的研究结果揭示多不杂富金斑岩铜矿是主要由直接从岩浆熔体中出溶(600℃~950℃)的具高氧化性、(超)高盐度的富合成矿元素的岩浆流体形成的,是斑岩矿床系列中正岩浆端元的典型代表.
-
Key words:
- Gold-rich porphyry copper deposit /
- Vein systems /
- Primitive magmatic fluid /
- Fluid inclusion /
- Boiling /
- Duobuza /
- Bangonghu arc
-
-
[1] Akira Imai.2005. Evolution of Hydrothermal system at the Dizon Porphyry Cu-Au Deposit,Philippines.Resource Geology,55:73 -90
[2] Arancibia ON and Clark AH.1996. Early magnetite-amphibole-plagioclase alteration mineralization in the Island Copper porphyry copper-gold-molybdenum deposit,British Columbia.Economic Geology,91:402-438
[3] Bodnar RJ,Burnham CW and Sterner SM.1985. Synthetic fluid inclusions in natural quartz.Ⅲ.Determination of phase equilibrium properties in the system H20-NaCl to 1000 C and 1500 bars.Geochimica et Cosmochimica Acta,v 49:pi 861-1873
[4] Bouzari F and Clark AH.2006. Prograde Evolution and Geothermal Affinities of a Major Porphyry Copper Deposit:The Cerro Colorado Hypogene Protore,I Regi n,Northern Chile.Economic Geology,101:95-134
[5] Campos EA et al.2005. Magmatic fluid inclusions from the Zaldivar deposit,North Chile:The role of early metal-bearing fluids in a porphyry copper system.Resource Geology,56:1-8
[6] Cline JS.1995. Genesis of porphyry copper deposits:The behavior of water,chloride,and copper in crystallizing melts.Arizona Geological Society Digest,20:69-82
[7] Cline JS and Bodnar RJ.1991. Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt? Journal of Geophysical Research,96:8113 -8126
[8] Cloke PL and Kesler SE.1979. The halite trend in hydrothermal solutions.Economic Geology,74:1823-1831
[9] Defant MJ and Drummond MS.1990. Derivation of some modern arc magmas by melting of young subduction lithosphere.Nature,347:662 -665
[10] Dilles JH and Einaudi MT.1992. Wall-rock alteration and hydrothermal flow paths about the Ann-Mason porphyry copper deposit,Nevada:A 6-km vertical reconstruction.Economic Geology,87:1963 -2001
[11] Eastoe CJ.1982. Physics and chemistry of the hydrothermal system at the Panguna porphyry copper deposit,Bougainville,Papua New Guinea.Economic Geology,77:127-153
[12] Gustafson LB and Hunt JP.1975. The porphyry copper deposit at El Salvador,Chile.Economic Geology,70:857 -912
[13] Gustafson LB and Quiroga GJ.1995. Patterns of mineralization and alteration below the porphyry copper orebody at El Salvador,Chile.Economic Geology,90:2-16
[14] Haas JL Jr.1976. Physical properties of the coexisting phases and thermodynamic properties of the H20 component in boiling NaCl solutions.U.S.Geological Survey Bulletin 1421 A:73 p
[15] Harris AC,Kamenetsky VS,White NC,Achterbergh E and Ryan CG.2003. Melt Inclusions in Veins:Linking Magmas and Porphyry Cu Deposits.Science,302:2109 -2111
[16] Hattori K.1993. High-sulfur magma,a product of fluid discharge from underlying mafic magma:evidence from Mount Pinatubo,Philippines.Geology,21:1083-1086
[17] Hedenquist JW,Arribas A,Jr and Reynolds TJ.1998. Evolution of an intrusion-centered hydrothermal system:Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits,Philippines.ECONOMIC GEOLOGY,v 93:P373 -404
[18] Heithersay PS and Walshe JL.1995. Endeavour 26 North:A porphyry copper-gold deposit in the Late Ordovician shoshonitic Goonumbla Volcanic Complex,New South Wales,Australia.Economic Geology,90:1506-1532
[19] Hou ZQ,Gao YF,Qu XM,Rui ZY and Mo XX.2004. Origin of adakitic intrusives generated during mid-Miocene East-west extension in southern Tibet.Earth and Planetary Science Letters,220:139-155
[20] Hou ZQ,Qu XM,Wang SX,Gao YF,Du AD and Huang W.2003. The Re-Os age of molybdenites from Gangdese porphyry copper deposits belt,Xizang plateau:Minearlization age and application of dynamic setting.Sci.in China (SeriesD).33(7):609 -618(in Chinese)
[21] Huang JT and Chen BW.1987. Geological evolution of Tethys sea around China and its adjacent areas.Beijing:Geological Publishing House,1 -78(in Chinese)
[22] Kamenetsky VS,Wolfe RC,Eggins SM,Mernagh TP and Bastrakov E.1999. Volatile exsolution at the Dinkidi Cu-Au porphyry deposit,Philippines:A melt-inclusion record of the initial ore-forming process,Geology,27:691 -694
[23] Kapp P et al.2003. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet.Tectonics,22:1029
[24] Li GM,Li JX,Qin KZ,Zhang TP and Xiao B.2006. Preliminary Study on Alteration and Mineralization Features and High-Oxidated Ore-Forming Fluids at Duobuza Super-large Au-Rich Porphyry Cu Deposit,Western Tibet,Mineral Deposits,25,Supp.:411 -414 (in Chinese with English abstract)
[25] Li JX,Qin KZ and Li GM.2006. Basic characteristics of gold-rich porphyry copper deposits and their ore sources and evolving processes of high oxidation magma and ore-forming fluid.Acta Petrologica Sinica,22(3):678 -688 (in Chinese with English abstract)
[26] Lickfold V,Cooke DR,Smith SG and Ullrich TD.2003. Endeavour Copper-Gold Porphyry Deposits,Northparkes,New South Wales:Intrusive History and Fluid Evolution.Economic Geology,98:1607 -1636
[27] Loucks RR and Mavrogenes JA.1999. Gold solubility in supercritical hydrothermal brines measured in synthetic fluids inclusions.Science,284:2159-2163
[28] Lu HZ.2000. High temperature,salinity and high concentrated ore metal magmatic fluids:an example from Grasberg Cu-Au porphyry deposit.Acta Petrologica Sinica,16(4):465-472 (in Chinese with English abstract)
[29] Lu HZ,Fan HR,Ni P,Ou GX,Shen K and Zhang WH.2004. Fluid inclusion,Beijing:Science Publishing House,1-487(in Chinese)
[30] Mavrogenes JA and Bodnar RJ.1994. Hydrogen movement into and out of fluid inclusions in quartz:Experimental evidence and geological implications.Geochimica et Cosmochimica Acta,58:141-148
[31] Mungall JE.2002. Roasting the mantle:Slab melting and the genesis of major Au and Au-rich Cu deposits.Geology,30:915 -918
[32] Qin KZ,Richards T,Li GM,Zhang Q and Li JL.2005. Formation of the Miocene porphyry Cu (-Mo-Au) deposits in the Gangdese arc,southern Tibet,in a transitional tectonic setting.In:Zhao CS and Guo BJ ed.:Mineral Deposit Research:Meeting the Global Challenge.China Land Publishing House,3:44-47
[33] Qin KZ.1993. On the major ore-controlling factors over large-superlarge copper deposits.Exploration of Geosciences,8:39-45 (in Chinese with English abstract)
[34] Qin KZ.and Ishihara S.1998. On the possibility of porphyry copper mineralization Japanese Islands.International Geology Review,40 (6):539-551
[35] Qin KZ,Li GM,Zhang Q,Li JX,Miao Y,Xiao B,Zhang TP,Duo J,Li JG and Lu Y.2006. Metallogenic Conditions and Possible Occurrences for Epithermal Gold Mineralizations in Gangdese and Bangonghu Belts,Tibet-In View of Porphyry-Epithermal Cu -Au Metallogenetic Systematics.Proceedings of 8th National Conference of Mineral Deposits,China.Geological Publishing House,Beijing:666 -670 (in Chinese).
[36] Qu XM and Xin HB.2006. Ages and tectonic environment of the Bangong Co porphyry copper belt in western Tibet,China.Geological Bulletin of China,25 (7):792-799 (in Chinese with English abstract)
[37] Roedder E and Bodnar RJ.1980. Geologic pressure determinations from fluid inclusion studies.Annual Review of Earth and Planetary Sciences,8:263 -301
[38] Roedder E.1971. Fluid inclusion studies on the porphyry-ore deposits at Bingham,Utah,Butte,Montana,and Climax,Colorado.Economic Geology,66:98-120
[39] Roedder E.1984. Fluid inclusions.Reviews in Mineralogy,12:1 -644
[40] Roedder E.1992. Fluid inclusion evidence for immiscibility in magmatic differentiation.Geochimica et Cosmochimica Acta,56:5-20
[41] Rui ZY,Hou ZQ,Qu XM,Zhang LS,Wang LS and Liu YL.2003. Metallogenetic epoch of gangdese porphyry copper belt and uplift of Qinghai-Tibet Plateau.Mineral Deposits,22(3):217 -224 (in Chinese with English abstract)
[42] She HQ,Li JW,Feng CY,Ma DF,Pan GT and Li GM.2006. The High-Temperature and Hvpersaline Fluid Inclusions and Its Implications to the Metalogenesis in Duobuza Porphyry Copper Deposit,Tibet.Acta Geulugica Sinica,80:1434-1447 (in Chinese with English abstract)
[43] Sillitoe RH.1997. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region.Australian Journal of Earth Sciences,44:373-388
[44] Sillitoe RH.2000. Gold-rich porphyry copper deposits:descriptive and genetic models and their role in exploration and discovery.In:Hagemann SG,Brown PE (eds).Gold in 2000. Society of Economic Geologists Reviews in Economic Geology,13:315-344
[45] Sun WD,Arculus RJ,Kamenetsky VS and Binns R.2004. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization.Nature,431:975 -978
[46] Takagi T and Tsukimura K.1997. Genesis of oxidized and reduced-granite.Economic Geology,92:81 -86
[47] Ulrich T,Guenther D and Heinrich CA.2001,The evolution of a porphyry Cu-Au deposit,based on LA-ICP-MS analysis of fluid inclusions,Bajo de la Alumbrera,Argentina.Economic Geology,96:1743-1774
[48] Urusova MA.1975. Volume properties of aqueous solutions of sodium chloride at elevated temperatures and pressures.Russian Journal of Inorganic Chemistry,v 20:p 1717-1721
[49] 侯增谦,曲晓明,王淑贤,高永丰,杜安道,黄卫.2003.青藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄:成矿作用时限与动力学背景应用.中国科学D辑,.33:609-618
[50] 黄汲清,陈炳蔚.1987.中国及邻区特提斯海的演化.北京:地质出版社,1-78
[51] 李光明,李金祥,秦克章,张天平,肖波.2006.西藏多不杂超大型富金斑岩铜矿的蚀变-矿化特征及高氧化成矿流体研究.矿床地质,25(增刊):411-414
[52] 李金祥,秦克章,李光明.2006.富金斑岩铜矿床的基本特征、成矿物质来源与成矿高氧化岩浆-流体演化.岩石学报,22(3):678-688
[53] 卢焕章,范宏瑞,倪培,欧光习,沈昆,张文淮.2004.流体包裹体.北京:科学出版社,1-487
[54] 卢焕章.2000.高盐度、高温和高成矿金属的岩浆成矿流体-以格拉斯伯格Cu-Au矿为例.岩石学报,16(4):465-472
[55] 秦克章.1993.试论大型-超大型铜矿床的主要控制因素.地学探索,8:39-45
[56] 秦克章,李光明,张旗,李金祥,缪宇,肖波,张天平,多吉,李金高,陆彦.2006.西藏浅成低温金-银矿的成矿条件与可能产出区分析--从斑岩-浅成低温铜金成矿系统的角度.陈毓川,毛景文,薛春纪主编:第八届全国矿床会议论文集.北京:地质出版社,666-670
[57] 曲晓明,辛洪波.2006.藏西班公湖斑岩铜矿带的形成时代与成矿构造环境.地质通报,25:792-799
[58] 芮宗瑶,侯增谦,曲晓明,张立生,王龙生,刘玉琳.2003.冈底斯斑岩铜矿成矿时代及青藏高原隆升.矿床地质,(3):218-225
[59] 佘宏全,李进文,丰成友,马东方,潘桂棠,李光明.2006.西藏多不杂斑岩铜矿床高温高盐度流体包裹体及其成因意义.地质学报,80:1434-1447
-
计量
- 文章访问数:
- PDF下载数:
- 施引文献: 0