西藏琼嘉岗伟晶岩型锂矿矿物包裹体形成过程及其对熔-流体特征的指示

施睿哲, 赵俊兴, 何畅通, 秦克章, 赵永能, 曹明坚, 贾丽辉. 2024. 西藏琼嘉岗伟晶岩型锂矿矿物包裹体形成过程及其对熔-流体特征的指示. 岩石学报, 40(2): 450-464. doi: 10.18654/1000-0569/2024.02.05
引用本文: 施睿哲, 赵俊兴, 何畅通, 秦克章, 赵永能, 曹明坚, 贾丽辉. 2024. 西藏琼嘉岗伟晶岩型锂矿矿物包裹体形成过程及其对熔-流体特征的指示. 岩石学报, 40(2): 450-464. doi: 10.18654/1000-0569/2024.02.05
SHI RuiZhe, ZHAO JunXing, HE ChangTong, QIN KeZhang, ZHAO YongNeng, CAO MingJian, JIA LiHui. 2024. The formation of mineral inclusions in accessory minerals from Qongjiagang pegmatite-type Li deposit and the implications to melt-fluid characteristics. Acta Petrologica Sinica, 40(2): 450-464. doi: 10.18654/1000-0569/2024.02.05
Citation: SHI RuiZhe, ZHAO JunXing, HE ChangTong, QIN KeZhang, ZHAO YongNeng, CAO MingJian, JIA LiHui. 2024. The formation of mineral inclusions in accessory minerals from Qongjiagang pegmatite-type Li deposit and the implications to melt-fluid characteristics. Acta Petrologica Sinica, 40(2): 450-464. doi: 10.18654/1000-0569/2024.02.05

西藏琼嘉岗伟晶岩型锂矿矿物包裹体形成过程及其对熔-流体特征的指示

  • 基金项目:

    本文受国家自然科学基金项目(42372093)、国家重点研发计划青年科学家项目(2023YFC2908400)、第二次青藏高原综合科学考察(2019QZKK0802、2019QZKK0806)和国家建设高水平大学公派研究生项目(202204910290)联合资助

详细信息
    作者简介:

    施睿哲, 男, 1995年生, 博士生, 矿物学、岩石学、矿床学专业, E-mail: shiruizhe18@mails.ucas.ac.cn

    通讯作者: 赵俊兴, 男, 1984年生, 副研究员, 矿床学专业, E-mail: zhaojunxing@mail.iggcas.ac.cn
  • 中图分类号: P578.968;P588.131;P618.71

The formation of mineral inclusions in accessory minerals from Qongjiagang pegmatite-type Li deposit and the implications to melt-fluid characteristics

More Information
  • 西藏琼嘉岗伟晶岩型锂矿是喜马拉雅地区发现的首例具有工业价值的伟晶岩型锂矿床, 该矿床的发现证实了喜马拉雅地区具有成为我国稀有金属战略基地的潜力, 也为喜马拉雅地区寻找伟晶岩型锂矿床提供了指示意义。本研究主要针对琼嘉岗锂矿花岗岩和伟晶岩中三种主要副矿物独居石、磷灰石和锆石中的矿物包裹体进行扫描电镜分析, 确定矿物包裹体种类、频率以及产状(与裂隙关系), 结合磷灰石中长石包裹体电子探针分析, 综合指示琼嘉岗锂矿熔-流体性质及演化过程。研究表明: (1)琼嘉岗锂矿独居石、磷灰石和锆石中主要发育硅酸盐、氧化物、磷酸盐以及少量硫化物包裹体, 其中填充裂隙和穿切裂隙的富稀土矿物独居石和磷灰石包裹体均由热液蚀变形成, 而锆石放射性损伤强烈的区域中发育的远离裂隙的晶质铀矿和方钍石包裹体的形成也和流体作用相关; (2)电气石白云母花岗岩的磷灰石中发育钶钽铁矿以及烧绿石包裹体表明早期花岗岩岩浆富集铌和钽, 稀有金属包裹体的数量以及类型也对高演化的花岗岩和伟晶岩是否具有稀有金属成矿潜力以及矿化类型具有一定指示意义; (3)锂辉石伟晶岩磷灰石中发育异常高且变化大的An值的斜长石包裹体, 它们分别记录了磷灰石在结晶时对早期富钙熔体的捕获以及熔体的分异过程。本文的研究结果还表明副矿物中矿物包裹体的种类以及元素组成可以为高演化花岗岩-伟晶岩体系的熔-流体特征及演化提供指示意义。

  • 加载中
  • 图 1 

    喜马拉雅淡色花岗岩分布图(据刘志超等, 2020)

    Figure 1. 

    Distributions of Himalayan leucogranites (modified after Liu et al., 2020)

    图 2 

    琼嘉岗伟晶岩型锂矿地质简图(据秦克章等, 2021; 赵俊兴等, 2021)

    Figure 2. 

    Simplified geological map of Qongjiagang pegmatite-type Li deposit (modified after Qin et al., 2021; Zhao et al., 2021)

    图 3 

    琼嘉岗锂矿独居石中矿物包裹体BSE图像

    Figure 3. 

    BSE images of mineral inclusions in monazite from Qongjiagang Li deposit

    图 4 

    琼嘉岗锂矿磷灰石中矿物包裹体BSE图像

    Figure 4. 

    BSE images of mineral inclusions in apatite from Qongjiagang Li deposit

    图 5 

    琼嘉岗锂矿锆石中矿物包裹体BSE图像

    Figure 5. 

    BSE images of mineral inclusions in zircon from Qongjiagang Li deposit

    图 6 

    琼嘉岗锂矿锂辉石伟晶岩磷灰石中稀有金属包裹体钶钽铁矿(a)和绿柱石(b)能谱图

    Figure 6. 

    Energy spectrum of rare metal mineral inclusions columbite (a) and beryl (b) in apatite from spodumene pegmatite of Qiongjiagang Li deposit

    图 7 

    琼嘉岗锂矿独居石中矿物包裹体频数直方图

    Figure 7. 

    Frequency histograms of mineral inclusions in monazite from Qongjiagang Li deposit

    图 8 

    琼嘉岗锂矿岩磷灰石中矿物包裹体频数分布直方图

    Figure 8. 

    Frequency histograms of mineral inclusions in apatite from Qongjiagang Li deposit

    图 9 

    琼嘉岗锂矿锆石中矿物包裹体频数分布直方图

    Figure 9. 

    Frequency histograms of mineral inclusions in zircon from Qongjiagang Li deposit

    图 10 

    琼嘉岗锂矿磷灰石中长石包裹体An-Ab-Or三元图解

    Figure 10. 

    An-Ab-Or ternary diagram of feldspar inclusions in apatite from Qongjiagang Li deposit

    表 1 

    琼嘉岗锂矿锂辉石伟晶岩磷灰石中长石包裹体电子探针分析结果(wt%)

    Table 1. 

    Electron microprobe analysis results (wt%) of feldspar inclusions in apatite from spodumene pegmatite of Qongjiagang Li deposit

    测点号 126-2-17 10-9-22 10-9-27 06-1(1)-2 10-1-2 10-1-3 16-2-1 16-2-2 16-2-4 16-2-7 16-2-11 16-2-16 16-3-1 16-4-2-1 16-4-2-2 16-4-3 16-4-5 16-4-12 16-8-5 16-8-8 16-8-9 3-9-1-4 3-9-1-6
    岩性 电气石白云母花岗岩 无矿伟晶岩 锂辉石伟晶岩 二云母花岗岩
    SiO2 62.6 61.3 62.4 65.2 60.7 60.2 57.5 58.3 59.0 54.0 59.5 58.6 57.0 59.2 58.9 57.2 64.6 60.3 62.7 58.5 58.2 57.0 71.9
    TiO2 0.03 0.02 0.00 0.02 0.01 0.00 0.01 0.00 0.00 0.02 0.04 0.00 0.03 0.27 0.05 0.03 0.01 0.00 0.00 0.00 0.00 0.02 0.02
    Al2O3 18.7 16.3 18.4 15.2 18.5 17.5 20.9 20.5 20.2 19.6 21.5 21.6 18.1 18.3 17.6 15.9 18.6 19.1 18.7 16.7 16.2 16.6 14.0
    FeO 0.01 0.01 0.08 0.56 0.02 0.04 0.02 0.00 0.04 0.00 0.03 0.04 0.01 0.00 0.03 0.02 0.01 0.00 0.03 0.00 0.01 0.04 0.17
    MnO 0.09 0.13 0.20 0.47 0.04 0.03 0.01 0.04 0.00 0.03 0.01 0.03 0.04 0.04 0.02 0.01 0.04 0.06 0.02 0.06 0.06 0.08 0.03
    MgO 0.00 0.00 0.02 0.02 0.00 0.00 0.02 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.03 0.02 0.01 0.00 0.01 0.00 0.00 0.00 0.07
    CaO 4.34 3.58 5.51 3.25 6.57 6.58 9.10 7.64 7.68 10.9 7.09 7.92 7.78 7.70 8.26 6.87 3.35 5.88 5.39 7.77 5.85 4.38 3.90
    Na2O 10.6 0.39 7.46 3.71 9.24 9.54 7.92 8.72 9.01 8.08 8.80 8.38 10.0 9.25 9.11 0.42 10.9 9.66 9.96 9.76 2.36 0.75 5.24
    K2O 0.13 10.0 0.10 2.59 0.34 1.50 0.41 0.31 0.26 0.26 0.31 0.23 0.12 0.24 0.30 12.8 0.15 0.15 0.25 0.23 9.89 15.0 0.54
    BaO 0.03 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.03 0.04 0.00 0.04 0.00 0.00 0.01 0.09 0.06 0.03 0.10 0.05 0.00 0.00 0.03
    Rb2O 0.00 0.28 0.00 0.13 0.00 0.05 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.04 0.47 0.01 0.00 0.04 0.00 0.40 0.02 0.00
    P2O5 3.50 3.41 4.56 3.05 4.77 4.98 3.75 4.19 3.83 6.29 2.15 3.13 4.37 5.39 5.85 5.51 2.45 4.45 3.76 7.11 5.87 4.09 3.61
    SrO 0.26 0.19 0.23 0.21 0.27 0.15 0.25 0.23 0.22 0.23 0.34 0.31 0.21 0.20 0.23 0.16 0.26 0.25 0.23 0.21 0.18 0.21 0.28
    Total 100.2 95.6 99.0 94.4 100.4 100.6 99.9 100.0 100.3 99.5 99.8 100.3 97.7 100.6 100.4 99.5 100.4 99.8 101.2 100.5 99.0 98.3 99.8
    校正CaO 0.00 0.00 0.00 0.00 0.29 0.03 4.16 2.13 2.64 2.63 4.26 3.80 2.03 0.59 0.56 0.00 0.12 0.02 0.43 0.00 0.00 0.00 0.00
    校正P2O5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    校正后Total 92.4 88.6 89.0 88.1 89.4 89.1 91.2 90.2 91.4 84.9 94.8 93.0 87.6 88.1 86.8 87.2 94.7 89.5 92.5 85.6 87.3 89.8 92.3
    均一到100%
    SiO2 67.8 69.2 70.1 74.0 67.9 67.6 63.0 64.6 64.6 63.6 62.8 63.0 65.1 67.1 67.8 65.6 68.2 67.3 67.8 68.4 66.6 63.5 77.9
    TiO2 0.04 0.02 0.00 0.02 0.01 0.00 0.01 0.00 0.00 0.02 0.04 0.00 0.03 0.31 0.05 0.03 0.01 0.00 0.00 0.00 0.00 0.03 0.02
    Al2O3 20.2 18.3 20.7 17.2 20.7 19.7 22.9 22.7 22.1 23.1 22.7 23.2 20.7 20.8 20.2 18.3 19.6 21.3 20.2 19.6 18.6 18.5 15.2
    FeO 0.01 0.01 0.09 0.63 0.02 0.04 0.02 0.00 0.04 0.00 0.03 0.04 0.01 0.00 0.04 0.03 0.01 0.00 0.03 0.00 0.01 0.04 0.19
    MnO 0.10 0.14 0.23 0.54 0.04 0.04 0.01 0.04 0.00 0.04 0.01 0.03 0.04 0.04 0.03 0.01 0.04 0.07 0.02 0.06 0.07 0.08 0.04
    MgO 0.00 0.00 0.02 0.02 0.00 0.00 0.02 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.03 0.02 0.01 0.00 0.01 0.00 0.00 0.00 0.08
    CaO 0.00 0.00 0.00 0.00 0.32 0.03 4.56 2.36 2.89 3.09 4.49 4.08 2.32 0.67 0.65 0.00 0.13 0.02 0.47 0.00 0.00 0.00 0.00
    Na2O 11.4 0.44 8.39 4.21 10.3 10.7 8.69 9.66 9.86 9.51 9.28 9.01 11.4 10.5 10.5 0.48 11.5 10.8 10.8 11.4 2.70 0.83 5.68
    K2O 0.14 11.3 0.11 2.94 0.38 1.68 0.45 0.35 0.28 0.30 0.32 0.25 0.14 0.28 0.34 14.7 0.16 0.17 0.27 0.27 11.3 16.8 0.59
    BaO 0.03 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.03 0.05 0.00 0.05 0.00 0.00 0.01 0.10 0.06 0.03 0.11 0.06 0.00 0.00 0.03
    Rb2O 0.00 0.31 0.00 0.15 0.00 0.06 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.05 0.54 0.01 0.00 0.04 0.00 0.45 0.02 0.00
    P2O5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    SrO 0.28 0.21 0.26 0.24 0.30 0.17 0.27 0.26 0.24 0.28 0.36 0.33 0.24 0.23 0.26 0.18 0.27 0.27 0.25 0.25 0.21 0.24 0.30
    Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
    Ab 98.6 3.38 98.6 56.1 93.3 84.8 64.0 78.4 76.1 74.1 66.4 68.2 82.7 91.7 91.2 2.82 97.4 98.1 93.5 97.4 17.6 4.25 89.6
    Or 1.39 96.6 1.43 43.9 3.88 14.9 3.68 3.15 2.43 2.63 2.59 2.07 1.13 2.70 3.35 97.2 1.54 1.69 2.62 2.57 82.4 95.8 10.4
    An 0.00 0.00 0.00 0.00 2.82 0.27 32.3 18.4 21.5 23.2 31.0 29.7 16.2 5.64 5.42 0.00 1.03 0.22 3.91 0.00 0.00 0.00 0.00
    下载: 导出CSV
  •  

    Arculus RJ and Wills KJA. 1980. The petrology of plutonic blocks and inclusions from the Lesser Antilles island arc. Journal of Petrology, 21(4): 743-799 doi: 10.1093/petrology/21.4.743

     

    Barros R, Kaeter D, Menuge JF and Škoda R. 2020. Controls on chemical evolution and rare element enrichment in crystallising albite-spodumene pegmatite and wallrocks: Constraints from mineral chemistry. Lithos, 352-353: 105289 doi: 10.1016/j.lithos.2019.105289

     

    Beard JS and Borgia A. 1989. Temporal variation of mineralogy and petrology in cognate gabbroic enclaves at Arenal volcano, Costa Rica. Contributions to Mineralogy and Petrology, 103(1): 110-122 doi: 10.1007/BF00371368

     

    Bell EA, Boehnke P, Hopkins-Wielicki MD and Harrison TM. 2015. Distinguishing primary and secondary inclusion assemblages in Jack Hills zircons. Lithos, 234-235: 15-26 doi: 10.1016/j.lithos.2015.07.014

     

    Bell EA. 2016. Preservation of primary mineral inclusions and secondary mineralization in igneous zircon: A case study in orthogneiss from the Blue Ridge, Virginia. Contributions to Mineralogy and Petrology, 171(3): 26 doi: 10.1007/s00410-016-1236-x

     

    Brophy JG. 1986. The Cold Bay Volcanic center, aleutian volcanic arc: Ⅰ. Implications for the origin of hi-alumina arc basalt. Contributions to Mineralogy and Petrology, 93(3): 368-380 doi: 10.1007/BF00389395

     

    Darling J, Storey C and Hawkesworth C. 2009. Impact melt sheet zircons and their implications for the Hadean crust. Geology, 37(10): 927-930 doi: 10.1130/G30251A.1

     

    Dostal J and Chatterjee AK. 2000. Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton (Nova Scotia, Canada). Chemical Geology, 163(1-4): 207-218 doi: 10.1016/S0009-2541(99)00113-8

     

    Evensen JM and London D. 2002. Experimental silicate mineral/melt partition coefficients for beryllium and the crustal Be cycle from migmatite to pegmatite. Geochimica et Cosmochimica Acta, 66(12): 2239-2265 doi: 10.1016/S0016-7037(02)00889-X

     

    Geisler T, Schaltegger U and Tomaschek F. 2007. Re-equilibration of zircon in aqueous fluids and melts. Elements, 3(1): 43-50 doi: 10.2113/gselements.3.1.43

     

    Harlov DE. 2015. Apatite: A fingerprint for metasomatic processes. Elements, 11(3): 171-176 doi: 10.2113/gselements.11.3.171

     

    Harrison TM, Grove M, Lovera OM and Catlos EJ. 1998. A model for the origin of Himalayan anatexis and inverted metamorphism. Journal of Geophysical Research: Solid Earth, 103(B11): 27017-27032 doi: 10.1029/98JB02468

     

    Harrison TM and Schmitt AK. 2007. High sensitivity mapping of Ti distributions in Hadean zircons. Earth and Planetary Science Letters, 261(1-2): 9-19 doi: 10.1016/j.epsl.2007.05.016

     

    Hay DC and Dempster TJ. 2009. Zircon behaviour during low-temperature metamorphism. Journal of Petrology, 50(4): 571-589 doi: 10.1093/petrology/egp011

     

    He CT, Qin KZ, Li JX, Zhou QF, Zhao JX and Li GM. 2020. Preliminary study on occurrence status of beryllium and genetic mechanism in Cuonadong tungsten-tin-beryllium deposit, eastern Himalaya. Acta Petrologica Sinica, 36(12): 3593-3606 (in Chinese with English abstract) doi: 10.18654/1000-0569/2020.12.03

     

    Hopkins M, Harrison TM and Manning CE. 2008. Low heat flow inferred from> 4Gyr zircons suggests Hadean plate boundary interactions. Nature, 456(7221): 493-496 doi: 10.1038/nature07465

     

    Jennings ES, Marschall HR, Hawkesworth CJ and Storey CD. 2011. Characterization of magma from inclusions in zircon: Apatite and biotite work well, feldspar less so. Geology, 39(9): 863-866 doi: 10.1130/G32037.1

     

    Kendall-Langley LA, Kemp AIS, Hawkesworth CJ, EIMF and Roberts MP. 2021. Quantifying F and Cl concentrations in granitic melts from apatite inclusions in zircon. Contributions to Mineralogy and Petrology, 176(7): 58 doi: 10.1007/s00410-021-01813-5

     

    Knoll T, Schuster R, Huet B, Mali H, Onuk P, Horschinegg M, Ertl A and Giester G. 2018. Spodumene pegmatites and related leucogranites from the Austroalpine Unit (eastern Alps, central Europe): Field relations, petrography, geochemistry, and geochronology. The Canadian Mineralogist, 56(4): 489-528 doi: 10.3749/canmin.1700092

     

    Le Fort P, Cuney M, Deniel C, France-Lanord C, Sheppard SMF, Upreti BN and Vidal P. 1987. Crustal generation of the Himalayan leucogranites. Tectonophysics, 134(1-3): 39-57 doi: 10.1016/0040-1951(87)90248-4

     

    Li GM, Zhang LK, Jiao YJ, Xia XB, Dong SL, Fu JG, Liang W, Zhang Z, Wu JY, Dong L and Huang Y. 2017. First discovery and implications of Cuonadong superlarge Be-W-Sn polymetallic deposit in Himalayan metallogenic belt, southern Tibet. Mineral Deposits, 36(4): 1003-1008 (in Chinese with English abstract)

     

    Li QL. 2016. "High-U effect" during SIMS zircon U-Pb dating. Bulletin of Mineralogy, Petrology and Geochemistry, 35(3): 405-412 (in Chinese with English abstract) doi: 10.3969/j.issn.1007-2802.2016.03.001

     

    Linnen RL and Cuney M. 2005. Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization. In: Linnen RL and Samson IM (eds. ). Rare-Element Geochemistry and Mineral Deposits. Geological Association of Canada, 45-68

     

    Liu C, Wang RC, Wu FY, Xie L, Liu XC, Li XK, Yang L and Li XJ. 2020. Spodumene pegmatites from the Pusila pluton in the higher Himalaya, South Tibet: Lithium mineralization in a highly fractionated leucogranite batholith. Lithos, 358-359: 105421 doi: 10.1016/j.lithos.2020.105421

     

    Liu C, Wang RC, Wu FY, Xie L and Liu XC. 2021. Lithium mineralization in Qomolangma: First report of elbaite-lepidolite subtype pegmatite in the Himalaya leucogranite belt. Acta Petrologica Sinica, 37(11): 3287-3294 (in Chinese with English abstract) doi: 10.18654/1000-0569/2021.11.03

     

    Liu XC, Wu FY, Wang RC, Liu ZC, Wang JM, Liu C, Hu FY, Yang L and He SX. 2021. Discovery of spodumene-bearing pegmatites from Ra Chu in the Mount Qomolangma region and its implications for studying rare-metal mineralization in the Himalayan orogen. Acta Petrologica Sinica, 37(11): 3295-3304(in Chinese with English abstract) doi: 10.18654/1000-0569/2021.11.04

     

    Liu YC, Qin KZ, Zhao JX, Zhou QF, Shi RZ, He CT and Gao YY. 2023. Feldspar traces mineralization processes in the Qongjiagang giant lithium ore district, Himalaya, Tibet. Ore Geology Reviews, 157: 105451 doi: 10.1016/j.oregeorev.2023.105451

     

    Liu ZC, Wu FY, Ji WQ, Wang JG and Liu CZ. 2014. Petrogenesis of the Ramba leucogranite in the Tethyan Himalaya and constraints on the channel flow model. Lithos, 208-209: 118-136 doi: 10.1016/j.lithos.2014.08.022

     

    Liu ZC, Wu FY, Ding L, Liu XC, Wang JG and Ji WQ. 2016. Highly fractionated Late Eocene (~35Ma) leucogranite in the Xiaru Dome, Tethyan Himalaya, South Tibet. Lithos, 240-243: 337-354 doi: 10.1016/j.lithos.2015.11.026

     

    Liu ZC, Wu FY, Liu XC and Wang JG. 2020. The mechanisms of fractional crystallization for the Himalayan leucogranites. Acta Petrologica Sinica, 36(12): 3551-3571 (in Chinese with English abstract) doi: 10.18654/1000-0569/2020.12.01

     

    London D, Morgan GB and Hervig RL. 1989. Vapor-undersaturated experiments with Macusani glass+H2O at 200MPa, and the internal differentiation of granitic pegmatites. Contributions to Mineralogy and Petrology, 102(1): 1-17 doi: 10.1007/BF01160186

     

    Maas R, Kinny PD, Williams IS, Froude DO and Compston W. 1992. The Earth's oldest known crust: A geochronological and geochemical study of 3900~4200Ma old detrital zircons from Mt. Narryer and Jack Hills, western Australia. Geochimica et Cosmochimica Acta, 56(3): 1281-1300

     

    Maneta V and Baker DR. 2014. Exploring the effect of lithium on pegmatitic textures: An experimental study. American Mineralogist, 99(7): 1383-1403 doi: 10.2138/am.2014.4556

     

    Merino E, Villaseca C, Orejana D and Jeffries T. 2013. Gahnite, chrysoberyl and beryl co-occurrence as accessory minerals in a highly evolved peraluminous pluton: The Belvís de Monroy leucogranite (Cáceres, Spain). Lithos, 179: 137-156 doi: 10.1016/j.lithos.2013.08.004

     

    Michaud JAS and Pichavant M. 2020. Magmatic fractionation and the magmatic-hydrothermal transition in rare metal granites: Evidence from Argemela (Central Portugal). Geochimica et Cosmochimica Acta, 289: 130-157 doi: 10.1016/j.gca.2020.08.022

     

    Panjasawatwong Y, Danyushevsky LV, Crawford AJ and Harris KL. 1995. An experimental study of the effects of melt composition on plagioclase-melt equilibria at 5 and 10 kbar: Implications for the origin of magmatic high-An plagioclase. Contributions to Mineralogy and Petrology, 118(4): 420-432 doi: 10.1007/s004100050024

     

    Qin KZ, Zhao JX, He CT and Shi RZ. 2021. Discovery of the Qongjiagang giant lithium pegmatite deposit in Himalaya, Tibet, China. Acta Petrologica Sinica, 37(11): 3277-3286 (in Chinese with English abstract) doi: 10.18654/1000-0569/2021.11.02

     

    Soman A, Geisler T, Tomaschek F, Grange M and Berndt J. 2010. Alteration of crystalline zircon solid solutions: A case study on zircon from an alkaline pegmatite from Zomba-Malosa, Malawi. Contributions to Mineralogy and Petrology, 160(6): 909-930 doi: 10.1007/s00410-010-0514-2

     

    Thomas R, Webster JD and Davidson P. 2006. Understanding pegmatite formation: The melt and fluid inclusion approach. In: Webster JD (ed. ). Melt Inclusions in Plutonic Rocks. Mineralogical Association of Canada, 189-210

     

    Trail D, Mojzsis SJ, Harrison TM, Schmitt AK, Watson EB and Young ED. 2007. Constraints on Hadean zircon protoliths from oxygen isotopes, Ti-thermometry, and rare earth elements. Geochemistry, Geophysics, Geosystems, 8(6): Q06014

     

    Wang JM, Zhang JJ and Wang XX. 2013. Structural kinematics, metamorphic P-T profiles and zircon geochronology across the Greater Himalayan Crystalline Complex in south-central Tibet: Implication for a revised channel flow. Journal of Metamorphic Geology, 31(6): 607-628 doi: 10.1111/jmg.12036

     

    Wang RC, Wu FY, Xie L, Liu XC, Wang JM, Yang L, Lai W and Liu C. 2017. A preliminary study of rare-metal mineralization in the Himalayan leucogranite belts, South Tibet. Science China (Earth Sciences), 60(9): 1655-1663 doi: 10.1007/s11430-017-9075-8

     

    Wu FY, Liu ZC, Liu XC and Ji WQ. 2015. Himalayan leucogranite: Petrogenesis and implications to orogenesis and plateau uplift. Acta Petrologica Sinica, 31(1): 1-36 (in Chinese with English abstract)

     

    Wu FY, Liu XC, Liu ZC, Wang RC, Xie L, Wang JM, Ji WQ, Yang L, Liu C, Khanal GP and He SX. 2020. Highly fractionated Himalayan leucogranites and associated rare-metal mineralization. Lithos, 352-353: 105319 doi: 10.1016/j.lithos.2019.105319

     

    Yang L, Liu XC, Wang JM and Wu FY. 2019. Is Himalayan leucogranite a product by in situ partial melting of the Greater Himalayan Crystalline? A comparative study of leucosome and leucogranite from Nyalam, southern Tibet. Lithos, 342-343: 542-556 doi: 10.1016/j.lithos.2019.06.007

     

    Zhang L, Jiang SY, Romer RL and Su HM. 2023. Relative importance of magmatic and hydrothermal processes for economic Nb-Ta-W-Sn mineralization in a peraluminous granite system: The Zhaojinggou rare-metal deposit, northern China. GSA Bulletin, 135(9-10): 2529-2553

     

    Zhao JX, He CT, Qin KZ, Shi RZ, Liu XC, Hu FY, Yu KL and Sun ZH. 2021. Geochronology, source features and the characteristics of fractional crystallization in pegmatite at the Qongjiagang giant pegmatite-type lithium deposit, Himalaya, Tibet. Acta Petrologica Sinica, 37(11): 3325-3347 (in Chinese with English abstract) doi: 10.18654/1000-0569/2021.11.06

     

    Zhou QF, Qin KZ, He CT, Wu HY, Liu YC, Niu XL, Mo LC, Liu XC and Zhao JX. 2021. Li-Be-Nb-Ta mineralogy of the Kuqu leucogranite and pegmatite in the Eastern Himalaya, Tibet, and its implication. Acta Petrologica Sinica, 37(11): 3305-3324 (in Chinese with English abstract) doi: 10.18654/1000-0569/2021.11.05

     

    何畅通, 秦克章, 李金祥, 周起凤, 赵俊兴, 李光明. 2020. 喜马拉雅东段错那洞钨-锡-铍矿床中铍的赋存状态及成因机制初探. 岩石学报, 36(12): 3593-3606 http://www.ysxb.ac.cn/article/doi/10.18654/1000-0569/2020.12.03

     

    李光明, 张林奎, 焦彦杰, 夏祥标, 董随亮, 付建刚, 梁维, 张志, 吴建阳, 董磊, 黄勇. 2017. 西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义. 矿床地质, 36(4): 1003-1008

     

    李秋立. 2016. 离子探针锆石U-Pb定年的"高U效应". 矿物岩石地球化学通报, 35(3): 405-412 doi: 10.3969/j.issn.1007-2802.2016.03.001

     

    刘晨, 王汝成, 吴福元, 谢磊, 刘小驰. 2021. 珠峰地区锂成矿作用: 喜马拉雅淡色花岗岩带首个锂电气石-锂云母型伟晶岩. 岩石学报, 37(11): 3287-3294 http://www.ysxb.ac.cn/article/doi/10.18654/1000-0569/2021.11.03

     

    刘小驰, 吴福元, 王汝成, 刘志超, 王佳敏, 刘晨, 胡方泱, 杨雷, 何少雄. 2021. 珠峰地区热曲锂辉石伟晶岩的发现及对喜马拉雅稀有金属成矿作用研究的启示. 岩石学报, 37(11): 3295-3304 http://www.ysxb.ac.cn/article/doi/10.18654/1000-0569/2021.11.04

     

    刘志超, 吴福元, 刘小驰, 王建刚. 2020. 喜马拉雅淡色花岗岩结晶分异机制概述. 岩石学报, 36(12): 3551-3571 http://www.ysxb.ac.cn/article/doi/10.18654/1000-0569/2020.12.01

     

    秦克章, 赵俊兴, 何畅通, 施睿哲. 2021. 喜马拉雅琼嘉岗超大型伟晶岩型锂矿的发现及意义. 岩石学报, 37(11): 3277-3286 http://www.ysxb.ac.cn/article/doi/10.18654/1000-0569/2021.11.02

     

    王汝成, 吴福元, 谢磊, 刘小驰, 王佳敏, 杨雷, 赖文, 刘晨. 2017. 藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究. 中国科学(地球科学), 47(8): 871-880

     

    吴福元, 刘志超, 刘小驰, 纪伟强. 2015. 喜马拉雅淡色花岗岩. 岩石学报, 31(1): 1-36 http://www.ysxb.ac.cn/article/id/aps_20150101

     

    赵俊兴, 何畅通, 秦克章, 施睿哲, 刘小驰, 胡方泱, 余可龙, 孙政浩. 2021. 喜马拉雅琼嘉岗超大型伟晶岩锂矿的形成时代, 源区特征及分异特征. 岩石学报, 37(11): 3325-3347 http://www.ysxb.ac.cn/article/doi/10.18654/1000-0569/2021.11.06

     

    周起凤, 秦克章, 何畅通, 吴华英, 刘宇超, 牛向龙, 莫凌超, 刘小驰, 赵俊兴. 2021. 喜马拉雅东段库曲岩体锂、铍和铌钽稀有金属矿物研究及指示意义. 岩石学报, 37(11): 3305-3324 http://www.ysxb.ac.cn/article/doi/10.18654/1000-0569/2021.11.05

  • 加载中

(10)

(1)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2023-08-02
修回日期:  2023-10-31
刊出日期:  2024-02-01

目录