格陵兰冰盖次表面湖多源遥感监测——以格陵兰中西部流域为例

李岚静, 陈卓奇, 郑雷, 程晓. 2022. 格陵兰冰盖次表面湖多源遥感监测——以格陵兰中西部流域为例. 地球物理学报, 65(10): 3818-3828, doi: 10.6038/cjg2022P0558
引用本文: 李岚静, 陈卓奇, 郑雷, 程晓. 2022. 格陵兰冰盖次表面湖多源遥感监测——以格陵兰中西部流域为例. 地球物理学报, 65(10): 3818-3828, doi: 10.6038/cjg2022P0558
LI LanJing, CHEN ZhuoQi, ZHENG Lei, CHENG Xiao. 2022. Extraction of Greenland Ice Sheet buried lakes using multi-source remote sensing data: With application to the Central West basin of Greenland. Chinese Journal of Geophysics (in Chinese), 65(10): 3818-3828, doi: 10.6038/cjg2022P0558
Citation: LI LanJing, CHEN ZhuoQi, ZHENG Lei, CHENG Xiao. 2022. Extraction of Greenland Ice Sheet buried lakes using multi-source remote sensing data: With application to the Central West basin of Greenland. Chinese Journal of Geophysics (in Chinese), 65(10): 3818-3828, doi: 10.6038/cjg2022P0558

格陵兰冰盖次表面湖多源遥感监测——以格陵兰中西部流域为例

  • 基金项目:

    国家重点研发计划项目(2019YFC1509104), 国家自然科学基金项目(42006192), 广东省基础与应用基础研究基金(2021B1515020032), 南方海洋科学与工程广东省实验室(珠海)创新群体项目(311021008)资助

详细信息
    作者简介:

    李岚静,女,1998年生,硕士研究生,从事格陵兰冰盖次表面湖研究.E-mail: lilj58@mail2.sysu.edu.cn

    通讯作者: 陈卓奇,男,1982年生,地图学与地理信息系统博士,从事格陵兰冰盖观测与模拟研究. E-mail: chenzhq67@mail.sysu.edu.cn
  • 中图分类号: P237

Extraction of Greenland Ice Sheet buried lakes using multi-source remote sensing data: With application to the Central West basin of Greenland

More Information
  • 格陵兰冰盖在夏季会发生剧烈融化,融水在低洼处汇集形成冰面湖,储存了大量的融水,在冰盖的水文系统中起着至关重要的作用,是格陵兰冰盖质量平衡的重要组成部分.近期有研究发现大量的冰面湖在冬季不会完全冻结,而是掩埋在雪层或冰层下以液态水形式存在,形成冰盖次表面湖.冰盖次表面湖对格陵兰冰盖稳定性和物质平衡会产生重要的影响.由于次表面湖存在于冰盖表层之下难以通过可见光影像进行提取和分析,次表面湖的监测成为次表面湖研究的难点之一.本研究提出一种利用Landsat8和Sentinel-1数据自动提取次表面湖范围的方法.该方法先利用可见光影像提取夏季冰面湖的范围对SAR影像进行掩膜,再根据冬天水体和冰面的后向散射具有可分性的原理,通过Rosin阈值分割算法,提取得到2018—2019年冬季格陵兰中西部流域的次表面湖并对其分布进行分析.在研究区内选择10个测试区域,利用该方法对区域内的次表面湖进行目视解译,并对算法自动提取次表面湖结果进行精度验证.结果表明,本研究提出的自动提取算法Kappa系数为0.85.基于该方法,本研究在2018年格陵兰中西部流域共提取夏季冰面湖的面积为102.28 km2.约43.09%的夏季冰面湖不会完全冻结,从而在冬季形成次表面湖(面积为44.07 km2).

  • 加载中
  • 图 1 

    研究区范围

    Figure 1. 

    Study area

    图 2 

    冰面湖探测实例

    Figure 2. 

    Example of the detection of supraglacial lakes

    图 3 

    格陵兰中西部流域水体、冰面直方图

    Figure 3. 

    Histogram of water and ice in the Central West basin of Greenland

    图 4 

    次表面湖提取流程图

    Figure 4. 

    Flow chart of the detection of buried lakes

    图 5 

    次表面湖SAR影像直方图

    Figure 5. 

    Histogram of SAR image of buried lakes

    图 6 

    监督分类法提取次表面湖

    Figure 6. 

    Buried lakes extracted by supervised classification

    图 7 

    次表面湖提取方法验证

    Figure 7. 

    Validation of buried lakes extraction method

    图 8 

    格陵兰中西部流域冰面湖结果

    Figure 8. 

    Supraglacial lakes in the Central West basin of Greenland

    图 9 

    格陵兰中西部流域冰面湖分布

    Figure 9. 

    The distribution of supraglacial lakes in the Central West basin of Greenland

    图 10 

    格陵兰中西部流域次表面湖结果

    Figure 10. 

    Buried lakes in the Central West basin of Greenland

    图 11 

    格陵兰中西部流域次表面湖分布

    Figure 11. 

    The distribution of buried lakes in the Central West basin of Greenland

    表 1 

    监督分类精度评定

    Table 1. 

    Accuracy assessment of supervise classification

    样本量 100% 70% 30% 15%
    提取精度 98.41% 86.38% 71.32% 42.98%
    下载: 导出CSV

    表 2 

    次表面湖提取精度评定

    Table 2. 

    Accuracy evaluation of buried lakes extraction

    测试区域 a b c d e f g h i j
    总体精度(OA) 99.02% 99.29% 99.58% 99.46% 99.37% 99.65% 99.79% 98.68% 98.66% 98.30%
    Kappa系数 0.7498 0.5515 0.6467 0.6736 0.7037 0.9025 0.8517 0.8002 0.8620 0.8458
    下载: 导出CSV

    表 3 

    冰面湖提取阈值的敏感性分析

    Table 3. 

    Sensitivity analysis of threshold of supraglacial lakes extraction

    NDWI取值 次表面湖面积(km2)
    0.15 353.54
    0.2 216.42
    0.25 167.50
    0.3 131.17
    0.35 89.47
    0.4 67.23
    0.45 53.76
    0.5 44.07
    下载: 导出CSV

    表 4 

    次表面湖提取阈值的敏感性分析

    Table 4. 

    Sensitivity analysis of threshold of buried lakes extraction

    Rosin阈值提取 次表面湖面积(km2)
    增加3 dB 139.61
    增加2 dB 120.32
    增加1 dB 96.81
    原始结果 44.07
    减少1 dB 43.87
    减少2 dB 22.72
    减少3 dB 9.17
    下载: 导出CSV
  •  

    Bell R E, Chu W, Kingslake J, et al. 2017. Antarctic ice shelf potentially stabilized by export of meltwater in surface river. Nature, 544(7650): 344-348, doi: 10.1038/nature22048.

     

    Benedek C L, Willis I C. 2021. Winter drainage of surface lakes on the Greenland Ice Sheet from Sentinel-1 SAR imagery. The Cryosphere, 15(3): 1587-1606, doi: 10.5194/tc-15-1587-2021.

     

    Chen J L, Wilson C R, Tapley B D. 2006. Satellite gravity measurements confirm accelerated melting of Greenland Ice Sheet. Science, 313(5795): 1958-1960, doi: 10.1126/science.1129007.

     

    Chen Z Q, Chi Z H, Zinglersen K B, et al. 2020. A new image mosaic of Greenland using Landsat-8 OLI images. Science Bulletin, 65(7): 522-524, doi: 10.1016/j.scib.2020.01.014.

     

    Dunmire D, Banwell A F, Wever N, et al. 2021. Contrasting regional variability of buried meltwater extent over 2 years across the Greenland Ice Sheet. The Cryosphere, 15(6): 2983-3005, doi: 10.5194/tc-15-2983-2021.

     

    Fahnestock M, Bindschadler R, Kwok R, et al. 1993. Greenland Ice Sheet surface properties and ice dynamics from ERS-1 SAR imagery. Science, 262(5139): 1530-1534, doi: 10.1126/science.262.5139.1530.

     

    Harper J, Humphrey N, Pfeffer W T, et al. 2012. Greenland ice-sheet contribution to sea-level rise buffered by meltwater storage in firn. Nature, 491(7423): 240-243, doi: 10.1038/nature11566.

     

    Howat I M, de la Peña S, van Angelen J H, et al. 2013. Brief Communication "Expansion of meltwater lakes on the Greenland Ice Sheet". The Cryosphere, 7(1): 201-204, doi: 10.5194/tc-7-201-2013.

     

    Koenig L S, Miège C, Forster R R, et al. 2014. Initial in situ measurements of perennial meltwater storage in the Greenland firn aquifer. Geophysical Research Letters, 41(1): 81-85, doi: 10.1002/2013GL058083.

     

    Koenig L S, Lampkin D J, Montgomery L N, et al. 2015. Wintertime storage of water in buried supraglacial lakes across the Greenland Ice Sheet. The Cryosphere, 9(4): 1333-1342, doi: 10.5194/tc-9-1333-2015.

     

    Leeson A A, Shepherd A, Briggs K, et al. 2015. Supraglacial lakes on the Greenland Ice Sheet advance inland under warming climate. Nature Climate Change, 5(1): 51-55, doi: 10.1038/Nclimate2463.

     

    Lewis S M, Smith L C. 2009. Hydrologic drainage of the Greenland Ice Sheet. Hydrological Processes, 23(14): 2004-2011, doi: 10.1002/hyp.7343.

     

    MacFerrin M, Machguth H, van As D, et al. 2019. Rapid expansion of Greenland′s low-permeability ice slabs. Nature, 573(7774): 403-407, doi: 10.1038/s41586-019-1550-3.

     

    Machguth H, MacFerrin M, van As D, et al. 2016. Greenland meltwater storage in firn limited by near-surface ice formation. Nature Climate Change, 6(4): 390-393, doi: 10.1038/nclimate2899.

     

    Miles K E, Willis I C, Benedek C L, et al. 2017. Toward monitoring surface and subsurface lakes on the Greenland Ice Sheet using Sentinel-1 SAR and Landsat-8 OLI imagery. Frontiers in Earth Science, 5: 58, doi: 10.3389/feart.2017.00058.

     

    Morin P, Porter C, Cloutier M, et al. 2016. ArcticDEM; a publically available, high resolution elevation model of the Arctic. //EGU General Assembly Conference Abstracts. Vienna, Austria: EGU.

     

    Morlighem M, Williams C N, Rignot E, et al. 2017. BedMachine v3: Complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation. Geophysical Research Letters, 44(21): 11051-11061, doi: 10.1002/2017GL074954.

     

    Moussavi M, Pope A, Halberstadt A R W, et al. 2020. Antarctic supraglacial lake detection using Landsat 8 and Sentinel-2 imagery: Towards continental generation of lake volumes. Remote Sensing, 12(1): 134, doi: 10.3390/rs12010134.

     

    Pope A, Scambos T A, Moussavi M, et al. 2016. Estimating supraglacial lake depth in West Greenland using Landsat 8 and comparison with other multispectral methods. The Cryosphere, 10(1): 15-27, doi: 10.5194/tc-10-15-2016.

     

    Rignot E, Echelmeyer K, Krabill W. 2001. Penetration depth of interferometric synthetic-aperture radar signals in snow and ice. Geophysical Research Letters, 28(18): 3501-3504, doi: 10.1029/2000GL012484.

     

    Rignot E, Mouginot J. 2012. Ice flow in Greenland for the international polar year 2008-2009. Geophysical Research Letters, 39(11): L11501, doi: 10.1029/2012GL051634.

     

    Rosin P L. 2001. Unimodal thresholding. Pattern Recognition, 34(11): 2083-2096, doi: 10.1016/S0031-3203(00)00136-9.

     

    Schröder L, Neckel N, Zindler R, et al. 2020. Perennial supraglacial lakes in northeast Greenland observed by polarimetric SAR. Remote Sensing, 12(17): 2798, doi: 10.3390/rs12172798.

     

    Stocker T. 2014. Climate Change 2013: the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

     

    The IMBIE Team. 2020. Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature, 579(7798): 233-239, doi: 10.1038/s41586-019-1855-2.

     

    Trusel L D, Das S B, Osman M B, et al. 2018. Nonlinear rise in Greenland runoff in response to post-industrial Arctic warming. Nature, 564(7734): 104-108, doi: 10.1038/s41586-018-0752-4.

     

    Williamson A G, Banwell A F, Willis I C, et al. 2018. Dual-satellite (Sentinel-2 and Landsat 8) remote sensing of supraglacial lakes in Greenland. The Cryosphere, 12(9): 3045-3065, doi: 10.5194/tc-12-3045-2018.

     

    Yang K, Smith L C. 2013. Supraglacial streams on the Greenland Ice Sheet delineated from combined spectral-shape information in high-resolution satellite imagery. IEEE Geoscience and Remote Sensing Letters, 10(4): 801-805, doi: 10.1109/LGRS.2012.2224316.

     

    Yang K, Smith L C, Fettweis X, et al. 2019. Surface meltwater runoff on the Greenland Ice Sheet estimated from remotely sensed supraglacial lake infilling rate. Remote Sensing of Environment, 234: 111459, doi: 10.1016/j.rse.2019.111459.

  • 加载中

(11)

(4)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2021-08-03
修回日期:  2022-01-07
上线日期:  2022-10-10

目录