首页 | 本学科首页   官方微博 | 高级检索  
     


Representations of inverse covariances by differential operators
Authors:Qin Xu
Affiliation:National Oceanic and Atmospheric Administration/National Severe Storms Laboratory, Norman, Oklahoma 73069
Abstract:In the cost function of three- or four-dimensional variational data assimilation, each term is weighted by the inverse of its associated error covariance matrix and the background error covariance matrix is usually much larger than the other covariance matrices. Although the background error covariances are traditionally normalized and parameterized by simple smooth homogeneous correlation functions, the covariance matrices constructed from these correlation functions are often too large to be inverted or even manipulated. It is thus desirable to find direct representations of the inverses of background errorcorrelations. This problem is studied in this paper. In particular, it is shown that the background term can be written into ∫ dx|Dv(x)|2, that is, a squared L2 norm of a vector differential operator D, called the D-operator, applied to the field of analysis increment v(x). For autoregressive correlation functions, the Doperators are of finite orders. For Gaussian correlation functions, the D-operators are of infinite order. For practical applications, the Gaussian D-operators must be truncated to finite orders. The truncation errors are found to be small even when the Gaussian D-operators are truncated to low orders. With a truncated D-operator, the background term can be easily constructed with neither inversion nor direct calculation of the covariance matrix. D-operators are also derived for non-Gaussian correlations and transformed into non-isotropic forms.
Keywords:differential operator  inverse background covariance  data assimilation
本文献已被 CNKI 维普 万方数据 SpringerLink 等数据库收录!
点击此处可从《大气科学进展》浏览原始摘要信息
点击此处可从《大气科学进展》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号