首页 | 本学科首页   官方微博 | 高级检索  
     

基于RS的昆仑山区夏季雪线高程变化及其影响因素分析
引用本文:张连成,胡列群,李帅,侯小刚,郑照军. 基于RS的昆仑山区夏季雪线高程变化及其影响因素分析[J]. 冰川冻土, 2019, 41(3): 546-553. DOI: 10.7522/j.issn.1000-0240.2019.0024
作者姓名:张连成  胡列群  李帅  侯小刚  郑照军
作者单位:新疆气候中心,新疆乌鲁木齐,830002;新疆气象服务中心,新疆乌鲁木齐,830002;中国气象局乌鲁木齐沙漠研究所,新疆乌鲁木齐,830002;国家卫星气象中心,北京,100081
基金项目:国家自然科学基金项目(41505077;41471358)资助
摘    要:In this paper, the Kunlun Mountains is taken as the research object, and MOY10A1/MOD10A1 of moderate resolution imaging spectroradiometer and temperature, precipitation and other data from 2001 to 2015 are used to obtain the research date in this area. Using the snow cover duration ratio method, the snowline elevation and linear trend in the research area in the period is extracted. The variation of snowline elevation in the research area is analyzed by the method of correlation analysis. According to the analysis, the research date was determined as July 22 ∼ august 24 (the 203th ∼236th day) of each year, a total of 34 days, and the snowline threshold extracted by the snow cover duration ratio method was 76.5%. From 2001 to 2015, the snowline elevation in the Kunlun Mountains and other regions showed a wave rising trend. The trend rate of snowline elevation changing in the eastern, meddle and western sections of the Kunlun Mountains was 80 m · (10a)-1, 131m · (10a) -1 and 155 m · (10a)-1, respectively. The eastern section was the most stable, followed by the middle section and the western section of the mountain was the most unstable. In the 15 years, the average snowline elevation in eastern, middle and western sections of the mountains was 4 990 m, 5 271 m and 4 936 m, respectively, and the minimum snowline elevation in the middle section was higher than the maximum snowline elevation in other two sections. Therefore, the distribution characteristics of snowline elevation in the mountains were as follows: middle high, both sides low. From the yearly time scale analysis, the main controlling factor of the change of snowline elevation in the Kunlun Mountains and each section was air temperature. According to the time seasonal scale analysis, the seasons with the greatest influence of temperature on snowline elevation were summer and autumn, while the seasons with the greatest influence of precipitation were summer and winter. According to the monthly time scale analysis, the summer temperature in the mountains had the largest influence on the snowline elevation, while the winter precipitation had the largest influence on the snowline elevation. © 2019 Journal of Glaciology and Geocryology. All rights reserved.

关 键 词:昆仑山  雪线  高程变化  影响因素
收稿时间:2018-02-13
修稿时间:2018-11-16

Analyses of variation of summer snowline elevation and its influencing factors in the Kunlun Mountains based on RS, 2001-2015
ZHANG Liancheng,HU Liequn,LI Shuai,HOU Xiaogang,ZHENG Zhaojun. Analyses of variation of summer snowline elevation and its influencing factors in the Kunlun Mountains based on RS, 2001-2015[J]. Journal of Glaciology and Geocryology, 2019, 41(3): 546-553. DOI: 10.7522/j.issn.1000-0240.2019.0024
Authors:ZHANG Liancheng  HU Liequn  LI Shuai  HOU Xiaogang  ZHENG Zhaojun
Affiliation:1. Xinjiang Uygur Autonomous Region Climate Center, Urumqi 830002, China;2. Xinjiang Uygur Autonomous Region Meteorological Service Centre, Urumqi 830002, China;3. Urumqi Desert Institute of CMA, Urumqi 830002, China;4. The National Meteorological Satellite Meteorological Center, Beijing 100081, China
Abstract:In this paper, the Kunlun Mountains is taken as the research object, and MOY10A1/MOD10A1 of moderate resolution imaging spectroradiometer and temperature, precipitation and other data from 200.to 2015 are used to obtain the research date in this area. Using the snow cover duration ratio method, the snowline elevation and linear trend in the research area in the period is extracted. The variation of snowline elevation in the research area is analyzed by the method of correlation analysis. According to the analysis, the research date was determined as July 22~august 24 (the 203th~236th day) of each year, a total of 34 days, and the snowline threshold extracted by the snow cover duration ratio method was 76.5%. From 200.to 2015, the snowline elevation in the Kunlun Mountains and other regions showed a wave rising trend. The trend rate of snowline elevation changing in the eastern, meddle and western sections of the Kunlun Mountains was 80 m·(10a)-1, 131 m·(10a)-1 and 155 m·(10a)-1, respectively. The eastern section was the most stable, followed by the middle section and the western section of the mountain was the most unstable. In the 15 years, the average snowline elevation in eastern, middle and western sections of the mountains was 4 990 m, 5 271 m and 4 936 m, respectively, and the minimum snowline elevation in the middle section was higher than the maximum snowline elevation in other two sections. Therefore, the distribution characteristics of snowline elevation in the mountains were as follows:middle high, both sides low. From the yearly time scale analysis, the main controlling factor of the change of snowline elevation in the Kunlun Mountains and each section was air temperature. According to the time seasonal scale analysis, the seasons with the greatest influence of temperature on snowline elevation were summer and autumn, while the seasons with the greatest influence of precipitation were summer and winter. According to the monthly time scale analysis, the summer temperature in the mountains had the largest influence on the snowline elevation, while the winter precipitation had the largest influence on the snowline elevation.
Keywords:Kunlun Mountains  snowline  elevation change  influence factor  
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《冰川冻土》浏览原始摘要信息
点击此处可从《冰川冻土》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号