基于TEROS的自然闪电X射线暴观测研究

张雄, 张阳, 李小强, 郑毅, 曹保锋, 王宇, 吕伟涛, 李鹏. 2024. 基于TEROS的自然闪电X射线暴观测研究. 地球物理学报, 67(1): 21-33, doi: 10.6038/cjg2023Q0461
引用本文: 张雄, 张阳, 李小强, 郑毅, 曹保锋, 王宇, 吕伟涛, 李鹏. 2024. 基于TEROS的自然闪电X射线暴观测研究. 地球物理学报, 67(1): 21-33, doi: 10.6038/cjg2023Q0461
ZHANG Xiong, ZHANG Yang, LI XiaoQiang, ZHENG Yi, CAO BaoFeng, WANG Yu, LÜ WeiTao, LI Peng. 2024. Observations of X-ray bursts from natural lightning flashes by TEROS. Chinese Journal of Geophysics (in Chinese), 67(1): 21-33, doi: 10.6038/cjg2023Q0461
Citation: ZHANG Xiong, ZHANG Yang, LI XiaoQiang, ZHENG Yi, CAO BaoFeng, WANG Yu, LÜ WeiTao, LI Peng. 2024. Observations of X-ray bursts from natural lightning flashes by TEROS. Chinese Journal of Geophysics (in Chinese), 67(1): 21-33, doi: 10.6038/cjg2023Q0461

基于TEROS的自然闪电X射线暴观测研究

  • 基金项目:

    中国科学院战略性先导科技专项(XDA17040503), 国防科技基础加强计划技术领域基金, 中国气象科学研究院基本科研业务费项目(2021Z011)联合资助

详细信息
    作者简介:

    张雄, 男, 1991年生, 助理研究员, 主要从事脉冲辐射探测研究. E-mail: zhangxiong@sklnbcpc.cn

    通讯作者: 李鹏, 男, 1979年生, 研究员, 博士生导师, 主要从事瞬态光电信号探测技术研究. E-mail: lipeng@sklnbcpc.cn
  • 中图分类号: P401

Observations of X-ray bursts from natural lightning flashes by TEROS

More Information
  • 本文报道了国内首个自然闪电高能辐射(Lightning Energetic Radiation, LER)多点观测结果. 基于自主研发的雷暴高能辐射观测系统(Thunderstorm Energetic Radiation Observation System, TEROS), 在2021年夏季观测期成功捕获3次自然LER事件, 结合闪电定位、低频快电场变化、回击峰值电流等其他资料, 对3次事件的高能辐射特征进行研究. 分析发现: 3次LER事件均于负地闪下行先导的最后阶段被探测到, 是典型的X射线暴, 且均具有MeV能量的单光子, 最大能量超过2.2 MeV; 伴随梯级先导出现的X射线暴持续时间为数百μs, 伴随不规则直窜先导的X射线暴持续时间为数十μs, 主要与先导发展速度有关; 相应回击峰值电流最大的1次事件具有最高的单光子能量、最大的单位面积沉积总能量和最多的爆发过程数量, 随着接近回击时刻, 该事件还表现出与电场变化一致的增强趋势, 表明先导头部电场是影响高能辐射产生的重要因素; 随到达强度降低, 高能辐射信号逐渐由束流模式向单光子模式转变, 呈现出与地球伽马射线闪类似的现象学特征, 更多乃至所有的爆发过程无法被探测到, 高能辐射可能是闪电发展过程中的普遍现象.

  • 加载中
  • 图 1 

    TEROS原理示意图及在CMA_FEBLS的布设情况

    Figure 1. 

    Schematic diagram of TEROS and its deployment at CMA_FEBLS

    图 2 

    脉冲堆积校正结果

    Figure 2. 

    The result of pulse pile-up correction

    图 3 

    与3次LER事件关联的自然闪电位置

    Figure 3. 

    Locations of the natural lightning return strokes associated with the three LER events

    图 4 

    N02-01观测数据

    Figure 4. 

    Observation data of N02-01

    图 5 

    N02-01脉冲的能量与时间分布情况

    Figure 5. 

    Energy and time distributions of the pulses of N02-01

    图 6 

    爆发间隔时间(a)与沉积能量(b)随时间变化

    Figure 6. 

    Time variations of burst interval time (a) and deposited energy (b)

    图 7 

    不同探测通道的爆发沉积能量

    Figure 7. 

    Burst deposited energies of different detection channels

    图 8 

    N02-02观测数据

    Figure 8. 

    Observation data of N02-02

    图 9 

    N01-01观测数据

    Figure 9. 

    Observation data of N01-01

    表 1 

    各探测通道记录到的爆发数量及爆发丢失率

    Table 1. 

    The number of recorded bursts and the burst loss rate of different detection channels

    项目 ERDU-1 ERDU-2 ERDU-3 ERDU-4
    1通道 2通道 1通道 2通道 1通道 2通道 1通道 2通道
    记录到的爆发数量 12 12 17 18 16 15 16 11
    爆发丢失率 60% 60% 43% 40% 47% 50% 47% 63%
    平均丢失率 51%
    下载: 导出CSV

    表 2 

    3次LER事件的主要观测结果

    Table 2. 

    The main observation results of the three LER events

    项目 N01-01 N02-01 N02-02
    闪电信息 先导类别 梯级先导 梯级先导 不规则直窜先导
    回击峰值电流(kA) -34.6 -71.6 -38.8
    距离(km) 1 1.5 1.4
    总体特征 触发的ERDU数量 2(4)a 4(8) 1(1)
    LER结束时间 回击前6μs 回击前6μs 回击前14μs
    LER持续时间(μs) 489 322 51
    脉冲特征 脉冲数量 18 218 8
    单个脉冲最大能量(MeV) 0.91(0.91)b 3.2(2.2) 1(1)
    单个脉冲平均能量(MeV) 0.33 0.45 0.25
    单位面积总沉积能量(MeV/cm2) 0.03 0.27 0.02
    爆发特征 爆发数量 13 30 8
    爆发间隔时间(μs) 6.9~209.7 1.7~61.2 1.6~22.4
    爆发平均间隔时间(μs) 40.6 10.0 7.3
    单个爆发单位面积平均沉积能量(MeV/cm2) 2.5×10-3 9.1×10-3 2.8×10-3
    平均爆发丢失率 71% 51% 50%
    注:a括号内为记录到脉冲的通道数量,b括号内为单光子最大能量.
    下载: 导出CSV
  •  

    Abbasi R U, Abe M, Abu-Zayyad T, et al. 2017. The bursts of high energy events observed by the telescope array surface detector. Physics Letters A, 381(32): 2565-2572, doi: 10.1016/j.physleta.2017.06.022.

     

    Abbasi R U, Abu-Zayyad T, Allen M, et al. 2018. Gamma Ray Showers Observed at Ground Level in Coincidence with Downward Lightning Leaders. Journal of Geophysical Research: Atmospheres, 123(13): 6864-6879, doi: 10.1029/2017JD027931.

     

    Babich L P, Kutsyk I M, Donsko E N, et al. 2013. Analysis of the experiment on registration of X-rays from the stepped leader of a cloud-to-ground lightning discharge. Journal of Geophysical Research: Space Physics, 118(5): 2573-2582, doi: 10.1002/jgra.50236.

     

    Belz J W, Krehbiel P R, Remington J, et al. 2020. Observations of the origin of downward terrestrial gamma-ray flashes. Journal of Geophysical Research: Atmospheres, 125(23): e2019JD031940, doi: 10.1029/2019JD031940.

     

    Berge N, Celestin S. 2019. Constraining downward terrestrial gamma ray flashes using ground-based particle detector arrays. Geophysical Research Letters, 46(14): 8424-8430, doi: 10.1029/2019GL083252.

     

    Celestin S, Xu W, Pasko V P. 2015. Variability in fluence and spectrum of high-energy photon bursts produced by lightning leaders. Journal of Geophysical Research: Space Physics, 120(12): 10712-10723, doi: 10.1002/2015JA021410.

     

    Cooray V, Dwyer J, Rakov V, et al. 2010. On the mechanism of X-ray production by dart leaders of lightning flashes. Journal of Atmospheric and Solar-Terrestrial Physics, 72(11-12): 848-855, doi: 10.1016/j.jastp.2010.04.006.

     

    Dwyer J R. 2004. Implications of x-ray emission from lightning. Geophysical Research Letters, 31(12): L12102, doi: 10.1029/2004GL019795.

     

    Dwyer J R, Rassoul H K, Al-Dayeh M, et al. 2005. X-ray bursts associated with leader steps in cloud-to-ground lightning. Geophysical Research Letters, 32(1): L01803, doi: 10.1029/2004GL021782.

     

    Dwyer J R, Schaal M M, Cramer E, et al. 2012. Observation of a gamma-ray flash at ground level in association with a cloud-to-ground lightning return stroke. Journal of Geophysical Research: Space Physics, 117(A10): A10303, doi: 10.1029/2012JA017810.

     

    Dwyer J R, Uman M A. 2014. The physics of lightning. Physics Reports, 534(4): 147-241, doi: 10.1016/j.physrep.2013.09.004.

     

    Fan Y F, Lu G P, Zhang Y, et al. 2020. Characterizing radio frequency magnetic radiation of initial upward leader stepping in triggered lightning with interferometric lightning mapping. Geophysical Research Letters, 47(22): e2020GL089392, doi: 10.1029/2020GL089392.

     

    Fishman G J, Bhat P N, Mallozzi R, et al. 1994. Discovery of intense gamma-ray flashes of atmospheric origin. Science, 264(5163): 1313-1316, doi: 10.1126/science.264.5163.1313.

     

    Gurevich A V. 1961. On the theory of runaway electrons. Soviet Physics JETP, 12: 904-912.

     

    Hettiarachchi P, Cooray V, Diendorfer G, et al. 2018. X-ray observations at Gaisberg tower. Atmosphere, 9(1): 20, doi: 10.3390/atmos9010020.

     

    Hill J D. 2012. The mechanisms of lightning leader propagation and groundattachment[Ph. D. thesis]. Gainesville: University of Florida.

     

    Hill J D, Uman M A, Jordan D M, et al. 2012. "Chaotic" dart leaders in triggered lightning: Electric fields, X-rays, and source locations. Journal of Geophysical Research: Atmospheres, 117(D3): D03118, doi: 10.1029/2011JD016737.

     

    Hisadomi S, Nakazawa K, Wada Y, et al. 2021. Multiple gamma-ray glows and a downward TGF observed from nearby thunderclouds. Journal of Geophysical Research: Atmospheres, 126(18): e2021JD034543, doi: 10.1029/2021JD034543.

     

    Howard J, Uman M A, Dwyer J R, et al. 2008. Co-location of lightning leader x-ray and electric field change sources. Geophysical Research Letters, 35(13): L13817, doi: 10.1029/2008GL034134.

     

    Ji C S. 2010. Handbook of Nuclear Radiation Detectors & Experiment Techniques (in Chinese). Beijing: Atomic Energy Press.

     

    Kereszy I, Rakov V A, Ding Z, et al. 2022. Ground-based observation of a TGF occurring between opposite polarity strokes of a bipolar cloud-to-ground lightning flash. Journal of Geophysical Research: Atmospheres, 127(9): e2021JD036130, doi: 10.1029/2021JD036130.

     

    Li X Q, Jiang R B, Zhang X, et al. 2018. Lightning γ-ray burst observation based on sodium iodide detector. Atomic Energy Science and Technology (in Chinese), 52(6): 1092-1098, doi: 10.7538/yzk.2017.youxian.0644.

     

    Lindanger A, Marisaldi M, Maiorana C, et al. 2020. The 3rd AGILE terrestrial gamma ray flash catalog. Part Ⅰ: Association to lightning sferics. Journal of Geophysical Research: Atmospheres, 125(11): e2019JD031985 doi: 10.1029/2019JD031985.

     

    Lindanger A, Marisaldi M, Sarria D, et al. 2021. Spectral analysis of individual terrestrial gamma-ray flashes detected by ASIM. Journal of Geophysical Research: Atmospheres, 126(23): e2021JD035347, doi: 10.1029/2021JD035347.

     

    Lu G P, Xiong S L, Lü F C, et al. 2020. Terrestrial gamma-ray flashes as the high-energy effect of tropospheric thunderstorms in near-Earth space. Scientia Sinica Physica, Mechanica & Astronomica (in Chinese), 50(12): 129506, doi: 10.1360/SSPMA-2020-0303.

     

    Lyu F, Cummer S A, Krehbiel P R, et al. 2018. Very high frequency radio emissions associated with the production of terrestrial Gamma-Ray flashes. Geophysical Research Letters, 45(4): 2097-2105, doi: 10.1002/2018GL077102.

     

    Mallick S, Rakov V A, Dwyer J R. 2012. A study of X-ray emissions from thunderstorms with emphasis on subsequent strokes in natural lightning. Journal of Geophysical Research: Atmospheres, 117(D16): D16107, doi: 10.1029/2012JD017555.

     

    Mohammadian-Behbahani M R, Saramad S. 2020. A comparison study of the pile-up correction algorithms. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 951: 163013, doi: 10.1016/j.nima.2019.163013.

     

    Montanyà J, van der Velde O A, March V, et al. 2012. High-speed video of lightning and X-ray pulses during the 2009-2010 observation campaigns in northeastern Spain. Atmospheric Research, 117: 91-98, doi: 10.1016/j.atmosres.2011.09.013.

     

    Montanyà J, Fabró F, van der Velde O, et al. 2014. Registration of X-rays at 2500 m altitude in association with lightning flashes and thunderstorms. Journal of Geophysical Research: Atmospheres, 119(3): 1492-1503, doi: 10.1002/2013JD021011.

     

    Moore C B, Eack K B, Aulich G D, et al. 2001. Energetic radiation associated with lightning stepped-leaders. Geophysical Research Letters, 28(11): 2141-2144, doi: 10.1029/2001gl013140.

     

    Moss G D, Pasko V P, Liu N Y, et al. 2006. Monte Carlo model for analysis of thermal runaway electrons in streamer tips in transient luminous events and streamer zones of lightning leaders. Journal of Geophysical Research, 111(A2): A02307, doi: 10.1029/2005JA011350.

     

    Neubert T, Østgaard N, Reglero V, et al. 2020. A terrestrial gamma-ray flash and ionospheric ultraviolet emissions powered by lightning. Science, 367(6474): 183-186, doi: 10.1126/science.aax3872.

     

    Østgaard N, Neubert T, Reglero V, et al. 2019. First 10 months of TGF observations by ASIM. Journal of Geophysical Research: Atmospheres, 124(24): 14024-14036, doi: 10.1029/2019JD031214.

     

    Pleshinger D J, Alnussirat S T, Arias J, et al. 2019. Gamma ray flashes produced by lightning observed at ground level by TETRA-Ⅱ. Journal of Geophysical Research: Space Physics, 124(11): 9229-9238, doi: 10.1029/2019JA026820.

     

    Pu Y J, Qie X S, Jiang R B, et al. 2019. Broadband characteristics of chaotic pulse trains associated with sequential dart leaders in a rocket-triggered lightning flash. Journal of Geophysical Research: Atmospheres, 124(7): 4074-4085, doi: 10.1029/2018JD029488.

     

    Qie X S, Zhang Q L, Yuan T, et al. 2013. Lightning Physics (in Chinese). Beijing: Science Press.

     

    Ringuette R, Case G L, Cherry M L, et al. 2013. TETRA observation of gamma-rays at ground level associated with nearby thunderstorms. Journal of Geophysical Research: Space Physics, 118(12): 7841-7849, doi: 10.1002/2013JA019112.

     

    Roberts O J, Fitzpatrick G, Stanbro M, et al. 2018. The first Fermi-GBM terrestrial gamma ray flash catalog. Journal of Geophysical Research: Space Physics, 123(5): 4381-4401, doi: 10.1029/2017JA024837.

     

    Saba M M F, Ferro M A S, Cuadros E T, et al. 2019. High-speed video observation of a dart leader producing X-rays. Journal of Geophysical Research: Space Physics, 124(12): 10564-10570, doi: 10.1029/2019JA027247.

     

    Saleh Z, Dwyer J, Howard J, et al. 2009. Properties of the X-ray emission from rocket-triggered lightning as measured by the Thunderstorm Energetic Radiation Array (TERA). Journal of Geophysical Research, 114(D17): D17210, doi: 10.1029/2008JD011618.

     

    Schaal M M, Dwyer J R, Saleh Z H, et al. 2012. Spatial and energy distributions of X-ray emissions from leaders in natural and rocket triggered lightning. Journal of Geophysical Research: Atmospheres, 117(D15): D15201, doi: 10.1029/2012JD017897.

     

    Shi D D, Zheng D, Zhang Y, et al. 2017. Low-frequency E-field Detection Array(LFEDA)-Construction and preliminary results. Science China Earth Sciences, 60(10): 1896-1908, doi: 10.1007/s11430-016-9093-9.

     

    Smith D M, Lopez L I, Lin R P, et al. 2005. Terrestrial gamma-ray flashes observed up to 20 MeV. Science, 307(5712): 1085-1088, doi: 10.1126/science.1107466.

     

    Smith D M, Bowers G S, Kamogawa M, et al. 2018. Characterizing upward lightning with and without a terrestrial gamma ray flash. Journal of Geophysical Research: Atmospheres, 123(20): 11321-11332, doi: 10.1029/2018JD029105.

     

    Tran M D, Rakov V A, Mallick S, et al. 2015. A terrestrial gamma-ray flash recorded at the Lightning Observatory in Gainesville, Florida. Journal of Atmospheric and Solar-Terrestrial Physics, 136: 86-93, doi: 10.1016/j.jastp.2015.10.010.

     

    Tran M D, Kereszy I, Rakov V A, et al. 2019. On the role of reduced air density along the lightning leader path to ground in increasing X-ray production relative to normal atmospheric conditions. Geophysical Research Letters, 46(15): 9252-9260, doi: 10.1029/2019GL083753.

     

    Urbani M, Montanyà J, van der Velde O A, et al. 2021. High-energy radiation from natural lightning observed in coincidence with a VHF broadband interferometer. Journal of Geophysical Research: Atmospheres, 126(7): e2020JD033745, doi: 10.1029/2020JD033745.

     

    Wada Y, Enoto T, Nakamura Y, et al. 2020. High peak-current lightning discharges associated with downward terrestrial gamma-ray flashes. Journal of Geophysical Research: Atmospheres, 125(4): e2019JD031730, doi: 10.1029/2019JD031730.

     

    Wang Y, Gu S Q, Meng G, et al. 2021. Effect of lightning return stroke speed on accuracy of inversed return stroke peak current using lightning location system. High Voltage Engineering (in Chinese), 47(5): 1617-1624, doi: 10.13336/j.1003-6520.hve.20201094.

     

    Xu W, Celestin S, Pasko V P. 2014. Modeling of X-ray emissions produced by stepping lightning leaders. Geophysical Research Letters, 41(20): 7406-7412, doi: 10.1002/2014GL061163.

     

    Zhang H B, Lu G P, Lyu F C, et al. 2021. On the terrestrial gamma-ray flashes preceding narrow bipolar events. Geophysical Research Letters, 48(8): e2020GL092160, doi: 10.1029/2020GL092160.

     

    Zhang X, Zheng Y, Cao B F, et al. 2022. Design and realization of Thunderstorm Energetic Radiation Observation System (TEROS). Chinese Journal of Geophysics (in Chinese), 65(11): 4152-4162, doi: 10.6038/cjg2022Q0112.

     

    Zhang X, Li X Q, Zhang Y, et al. 2023. Study of the characteristics of rocket-triggered lightning energetic radiation and its relationships with the discharge parameters. Science China Earth Sciences, 66(3): 633-647, doi: 10.1007/s11430-022-1025-0.

     

    Zhang Y, Wang J X, Zheng D, et al. 2021. Progress of observation and study on CMA_FEBLS low frequency three-dimensional total lightning flash detection technology in the last decade. Journal of Tropical Meteorology (in Chinese), 37(3): 298-308, doi: 10.16032/j.issn.1004-4965.2021.028.

     

    Zhang Y J, Lü W T, Zhang Y, et al. 2013. Observations of the cloud-to-ground lightning discharge process and analysis on its characteristic in Guangzhou. High Voltage Engineering (in Chinese), 39(2): 383-392, doi: 10.3969/j.issn.1003-6520.2013.02.019.

     

    Zhang Y J, Lü W T. Chen S D. 2016. A review of lightning observation experiments during the last ten years in Guangdong. Acta Meteorologica Sinica (in Chinese), 74(5): 655-671, doi: 10.11676/qxxb2016.051.

     

    汲长松. 2010. 核辐射探测器及其实验技术手册. 北京: 原子能出版社.

     

    李小强, 蒋如斌, 张雄等. 2018. 基于碘化钠探测器的闪电γ射线爆发观测研究. 原子能科学技术, 52(6): 1092-1098, doi: 10.7538/yzk.2017.youxian.0644.

     

    陆高鹏, 熊少林, 吕凡超等. 2020. 对流层雷暴在近地空间的高能辐射效应——地球伽马射线闪. 中国科学: 物理学力学天文学, 50(12): 129506, doi: 10.1360/SSPMA-2020-0303.

     

    郄秀书, 张其林, 袁铁等. 2013. 雷电物理学(修订版). 北京: 科学出版社.

     

    史东东, 郑栋, 张阳等. 2018. 低频电场变化探测阵列建设及其初步运行结果. 中国科学: 地球科学, 48(1): 113-126, doi: 10.1360/N072016-00320.

     

    王宇, 谷山强, 孟刚等. 2021. 雷电定位系统反演地闪回击电流的准确度受回击速度取值的影响. 高电压技术, 47(5): 1617-1624, doi: 10.13336/j.1003-6520.hve.20201094.

     

    张雄, 郑毅, 曹保锋等. 2022. TEROS: 雷暴高能辐射观测系统的设计与实现. 地球物理学报, 65(11): 4152-4162, doi: 10.6038/cjg2022Q0112.

     

    张阳, 王敬轩, 郑栋等. 2021. CMA_FEBLS低频三维全闪探测技术研究及观测10年进展. 热带气象学报, 37(3): 298-308, doi: 10.16032/j.issn.1004-4965.2021.028.

     

    张义军, 吕伟涛, 张阳等. 2013. 广州地区地闪放电过程的观测及其特征分析. 高电压技术, 39(2): 383-392, doi: 10.3969/j.issn.1003-6520.2013.02.019.

     

    张义军, 吕伟涛, 陈绍东等. 2016. 广东野外雷电综合观测试验十年进展. 气象学报, 74(5): 655-671, doi: 10.11676/qxxb2016.051.

  • 加载中

(9)

(2)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2022-06-16
修回日期:  2023-02-19
上线日期:  2024-01-10

目录