大尺度大气运动的倍周期分叉和流型的非周期演变

罗哲贤

罗哲贤. 1986: 大尺度大气运动的倍周期分叉和流型的非周期演变. 气象学报, (1): 1-9. DOI: 10.11676/qxxb1986.001
引用本文: 罗哲贤. 1986: 大尺度大气运动的倍周期分叉和流型的非周期演变. 气象学报, (1): 1-9. DOI: 10.11676/qxxb1986.001
Luo Zhexian. 1986: PERIOD-DOUBLING BIFURCATIONS OF THE ATMOSPHERIC CIRCULATION AND APERIODIC VARIATIONS OF THE FLOW PATTERNS. Acta Meteorologica Sinica, (1): 1-9. DOI: 10.11676/qxxb1986.001
Citation: Luo Zhexian. 1986: PERIOD-DOUBLING BIFURCATIONS OF THE ATMOSPHERIC CIRCULATION AND APERIODIC VARIATIONS OF THE FLOW PATTERNS. Acta Meteorologica Sinica, (1): 1-9. DOI: 10.11676/qxxb1986.001

大尺度大气运动的倍周期分叉和流型的非周期演变

PERIOD-DOUBLING BIFURCATIONS OF THE ATMOSPHERIC CIRCULATION AND APERIODIC VARIATIONS OF THE FLOW PATTERNS

  • 摘要: 本文提出了一个控制斜压准地转气流运动的八维非线性自治系统。随着非绝热强迫参数的变化,流型的演变显示出倍周期分叉,比值(r2-r1)/(r3-r2)近似等于Feigenbaum普适常数。越过分叉点r∞后,形成具有四片的怪引子,其结构与三维的Lorenz怪引子及Rössler怪引子不同。
    Abstract: An eighth-order set of ordinary differential equations, which governs the dynamics of a quasigeostrophic flow of the baroclinic atmosphere, is used to investigate bifurcational and chaotic forms of the atmospheric circulation. Numerical integrations of the set exhibit period-doubling bifurcations of the flow patterns. It seems that the Feigenbaum relation (rn-rn-1)/(rn+1-rn)= 4.6692 is satisfied approximately. Above a limit point r∞ the solutions are aperiodic and chaotic, and a strange attractor having four inter-linked chaotic fragments appears. A window of period-6 emerges also in the chaotic region.
  • Feigenbaum, M. 7., Quantitative universality class for a class of nonlinear transformations, J.Stat. Phya., 19, 25-39, 1978.

    Lorenz, E. N., Deterministic nonperiodic flow, J. Atsnos. Sci., 20, 130-141, 1963.

    Saltzman, H., Finite amplitude free convection as an initial value problem-1, J. Atmoe. Sci.,19, 329-341, 1962.

    Charney, J. C., and D. M. Straus, Form-drag instability, multiple equilibria and propagating planetary waves in baroclinic, orographically forced, planetary wave systems, J. Atmoa. Sei., 97,1157-1176, 1980.

    Rossler, O. E., An equation for continuous chaos, Phya. Lett, 57 A, 397-401, 1976.

    Asselio, R., Frequency filter for time integration, Mon. Wto. Rev,100, 487-490, 1972.

    Pedlosky, J., Chaotic and periodic behavior of finite amplitude baroclinic waves, J. Atmoa, Sci.37. 1177-1196. 1980.

    May, R. M.Simple mathematical models with very complicated dynamics, Nature, 261,459-466, 1976.

    Charney, J.G., and J. G. Devore, Multiple flow equilibria in the atmosphere and blocking, J.Atmos.Sci.,36, 1205-1216, 1979.

计量
  • 文章访问数:  1652
  • HTML全文浏览量:  15
  • PDF下载量:  1445
  • 被引次数: 0
出版历程
  • 收稿日期:  1984-10-07
  • 修回日期:  1984-12-20
  • 发布日期:  2013-02-19

目录

    /

    返回文章
    返回