风积沙环境下高等级公路冻土块石路基降温性能分析

韩风雷, 张学富, 喻文兵, 韦良文, 周杰

冰川冻土 ›› 2018, Vol. 40 ›› Issue (3) : 528-538.

PDF(7795 KB)
PDF(7795 KB)
冰川冻土 ›› 2018, Vol. 40 ›› Issue (3) : 528-538. DOI: 10.7522/j.issn.1000-0240.2018.0057  CSTR: 32264.14.j.issn.1000-0240.2018.0057
寒区科学与技术

风积沙环境下高等级公路冻土块石路基降温性能分析

  • 韩风雷1,2, 张学富1, 喻文兵2, 韦良文1, 周杰1
作者信息 +

Analysis on the cooling performance properties of block-stone embankment in permafrost regions under the scenario of aeolian-sand

  • HAN Fenglei1,2, ZHANG Xuefu1, YU Wenbing2, WEI Liangwen1, ZHOU Jie1
Author information +
文章历史 +

摘要

青藏高原脆弱的生态系统以及人类工程活动,加剧了青藏工程走廊线性工程两侧沙漠化、荒漠化发展趋势,尤其冻土块石路基面临日益严重的风积沙灾害问题。以多年冻土区高等级公路块石路基为研究对象,采用数值模拟分析风积沙环境下封闭块石路基的降温性能和长期热稳定性。结果表明:风积沙堆积对封闭块石路基下部土层冻土温度的影响程度高于冻土上限,1.0 m湿沙工况降低冻土温度,0.2 m干沙则增大冻土温度。升温背景下,随年平均气温增加风沙堆积对路基冻土上限影响程度增强,干沙增大冻土融化深度,湿沙抬升冻土上限。随冻土含冰量减小,路基中心冻土上限对气候升温敏感性增加,风沙堆积影响减弱。气候升温和风沙堆积条件下,在年平均气温低于-5.5℃时,宽幅沥青路面封闭块石路基能够满足降温要求,使人为冻土上限保持在块石层内。研究成果可为风沙危害区多年冻土块石路基的病害治理和拟建青藏高速公路块石路基设计提供科学依据。

Abstract

The fragile ecosystems and human engineering activities in the Tibetan Plateau aggravate the desertification along the linear engineering of Qinghai-Tibet Engineering Corridor. Therefore block-stone embankment in permafrost regions faces increasing severe aeolian sand hazard. In this paper, cooling performance and long-time thermal stability of block-stone embankment with high-grade pavement under the scenario of aeolian sand were analyzed. The results showed that permafrost temperature is more easy to be affected by accumulation of aeolian sand for closed block-stone embankment by comparing the permafrost table under the center of permafrost embankment. Wet sand of 1.0 m depth can reduce permafrost temperature, while dry sand of 0.2 m depth can rise permafrost temperature. Permafrost temperature is more sensitive to water content of sand as compared with the sand deposit depth. Under the circumstance of climate warming, the impact of sand deposit on permafrost table of embankment will weaken with the mean annual air temperature decreasing. The dry sand increases the thawed depth of permafrost, and the wet sand raises permafrost table. Permafrost table beneath the center of embankment is more sensitive and the impact of accumulation of sand weakens together with the decrease of ice content of permafrost. When the mean annual air temperature is lower than -5.5℃, closed block-stone embankment for high-grade highway could keep artificial permafrost table within the rock layer in the condition of climate warming and aeolian sand deposit.

关键词

块石路基 / 风积沙 / 高等级公路 / 降温性能 / 多年冻土区

Key words

block-stone embankment / aeolian sand / high-grade highway / cooling performance / permafrost regions

引用本文

导出引用
韩风雷, 张学富, 喻文兵, 韦良文, 周杰. 风积沙环境下高等级公路冻土块石路基降温性能分析[J]. 冰川冻土, 2018, 40(3): 528-538 https://doi.org/10.7522/j.issn.1000-0240.2018.0057
HAN Fenglei, ZHANG Xuefu, YU Wenbing, WEI Liangwen, ZHOU Jie. Analysis on the cooling performance properties of block-stone embankment in permafrost regions under the scenario of aeolian-sand[J]. Journal of Glaciology and Geocryology, 2018, 40(3): 528-538 https://doi.org/10.7522/j.issn.1000-0240.2018.0057
中图分类号: P642.14   

参考文献

[1] Cheng Guodong, Lai Yuanming, Sun Zhizhong, et al. The ‘thermal semi-conductor’ effect of crushed rocks[J]. Permafrost and Periglacial Processes, 2007, 18(2):151-160.
[2] Niu Fujun, Liu Minghao, Cheng Guodong, et al. Long-term thermal regimes of the Qinghai-Tibet Railway embankments in plateau permafrost regions[J]. Science in China:Series D Earth Sciences, 2015, 58(9):1669-1676.[牛富俊, 刘明浩, 程国栋, 等. 多年冻土区青藏铁路路基的长期热状况[J]. 中国科学:D辑地球科学, 2015, 45(8):1220-1228.]
[3] Lai Yuanming, Zhang Mingyi, Yu Wenbing, et al. Experimental study on the cooling effect and mechanism of closed ripped-rock embankment[J]. Journal of Glaciology and Geocryology, 2004, 26(5):576-581.[赖远明, 张明义, 喻文兵, 等. 封闭条件下抛石路堤降温效果及机理的试验研究[J]. 冰川冻土, 2004, 26(5):576-581.]
[4] Wu Qingbai, Dong Xianfu, Jiang Guanli. Cooling effect differences of soil beneath open and closed block-stone embankments[J] Chinese Journal of Rock Mechanics and Engineering, 2006, 25(12):2565-2571.[吴青柏, 董献付, 蒋观利. 开放和封闭条件下块石结构路堤下部土体降温效果差异[J]. 岩石力学与工程学报, 2006, 25(12):2565-2571.]
[5] Yu Wenbing, Liu Weibo, Chen Lin, et al. Evaluation of cooling effects of crushed rock under sand-filling and climate warming scenarios on the Tibet Plateau[J]. Applied Thermal Engineering, 2016, 92:130-136.
[6] Chen Lin, Yu Wenbing, Han Fenglei, et al. Impacts of aeolian sand on cooling effect of crushed-rock embankment of Qinghai-Tibet Railway[J]. Journal of Glaciology and Geocryology, 2015, 37(1):147-155.[陈琳, 喻文兵, 韩风雷, 等. 风积沙对青藏铁路块碎石路基降温效果的影响[J]. 冰川冻土, 2015, 37(1):147-155.]
[7] Yu Qihao, Fan Kai, Qian Jin, et al. Key issues of highway construction in permafrost regions in China[J]. Science in China:Technologica, 2014, 44(4):425-432.[俞祁浩, 樊凯, 钱进, 等. 我国多年冻土区高速公路修筑关键问题研究[J]. 中国科学:技术科学, 2014, 44(4):425-432.]
[8] Yu Qihao, Cheng Guodong, He Naiwu, et al. Research on the heat transfer process of permafrost embankment under different pavement and width conditions[J]. Progress in Natural Science, 2006, 16(11):1482-1486.[俞祁浩, 程国栋, 何乃武, 等. 不同路面和幅宽条件下冻土路基传热过程研究[J]. 自然科学进展, 2006, 16(11):1482-1486.]
[9] Yu Qihao, Qian Jin, Wu Qingbai, et al. Designing Research of the Qinghai-Tibet high-grade testing highway[J]. Journal of Glaciology and Geocryology, 2009, 31(5):907-914.[俞祁浩, 钱进, 吴青柏, 等. 青藏高等级公路试验工程设计研究[J]. 冰川冻土, 2009, 31(5):907-914.]
[10] Lai Yuanming, Zhang Mingyi, Li Shuangyang, et al. Theory and application of cold region engineering[M]. Beijing:Science Press, 2009.[赖远明, 张明义, 李双洋, 等. 寒区工程理论与应用[M]. 北京:科学出版社, 2009.]
[11] Zhang Mingyi. Study on long-term thermal stability of air-cooled subgrade in permafrost regions[D]. Lanzhou:Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 2007.[张明义. 多年冻土区气冷路基长期热稳定性研究[D]. 兰州:中国科学院寒区旱区环境与工程研究所, 2007.]
[12] Chen Lin, Yu Wenbing, Yang Chengsong, et al. Conductivity of aeolian sand on the Tibetan Plateau based on microstructure[J]. Journal of Glaciology and Geocryology, 2014, 36(5):1220-1226.[陈琳, 喻文兵, 杨成松, 等. 基于微观结构的青藏高原风积沙导热系数变化机理研究[J]. 冰川冻土, 2014, 36(5):1220-1226.]
[13] Niu Fujun, Zhang Jianming, Zhang Zhao. Engineering geological characteristics and evaluations of permafrost in Beiluhe testing field of Qinghai-Tibetan Railway[J]. Journal of Glaciology and Geocryology, 2002, 24(3):264-269.[牛富俊, 张建明, 张钊. 青藏铁路北麓河试验段冻土工程地质特征及评价[J]. 冰川冻土, 2002, 24(3):264-269.]
[14] Zhang Jianming. Study on roadbed stability in permafrost regions on Qinghai-Tibetan Plateau and classification of permafrost in highway engineering[D]. Lanzhou:Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 2004.[张建明. 青藏高原冻土路基稳定性及公路工程多年冻土分类研究[D]. 兰州:中国科学院寒区旱区环境与工程研究所, 2004.]
[15] Han Fenglei, Yu Wenbing, Yi Xin, et al. Thermal regime of paved embankment in permafrost regions along the Qinghai-Tibet Engineering Corridor[J]. Applied Thermal Engineering, 2016, 108:330-338.
[16] Zhu Linnan. Study of the adherent layer on different types of ground in permafrost region on the Qinghai-Xizang Plateau[J]. Journal of Glaciology and Geocryology, 1988, 10(1):8-14.[朱林楠. 高原冻土区不同下垫面的附面层研究[J]. 冰川冻土, 1988, 10(1):8-14.]

基金

国家自然科学基金项目(41571070);中国科学院前沿科学重点研究项目(QYZDJ-SSW-DQC011;QYZDJ-SSW-DQC011-02);重庆市科委基础科学与前沿技术研究项目(cstc2017jcyjA1680;cstc2017jcyjA1370;cstc2014jcyjA30023)资助
PDF(7795 KB)

1004

Accesses

0

Citation

Detail

段落导航
相关文章

/