大尺度大气运动的倍周期分叉和流型的非周期演变
PERIOD-DOUBLING BIFURCATIONS OF THE ATMOSPHERIC CIRCULATION AND APERIODIC VARIATIONS OF THE FLOW PATTERNS
-
摘要: 本文提出了一个控制斜压准地转气流运动的八维非线性自治系统。随着非绝热强迫参数的变化,流型的演变显示出倍周期分叉,比值(r2-r1)/(r3-r2)近似等于Feigenbaum普适常数。越过分叉点r∞后,形成具有四片的怪引子,其结构与三维的Lorenz怪引子及Rössler怪引子不同。Abstract: An eighth-order set of ordinary differential equations, which governs the dynamics of a quasigeostrophic flow of the baroclinic atmosphere, is used to investigate bifurcational and chaotic forms of the atmospheric circulation. Numerical integrations of the set exhibit period-doubling bifurcations of the flow patterns. It seems that the Feigenbaum relation (rn-rn-1)/(rn+1-rn)= 4.6692 is satisfied approximately. Above a limit point r∞ the solutions are aperiodic and chaotic, and a strange attractor having four inter-linked chaotic fragments appears. A window of period-6 emerges also in the chaotic region.
-
-
Feigenbaum, M. 7., Quantitative universality class for a class of nonlinear transformations, J.Stat. Phya., 19, 25-39, 1978.
Lorenz, E. N., Deterministic nonperiodic flow, J. Atsnos. Sci., 20, 130-141, 1963.
Saltzman, H., Finite amplitude free convection as an initial value problem-1, J. Atmoe. Sci.,19, 329-341, 1962.
Charney, J. C., and D. M. Straus, Form-drag instability, multiple equilibria and propagating planetary waves in baroclinic, orographically forced, planetary wave systems, J. Atmoa. Sei., 97,1157-1176, 1980.
Rossler, O. E., An equation for continuous chaos, Phya. Lett, 57 A, 397-401, 1976.
Asselio, R., Frequency filter for time integration, Mon. Wto. Rev,100, 487-490, 1972.
Pedlosky, J., Chaotic and periodic behavior of finite amplitude baroclinic waves, J. Atmoa, Sci.37. 1177-1196. 1980.
May, R. M.Simple mathematical models with very complicated dynamics, Nature, 261,459-466, 1976.
Charney, J.G., and J. G. Devore, Multiple flow equilibria in the atmosphere and blocking, J.Atmos.Sci.,36, 1205-1216, 1979.
计量
- 文章访问数: 1652
- HTML全文浏览量: 15
- PDF下载量: 1445