西藏雅拉香波穹窿淡色花岗岩-伟晶岩矿物学特征: 对稀有金属成矿指示意义

赵俊兴, 何畅通, 施睿哲, 秦克章, 余可龙, 邱骏挺, 李真真, 周起凤. 2022. 西藏雅拉香波穹窿淡色花岗岩-伟晶岩矿物学特征: 对稀有金属成矿指示意义. 岩石学报, 38(7): 1981-2002. doi: 10.18654/1000-0569/2022.07.11
引用本文: 赵俊兴, 何畅通, 施睿哲, 秦克章, 余可龙, 邱骏挺, 李真真, 周起凤. 2022. 西藏雅拉香波穹窿淡色花岗岩-伟晶岩矿物学特征: 对稀有金属成矿指示意义. 岩石学报, 38(7): 1981-2002. doi: 10.18654/1000-0569/2022.07.11
ZHAO JunXing, HE ChangTong, SHI RuiZhe, QIN KeZhang, YU KeLong, QIU JunTing, LI ZhenZhen, ZHOU QiFeng. 2022. Mineralogical characteristics of the leucogranite-pegmatite in the Yardoi Gneiss Dome, Himalaya, Tibet: Implication to the rare-metal mineralization. Acta Petrologica Sinica, 38(7): 1981-2002. doi: 10.18654/1000-0569/2022.07.11
Citation: ZHAO JunXing, HE ChangTong, SHI RuiZhe, QIN KeZhang, YU KeLong, QIU JunTing, LI ZhenZhen, ZHOU QiFeng. 2022. Mineralogical characteristics of the leucogranite-pegmatite in the Yardoi Gneiss Dome, Himalaya, Tibet: Implication to the rare-metal mineralization. Acta Petrologica Sinica, 38(7): 1981-2002. doi: 10.18654/1000-0569/2022.07.11

西藏雅拉香波穹窿淡色花岗岩-伟晶岩矿物学特征: 对稀有金属成矿指示意义

  • 基金项目:

    本文受第二次青藏高原综合科学考察(2019QZKK0802)、中国科学院地质与地球物理研究所重点部署项目(IGGCAS-201902)、国家自然科学基金项目(92162323)、核工业北京地质研究院遥感信息与图像分析技术国家级重点实验室基金(6142A010104)、中国科学院重点部署项目(ZDRW-ZS-2020-4-1)和中国科学院青年创新促进会(2019070)联合资助

详细信息
    作者简介:

    赵俊兴, 男, 1984年生, 副研究员, 矿床学专业, E-mail: zhaojunxing@mail.iggcas.ac.cn

  • 中图分类号: P578.953;P588.131

Mineralogical characteristics of the leucogranite-pegmatite in the Yardoi Gneiss Dome, Himalaya, Tibet: Implication to the rare-metal mineralization

  • 近年来提出喜马拉雅新生代淡色花岗岩高分异成因模式使得该带逐渐成为我国极具潜力的稀有金属战略远景区。目前,喜马拉雅北带金属组合类型以铍-铌-钽(锡-钨)组合为主,南带以锂-铍-铌-钽组合为主。本研究聚焦于喜马拉雅北带东段的雅拉香波穹窿内发现的含绿柱石伟晶岩,通过电子探针和激光剥蚀等离子质谱方法获得淡色花岗岩-伟晶岩中长石、云母、电气石和绿柱石的矿物结构和组成,综合判定雅拉香波淡色花岗岩-伟晶岩的岩浆演化分异程度及其稀有金属成矿潜力。研究获得如下结论:1)喜马拉雅东段雅拉香波花岗伟晶岩中稀有金属矿物主要为绿柱石,主要赋存在微斜长石-钠长石伟晶岩中;2)岩浆结晶分异作用控制了雅拉香波穹窿中淡色花岗岩和伟晶岩中矿物组成及其演化,其中白云母替代关系为Al2□R-32+和Al4Si-3-1,电气石替代关系为MgFe-1X□,Al(Na,R2+-1,绿柱石替代关系为Na(Fe2+,Mg)□-1Al-1;3)根据长石Cs含量和钾长石K/Rb值,白云母Li-B-Cs含量和K/Rb比值,黑电气石Ge-Pb含量,以及绿柱石Li-Cs含量和Cs/Na比值综合判断雅拉香波含绿柱石伟晶岩为简单铍矿化伟晶岩,其伟晶岩演化程度与典型Be-Nb-Ta矿化伟晶岩和复杂伟晶岩中Be矿化带相类似。

  • 加载中
  • 图 1 

    喜马拉雅淡色花岗岩分布示意图(据潘桂棠, 2004; 刘志超等, 2020)

    Figure 1. 

    Distribution map of the Himalayan leucogranite (modified after Pan, 2004; Liu et al., 2020)

    图 2 

    喜马拉雅雅拉香波穹窿地质简图(据Zeng et al., 2011; Wang et al., 2018修改)

    Figure 2. 

    Simplified geological map of the Yalaxiangbo Gneiss dome, Himalaya, Tibet (modified after Zeng et al., 2011; Wang et al., 2018)

    图 3 

    雅拉香波二云母花岗岩(a、b)、花岗伟晶岩(c)和含绿柱石花岗伟晶岩(d-f)野外照片

    Figure 3. 

    Photographs of the Yalaxiangbo two-mica granite (a, b), granitic pegmatite (c) and beryl-bearing pegmatite (d-f) in the field

    图 4 

    雅拉香波二云母花岗岩、花岗伟晶岩和含绿柱石花岗伟晶岩显微照片

    Figure 4. 

    Microphotographs showing textural features of the two-mica granite, granitic pegmatite and beryl-bearing pegmatite

    图 5 

    雅拉香波二云母花岗岩和伟晶岩岩石结构和典型矿物BSE和CL显微图像

    Figure 5. 

    Representative BSE and cathodoluminescence (CL) images of the igneous textures and minerals from the Yalaxiangbo two-mica granite and pegmatite

    图 6 

    雅拉香波二云母花岗岩(a)和伟晶岩(b)中长石An-Ab-Or三元图解

    Figure 6. 

    Feldspar An-Ab-Or diagram of the Yalaxiangbo two-mica granite (a) and pegmatite (b)

    图 7 

    雅拉香波淡色花岗岩和伟晶岩中长石Na2O/K2O比值与微量元素协变图解

    Figure 7. 

    Feldspar Na2O/K2O ratio against trace elements diagrams of the Yalaxiangbo leucogranite and pegmatite

    图 8 

    雅拉香波淡色花岗岩和伟晶岩中云母组成分类

    Figure 8. 

    Compositional classification of mica minerals in the Yalaxiangbo leucogranite and pegmatite

    图 9 

    雅拉香波淡色花岗岩和伟晶岩中白云母元素二元图解

    Figure 9. 

    Compositional variations of the muscovite in the Yalaxiangbo leucogranite and pegmatite

    图 10 

    雅拉香波伟晶岩中电气石分类图解(底图据Henry et al., 2011)

    Figure 10. 

    Compositional classification of the tourmaline minerals in the Yalaxiangbo leucogranite and pegmatite (base map after Henry et al., 2011)

    图 11 

    雅拉香波伟晶岩中电气石微量元素图解

    Figure 11. 

    Selected trace-element variations in studied tourmalines from the Yalaxiangbo pegmatite

    图 12 

    雅拉香波绿柱石主量-微量元素图解

    Figure 12. 

    Major-trace elemental variation in the beryl at the Yalaxiangbo

    图 13 

    雅拉香波花岗岩和伟晶岩中白云母(a、b)、电气石(c-e)和绿柱石(f-h)元素替代机制图解

    Figure 13. 

    Substitution mechanism of muscovite (a, b), tourmaline (c-e) and beryl (f-h) from the leucogranite and pegmatite at Yalaxiangbo

    图 14 

    雅拉香波长石、云母、电气石和绿柱石元素组成与典型稀有金属伟晶岩对应矿物组成对比图解

    Figure 14. 

    Comparison of the feldspar, mica, tourmaline and beryl compositions at the Yalaxiangbo with the typical rare-metal pegmatites from the world

    表 1 

    本次研究主要样品和主要矿物组合

    Table 1. 

    Sample descriptions and mineral assemblages in this study

    岩性 样品号 矿物组合特征
    二云母花岗岩 19YLXB5-4 细粒,钾长石(35%~40%)+斜长石(20%~25%)+石英(20%~25%)+白云母(3%~5%)+黑云母(3%~5%)
    19YLXB8-5 中细粒,钾长石(40%~45%)+斜长石(20%~25%)+石英(15%~20%)+白云母(3%~5%)+黑云母(3%~5%)
    19YLXB15-5 中细粒,钾长石(40%~45%)+斜长石(20%~25%)+石英(15%~20%)+白云母(3%~5%)+黑云母(3%~5%)
    花岗伟晶岩 19YLXB9-1-2 钾长石(35%~40%)+钠长石(15%~20%)+石英(30%~35%)+白云母(5%~7%)+电气石(3%),伟晶岩岩体边缘粒度加粗
    19YLXB9-6 钾长石(35%~40%)+钠长石(15%~20%)+石英(20%~25%)+白云母(8%~10%)+电气石(3%~5%),伟晶岩岩体边缘粒度加粗
    19YLXB16-5-2、19YLXB16-5-3 钾长石(35%~40%)+钠长石(15%~20%)+石英(25%~30%)+白云母(3%~5%)+电气石(1%~3%)+石榴石(1%~2%)
    19YLXB19-2-2、19YLXB19-2-3 钾长石(35%~40%)+钠长石(15%~20%)+石英(25%~30%)+白云母(3%~5%)+电气石(3%~5%)
    含绿柱石花岗伟晶岩 19YLXB5-2-1 钾长石(40%~45%)+钠长石(15%~20%)+石英(20%~25%)+白云母(5%~7%)+绿柱石(1%~3%),绿柱石粒径可达1cm
    19YLXB15-1、19YLXB15-1-2 钾长石(45%~50%)+钠长石(20%~25%)+石英(8%~10%)+白云母(8%~10%)+绿柱石(1%~3%)+石榴石(1%~2%),绿柱石粒径为0.5~1cm
    19YLXB15-3-1 钾长石(45%~50%)+钠长石(20%~25%)+石英(8%~10%)+白云母(8%~10%)+绿柱石(1%~3%)+石榴石(1%~2%),绿柱石粒径为0.5~1cm
    19YLXB21-7 钾长石(45%~50%)+钠长石(20%~25%)+石英(10%~15%)+白云母(5%~7%)+绿柱石(1%~3%),绿柱石粒径较大,可达2~10cm
    21YLXB11-6 穿插于二云母花岗岩中伟晶岩脉,钠长石(45%~50%)+钾长石(25%~30%)+石英(10%~15%)+白云母(1%~2%)+绿柱石(1%~3%),绿柱石为蓝绿色,透明度较好
    注:矿物组合中为估算体积百分比
    下载: 导出CSV

    表 2 

    雅拉香波二云母花岗岩-伟晶岩中代表性长石EPMA (wt%)和LA-ICPMS(×10-6)测试结果

    Table 2. 

    EPMA (wt%) and LA-ICPMS (×10-6) results of the selected feldspar minerals in the Yalaxiangbo two-mica granite and pegmatites

    样品号 19YLXB5-4 19YLXB15-5 19YLXB19-2-3 19YLXB5-2-1 19YLXB21-7
    岩性 二云母花岗岩 花岗伟晶岩 含绿柱石花岗伟晶岩
    测点号 Ab01 Ab02 Kf01 Kf02 Ab01 Ab02 Kf01 Kf02 Ab01 Ab02 Kf01 Kf02 Kf01 Kf02 Ab01 Ab02 Ab01 Ab02 Kf01 Kf02
    EPMA测试结果
    SiO2 66.80 66.14 65.32 65.26 65.73 65.69 64.91 64.93 67.29 66.82 64.91 65.15 65.04 64.92 67.13 68.06 67.26 66.85 65.13 65.04
    TiO2 0.00 0.01 0.01 0.00 0.00 0.09 0.00 0.10 0.07 0.00 0.02 0.00 0.00 0.00 0.05 0.09 0.00 0.00 0.04 0.00
    Al2O3 20.69 21.11 18.03 18.22 21.03 21.09 18.03 17.99 19.89 20.08 18.10 18.03 18.12 18.13 19.67 19.26 19.86 19.86 18.20 17.98
    FeO 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.04
    MnO 0.02 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.02 0.00 0.00 0.02 0.00 0.00
    CaO 1.84 2.31 0.00 0.01 2.24 2.39 0.00 0.00 1.09 1.11 0.00 0.00 0.00 0.00 0.96 0.29 0.90 1.09 0.00 0.02
    Na2O 10.12 9.80 1.03 1.09 9.92 9.90 0.95 0.88 10.54 10.65 0.82 0.67 1.29 0.96 10.70 11.22 10.71 10.60 1.11 1.15
    K2O 0.23 0.26 15.20 14.93 0.21 0.20 14.92 14.90 0.20 0.18 14.99 15.26 14.44 15.05 0.15 0.15 0.14 0.17 14.61 14.79
    BaO 0.04 0.00 0.04 0.00 0.00 0.01 0.17 0.16 0.03 0.00 0.02 0.08 0.03 0.00 0.04 0.00 0.00 0.00 0.12 0.07
    Rb2O 0.00 0.00 0.05 0.05 0.00 0.00 0.02 0.00 0.00 0.00 0.07 0.02 0.08 0.07 0.02 0.01 0.00 0.00 0.05 0.01
    P2O5 0.02 0.02 0.03 0.01 0.00 0.00 0.03 0.02 0.07 0.04 0.04 0.03 0.02 0.03 0.00 0.04 0.04 0.01 0.04 0.03
    Total 99.76 99.64 99.70 99.58 99.12 99.40 99.03 98.99 99.17 98.88 98.98 99.24 99.02 99.17 98.72 99.12 98.94 98.60 99.30 99.12
    O 8
    Si 2.933 2.911 3.016 3.012 2.909 2.902 3.015 3.015 2.967 2.956 3.014 3.019 3.014 3.011 2.973 2.998 2.970 2.965 3.012 3.016
    Ti 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.004 0.002 0.000 0.001 0.000 0.000 0.000 0.002 0.003 0.000 0.000 0.001 0.000
    Al 1.071 1.095 0.981 0.991 1.097 1.098 0.987 0.985 1.034 1.047 0.990 0.985 0.989 0.991 1.027 1.000 1.033 1.038 0.992 0.983
    Mn 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000
    Ca 0.087 0.109 0.000 0.000 0.106 0.113 0.000 0.000 0.052 0.052 0.000 0.000 0.000 0.000 0.046 0.014 0.043 0.052 0.000 0.001
    Na 0.862 0.836 0.092 0.097 0.851 0.848 0.085 0.079 0.901 0.914 0.074 0.060 0.116 0.086 0.919 0.958 0.917 0.911 0.099 0.103
    K 0.013 0.014 0.895 0.879 0.012 0.011 0.884 0.883 0.011 0.010 0.888 0.902 0.854 0.891 0.008 0.008 0.008 0.010 0.862 0.875
    Ba 0.001 0.000 0.001 0.000 0.000 0.000 0.003 0.003 0.000 0.000 0.000 0.001 0.001 0.000 0.001 0.000 0.000 0.000 0.002 0.001
    Rb 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.001 0.000
    P 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.001 0.001 0.001 0.001 0.000 0.001 0.000 0.001 0.001 0.000 0.001 0.001
    Sum 4.968 4.966 4.987 4.981 4.975 4.976 4.975 4.969 4.968 4.981 4.970 4.969 4.976 4.981 4.976 4.981 4.975 4.976 4.971 4.981
    An 0.09 0.11 0.00 0.00 0.11 0.12 0.00 0.00 0.05 0.05 0.00 0.00 0.00 0.00 0.05 0.01 0.04 0.05 0.00 0.00
    Ab 0.90 0.87 0.09 0.10 0.88 0.87 0.09 0.08 0.93 0.94 0.08 0.06 0.12 0.09 0.94 0.98 0.95 0.94 0.10 0.11
    Or 0.01 0.01 0.91 0.90 0.01 0.01 0.91 0.92 0.01 0.01 0.92 0.94 0.88 0.91 0.01 0.01 0.01 0.01 0.90 0.89
    LA-ICPMS测试结果
    Li 1.82 2.78 115 33.1 330 503 45.7 43.2 187 318 14.5 4.11 1.02 2.95 42.0 34.7 459 458
    Be 0.09 15.6 9.30 11.6 3.07 0.86 31.8 29.5 4.32 3.60 3.61 2.10 8.69 10.2 14.5 13.3 3.92 4.19
    Ga 1.90 29.3 16.7 17.8 13.6 13.4 17.2 18.7 14.1 13.9 22.6 23.3 29.4 27.9 17.8 15.7 11.7 10.6
    Ge 0.52 bdl 1.39 1.72 1.07 0.87 2.11 2.52 2.08 2.41 1.61 1.40 2.33 1.78 1.11 1.93 1.50 1.47
    Rb 38.9 2.38 0.59 0.14 360 434 0.66 0.19 745 727 925 1101 0.89 0.45 bdl 0.23 783 728
    Sr 144 77.0 292 289 270 273 49.6 110 112 118 72.3 79.4 57.7 60.6 75.7 72.5 168 166
    Sn 1.89 0.15 0.23 0.20 0.75 0.45 0.55 0.77 2.12 1.74 3.14 2.51 0.32 0.13 0.35 0.45 3.45 3.61
    Cs 2.69 0.17 0.33 bdl 6.97 8.65 0.08 0.09 74.6 38.9 145 116 0.17 0.13 bdl bdl 55.6 67.2
    Ba 257 2.60 26.7 23.1 1224 1448 2.60 5.18 539 530 188 221 1.45 1.67 5.14 4.36 1627 1944
    Pb 15.3 16.2 108 109 359 416 120 145 534 514 126 105 23.6 31.1 63.7 63.6 595 592
    注:bdl表示低于检出限;后同
    下载: 导出CSV

    表 3 

    雅拉香波二云母花岗岩-伟晶岩中代表性云母EPMA (wt%)和LA-ICPMS(×10-6)测试结果

    Table 3. 

    EPMA (wt%) and LA-ICPMS (×10-6) results of the selected mica minerals in the Yalaxiangbo two-mica granite and pegmatites

    样品号 19YLXB8-5 19YLXB19-2-2 19YLXB15-1-2 19YLXB21-7
    岩性 二云母花岗岩 花岗伟晶岩 含绿柱石花岗伟晶岩
    测点号 3 7 13 4 10 15 2 3 8 1 2 5 1 2 3
    EPMA测试结果
    SiO2 46.85 46.86 47.20 33.72 33.90 33.45 47.10 47.01 47.50 47.10 47.29 47.61 46.88 46.68 46.77
    TiO2 0.31 0.36 0.28 1.34 2.14 1.66 0.00 0.06 0.07 0.26 0.17 0.50 0.16 0.13 0.11
    Al2O3 33.77 33.77 34.47 18.92 18.17 17.97 34.67 35.44 35.19 35.42 34.74 34.45 33.60 34.07 33.92
    FeO 2.87 2.77 2.68 24.17 24.96 25.61 2.72 2.52 2.27 1.26 1.72 1.68 3.42 2.72 2.89
    MnO 0.03 0.01 0.02 0.50 0.54 0.49 0.02 0.02 0.00 0.00 0.04 0.05 0.05 0.01 0.04
    MgO 0.64 0.66 0.65 3.33 3.44 3.42 0.58 0.58 0.49 0.77 0.82 0.87 0.61 0.56 0.59
    CaO 0.04 0.05 0.00 0.05 0.07 0.10 0.03 0.04 0.04 0.00 0.06 0.05 0.03 0.06 0.21
    Na2O 0.50 0.41 0.48 0.04 0.08 0.15 0.57 0.54 0.48 0.42 0.46 0.36 0.43 0.48 0.47
    K2O 10.02 10.04 10.35 9.01 9.00 8.77 10.05 9.88 10.00 10.39 10.32 10.05 10.50 10.11 10.18
    F 0.25 0.26 0.36 0.74 0.81 0.83 0.10 0.11 0.11 0.25 0.28 0.32 0.43 0.51 0.48
    Cl 0.01 0.02 0.01 0.05 0.05 0.04 0.10 0.11 0.22 0.00 0.00 0.02 0.00 0.00 0.02
    H2O 4.37 4.36 4.37 3.38 3.37 3.31 4.46 4.48 4.46 4.44 4.42 4.40 4.30 4.25 4.27
    F=O 0.10 0.11 0.15 0.31 0.34 0.35 0.04 0.05 0.05 0.10 0.12 0.13 0.18 0.21 0.20
    L2O测试值 0.21 0.22 0.21 1.41 1.32 1.12 0.32 0.31 0.29 0.39 0.43 0.38 0.41 0.46 0.47
    Total 95.19 95.10 96.35 91.56 92.82 92.14 95.90 96.26 96.32 95.77 95.78 95.83 95.93 95.12 95.48
    Sum* 99.56 99.46 100.72 94.94 96.19 95.45 100.36 100.74 100.78 100.21 100.20 100.23 100.23 99.37 99.75
    O 22
    Si 6.260 6.263 6.236 5.406 5.395 5.401 6.229 6.184 6.242 6.197 6.233 6.264 6.244 6.231 6.230
    Ti 0.032 0.036 0.027 0.161 0.257 0.201 0.000 0.006 0.007 0.025 0.017 0.049 0.016 0.013 0.011
    Al 5.319 5.321 5.368 3.575 3.409 3.420 5.406 5.494 5.450 5.492 5.397 5.342 5.274 5.360 5.326
    Fe2+ 0.321 0.310 0.297 3.241 3.322 3.457 0.301 0.278 0.249 0.139 0.190 0.185 0.381 0.304 0.322
    Mn 0.003 0.001 0.002 0.067 0.073 0.067 0.002 0.002 0.000 0.000 0.004 0.005 0.006 0.001 0.005
    Mg 0.128 0.132 0.128 0.796 0.816 0.824 0.114 0.115 0.096 0.151 0.160 0.171 0.120 0.112 0.117
    Ca 0.006 0.006 0.000 0.009 0.012 0.017 0.005 0.006 0.006 0.000 0.008 0.007 0.004 0.008 0.030
    Na 0.131 0.107 0.123 0.011 0.026 0.046 0.145 0.137 0.122 0.107 0.117 0.092 0.111 0.125 0.121
    K 1.708 1.712 1.744 1.842 1.826 1.806 1.695 1.658 1.677 1.744 1.736 1.687 1.783 1.721 1.730
    Ni 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000
    F 0.105 0.110 0.149 0.375 0.408 0.422 0.042 0.046 0.044 0.103 0.115 0.131 0.180 0.213 0.202
    Cl 0.001 0.005 0.002 0.013 0.013 0.011 0.023 0.024 0.050 0.001 0.000 0.004 0.000 0.000 0.004
    Li 0.111 0.120 0.111 0.906 0.844 0.721 0.172 0.165 0.152 0.205 0.227 0.203 0.220 0.248 0.249
    O- 3.894 3.885 3.849 3.612 3.579 3.566 3.935 3.930 3.906 3.896 3.885 3.864 3.820 3.787 3.794
    Al 1.740 1.737 1.764 2.594 2.605 2.599 1.771 1.816 1.758 1.803 1.767 1.736 1.756 1.769 1.770
    Al 3.579 3.583 3.604 0.981 0.803 0.821 3.635 3.678 3.692 3.689 3.629 3.606 3.518 3.591 3.557
    Mg-Li 0.02 0.01 0.02 -0.11 -0.03 0.10 -0.06 -0.05 -0.06 -0.05 -0.07 -0.03 -0.10 -0.14 -0.13
    Fe+Mn+Ti-Al -3.22 -3.24 -3.28 2.49 2.85 2.91 -3.33 -3.39 -3.44 -3.52 -3.42 -3.37 -3.11 -3.27 -3.22
    Al+Al 5.32 5.32 5.37 3.58 3.41 3.42 5.41 5.49 5.45 5.49 5.40 5.34 5.27 5.36 5.33
    Li 0.11 0.12 0.11 0.91 0.84 0.72 0.17 0.17 0.15 0.21 0.23 0.20 0.22 0.25 0.25
    Mg+Fe+Mn 0.45 0.44 0.43 4.11 4.21 4.35 0.42 0.39 0.34 0.29 0.35 0.36 0.51 0.42 0.44
    LA-ICPMS测试结果
    Li 486 525 491 3291 3087 2603 758 731 674 909 1003 898 962 1084 1090
    Be 6.53 8.66 5.84 2.32 3.24 2.27 32.1 30.2 28.0 19.6 22.1 20.2 32.7 35.8 30.1
    B 50.4 56.2 55.9 11.5 13.1 7.70 60.5 88.6 66.2 42.5 78.0 70.5 114 128 132
    Sc 30.7 26.1 19.1 6.83 7.86 5.85 5.91 3.69 2.68 8.28 5.32 3.20 4.04 2.75 1.02
    Zn 176 154 175 1573 1832 2265 300 237 228 102 128 96.6 382 511 412
    Ga 153 159 178 90.6 96.8 94.1 102 104 105 148 140 143 121 125 132
    Ge 0.33 0.77 0.67 1.26 1.54 1.72 0.38 1.81 1.90 1.75 1.64 2.52 0.95 1.67 1.88
    Rb 830 822 945 2434 2057 1703 724 853 895 944 1258 1278 1143 1195 1372
    Sr 10.2 15.6 7.34 1.24 17.7 1.21 10.5 13.5 12.6 9.03 4.92 5.39 8.38 6.66 7.23
    Zr 2.24 2.62 1.58 0.36 0.73 0.96 0.88 0.64 0.90 1.05 0.88 1.39 0.65 1.33 0.78
    Nb 39.0 29.9 42.0 130 202 137 29.7 31.9 32.6 110 101 114 47.2 71.0 56.6
    Sn 76.1 81.5 136 105 113 128 45.6 50.1 53.5 54.0 101 98.2 101 83.1 96.5
    Cs 9.78 12.8 13.3 540 558 114 14.1 27.6 31.1 60.0 207 210 44.9 35.8 55.9
    Ba 150 153 85.0 62.1 66.3 59.8 1762 592 618 346 193 144 611 104 202
    Hf 0.22 0.23 0.17 0.05 0.04 0.10 0.14 0.10 0.13 0.15 0.15 0.30 0.22 0.25 0.17
    Ta 0.63 0.60 0.79 12.5 27.0 13.1 1.51 0.95 1.25 22.0 18.1 16.2 4.14 8.12 2.74
    W 15.0 12.9 14.7 2.64 2.08 1.55 3.36 3.61 3.21 5.93 3.16 3.06 4.47 2.69 3.38
    Pb 12.2 12.9 11.0 17.5 78.5 8.29 36.7 60.3 56.3 25.4 23.5 26.8 45.9 61.5 42.3
    K/Rb 114 109 101 33.9 32.7 46.1 126 104 99.1 112 79.7 77.1 80.5 78.4 66.8
    K/Cs 9726 7045 7157 153 120 688 6443 3219 2853 1755 484 468 2051 2620 1638
    Nb/Ta 62.1 49.5 53.1 10.3 7.49 10.5 19.6 33.7 26.1 4.97 5.58 7.01 11.4 8.75 20.7
    注:*Sum-重新加和所得到总量
    下载: 导出CSV

    表 4 

    雅拉香波伟晶岩中代表性电气石EPMA (wt%)和LA-ICPMS(×10-6)测试结果

    Table 4. 

    EPMA (wt%) and LA-ICPMS (×10-6) results of the typical tourmaline in the Yalaxiangbo pegmatites

    样品号 19YLXB9-1-2 19YLXB9-6 19YLXB16-5-2 19YLXB16-5-3
    点号 1 2 3 01(暗) 03(暗) 02(亮) 04(亮) 1 2 1 2 3
    EPMA测试结果
    SiO2 35.04 35.04 35.00 35.23 34.84 35.06 34.95 35.39 35.48 35.26 35.28 34.81
    Al2O3 33.56 33.41 33.52 32.16 32.10 32.90 32.72 33.77 33.83 33.30 33.50 32.54
    FeO 11.78 11.85 12.87 10.42 10.52 12.10 11.41 11.99 11.98 12.23 12.20 12.38
    MnO 0.08 0.07 0.12 0.05 0.06 0.19 0.11 0.06 0.03 0.06 0.10 0.08
    MgO 2.71 2.73 1.85 4.15 3.79 2.51 3.16 2.14 2.16 2.08 2.07 2.62
    CaO 0.33 0.33 0.26 0.40 0.36 0.24 0.33 0.11 0.10 0.12 0.13 0.27
    Na2O 1.96 1.99 1.89 2.08 2.02 2.10 2.05 1.70 1.69 1.87 1.90 2.16
    K2O 0.06 0.05 0.05 0.03 0.04 0.04 0.05 0.03 0.03 0.04 0.03 0.06
    F 0.17 0.35 0.50 0.25 0.20 0.42 0.27 0.00 0.08 0.15 0.02 0.28
    Li2O计算值 0.18 0.18 0.18 0.16 0.18 0.19 0.18 0.16 0.17 0.19 0.19 0.18
    H2O计算值 3.14 3.05 2.93 3.13 3.11 3.01 3.10 3.09 3.05 3.04 3.12 3.10
    B2O3计算值 10.40 10.39 10.33 10.35 10.26 10.31 10.33 10.34 10.36 10.29 10.32 10.27
    O=F 0.07 0.15 0.21 0.11 0.09 0.18 0.11 0.00 0.04 0.06 0.01 0.12
    Total 99.48 99.59 99.71 98.52 97.56 99.24 98.78 98.78 99.00 98.69 98.85 98.86
    O 31
    Si 5.856 5.862 5.890 5.918 5.905 5.913 5.880 5.950 5.955 5.958 5.944 5.891
    Al 0.144 0.138 0.110 0.082 0.095 0.087 0.120 0.050 0.045 0.042 0.056 0.109
    Total (T) 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000
    Ti 0.076 0.077 0.046 0.095 0.108 0.052 0.096 0.015 0.015 0.024 0.022 0.072
    Fe2+ 1.647 1.658 1.810 1.464 1.491 1.707 1.605 1.686 1.681 1.728 1.718 1.753
    Mn2+ 0.011 0.010 0.017 0.007 0.008 0.027 0.015 0.008 0.004 0.008 0.014 0.011
    Mg 0.676 0.682 0.463 1.039 0.958 0.631 0.793 0.537 0.541 0.524 0.519 0.660
    Li计算值 0.122 0.122 0.123 0.111 0.120 0.128 0.121 0.110 0.112 0.128 0.129 0.120
    Total (Y) 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000
    Ca 0.059 0.059 0.047 0.073 0.065 0.044 0.060 0.019 0.019 0.021 0.024 0.049
    Na 0.636 0.647 0.617 0.677 0.664 0.686 0.669 0.553 0.548 0.612 0.619 0.709
    K 0.012 0.010 0.012 0.007 0.010 0.009 0.011 0.007 0.006 0.009 0.006 0.013
    X-空位 0.293 0.284 0.325 0.243 0.261 0.260 0.260 0.421 0.427 0.357 0.351 0.229
    Total (X) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
    OH 3.497 3.406 3.287 3.511 3.510 3.387 3.476 3.468 3.417 3.430 3.511 3.497
    F 0.089 0.186 0.266 0.134 0.108 0.222 0.143 0.000 0.045 0.080 0.009 0.152
    Cl 0.000 0.003 0.000 0.000 0.001 0.003 0.000 0.000 0.000 0.004 0.000 0.002
    Total 3.586 3.595 3.553 3.646 3.619 3.612 3.619 3.468 3.462 3.514 3.521 3.651
    Mg/(Mg+Fe2+)(Y) 0.29 0.29 0.20 0.42 0.39 0.27 0.33 0.24 0.24 0.23 0.23 0.27
    LA-ICPMS测试结果
    Li 149 84.2 149 59.6 68.1 75.4 84.5 183 167 211 170 200
    Be 10.9 5.94 10.8 5.86 6.64 5.82 4.92 5.41 5.21 5.73 5.54 5.89
    Sc 0.83 32.9 0.94 10.6 12.0 3.82 3.69 1.82 2.12 1.78 1.81 1.85
    Zn 1706 1345 1635 1098 1136 1466 1453 1806 1775 1717 1680 1698
    Ga 130 179 122 147 147 135 132 72.8 73.3 77.6 67.6 78.2
    Ge 2.62 2.52 1.97 1.34 1.27 1.72 1.18 0.57 0.76 0.17 0.52 1.28
    Sr 9.62 4.97 9.57 24.0 21.4 10.1 10.3 17.5 17.2 53.2 22.9 55.2
    Nb 0.65 0.77 0.58 0.43 0.56 0.49 0.70 0.12 0.14 0.23 0.11 0.30
    Sn 17.2 18.7 16.9 17.5 20.3 16.3 17.3 4.07 4.08 7.61 4.66 8.55
    Ta 0.21 0.36 0.17 0.16 0.22 0.19 0.27 0.04 0.05 0.19 0.13 0.29
    Pb 7.75 6.39 7.34 10.8 11.5 6.98 7.44 14.0 14.3 42.0 17.5 45.8
    Nb/Ta 3.12 2.13 3.43 2.67 2.62 2.59 2.57 2.78 2.67 1.2 0.83 1.02
    注:H2O和B2O3含量分别基于OH+F+Cl=4和B=3计算而得,计算使用Yavuz et al. (2014)提供的WinTcac软件;Li2O含量则是根据3-Total (Y) 计算而得;总量在上述计算结果基础上计算获得
    下载: 导出CSV

    表 5 

    雅拉香波伟晶岩中绿柱石EPMA (wt%)和LA-ICPMS(×10-6)测试结果

    Table 5. 

    EPMA (wt%) and LA-ICPMS (×10-6) results of the beryl in the Yalaxiangbo beryl-bearing pegmatites

    样品号 21YLXB11-6 19YLXB5-2-1 19YLXB15-3-1 19LXB15-1-2
    ave (n=20) min max ave (n=12) min max ave (n=12) min max ave (n=20) min max
    EPMA测试结果
    SiO2 65.74 64.93 66.74 65.97 65.10 66.76 65.67 64.92 66.23 65.53 64.70 66.39
    TiO2 0.01 0.00 0.05 0.01 0.00 0.06 0.01 0.00 0.04 0.01 0.00 0.05
    Al2O3 17.32 16.48 17.75 18.10 17.91 18.38 17.58 17.29 17.96 17.32 17.07 17.54
    FeO 0.42 0.24 0.62 0.42 0.37 0.52 0.38 0.22 0.53 0.46 0.36 0.61
    MnO 0.03 0.00 0.10 0.09 0.04 0.13 0.35 0.24 0.62 0.33 0.24 0.46
    MgO 0.02 0.00 0.10 0.01 0.00 0.03 0.01 0.00 0.04 0.01 0.00 0.04
    CaO 0.02 0.00 0.05 0.02 0.00 0.03 0.01 0.00 0.03 0.01 0.00 0.03
    BeO测试值 12.31 12.09 12.62 12.70 12.48 13.10 12.24 12.05 12.60 12.42 12.23 12.78
    BeO计算值 13.13 12.91 13.35 13.64 13.52 13.75 13.37 13.12 13.54 13.24 13.11 13.53
    Li2O测试值 0.26 0.19 0.35 0.04 0.01 0.08 0.14 0.08 0.22 0.18 0.10 0.25
    Na2O 0.71 0.55 0.93 0.29 0.26 0.33 0.58 0.42 0.81 0.68 0.53 0.77
    K2O 0.04 0.00 0.09 0.02 0.00 0.04 0.03 0.02 0.06 0.03 0.01 0.05
    Cs2O测试值 0.08 0.06 0.09 0.10 0.06 0.17 0.06 0.02 0.12 0.13 0.08 0.15
    P2O5 0.02 0.00 0.10 0.02 0.00 0.08 0.02 0.00 0.06 0.02 0.00 0.05
    F 0.07 0.00 0.31 0.04 0.00 0.25 0.10 0.00 0.46 0.05 0.00 0.33
    O=F, Cl 0.03 0.00 0.13 0.02 0.00 0.10 0.04 0.00 0.19 0.02 0.00 0.14
    Total 97.84 96.45 99.08 98.73 97.69 99.49 98.27 97.23 98.86 97.96 97.30 98.89
    O 18
    Si 6.057 6.017 6.095 6.009 5.979 6.028 6.027 6.010 6.038 6.039 6.004 6.057
    Ti 0.001 0.000 0.004 0.001 0.000 0.004 0.001 0.000 0.003 0.001 0.000 0.003
    Al 1.881 1.814 1.924 1.943 1.916 1.984 1.902 1.860 1.934 1.882 1.853 1.910
    Cr 0.002 0.000 0.003 0.001 0.000 0.002 0.001 0.000 0.004 0.000 0.000 0.003
    Fe 0.033 0.018 0.048 0.032 0.028 0.039 0.029 0.017 0.041 0.035 0.027 0.047
    Mn 0.002 0.000 0.007 0.007 0.003 0.010 0.027 0.019 0.048 0.026 0.019 0.035
    Mg 0.003 0.000 0.014 0.001 0.000 0.004 0.001 0.000 0.005 0.001 0.000 0.005
    Ca 0.002 0.000 0.005 0.002 0.000 0.003 0.001 0.000 0.003 0.001 0.000 0.003
    Na 0.126 0.098 0.166 0.051 0.045 0.058 0.104 0.075 0.145 0.121 0.094 0.138
    K 0.005 0.000 0.010 0.003 0.000 0.005 0.003 0.002 0.007 0.004 0.002 0.006
    Cs 0.003 0.002 0.004 0.004 0.002 0.007 0.002 0.001 0.005 0.005 0.003 0.006
    P 0.002 0.000 0.008 0.001 0.000 0.006 0.002 0.000 0.005 0.001 0.000 0.004
    F 0.021 0.000 0.091 0.012 0.000 0.072 0.028 0.000 0.135 0.014 0.000 0.096
    Li计算 0.095 0.071 0.130 0.015 0.005 0.028 0.051 0.028 0.082 0.067 0.035 0.091
    Be计算 2.905 2.870 2.929 2.985 2.972 2.995 2.949 2.918 2.972 2.933 2.909 2.965
    Sum(Al+Fe+Mn+Mg) 1.919 1.868 1.963 1.983 1.954 2.026 1.960 1.941 1.984 1.944 1.916 1.990
    □ (空位) 0.864 0.822 0.893 0.941 0.932 0.950 0.889 0.851 0.922 0.869 0.849 0.897
    Cs/Na 0.02 0.02 0.03 0.07 0.05 0.12 0.02 0.01 0.05 0.04 0.03 0.06
    LA-ICPMS测试结果
    Li 2474 2249 2673 520 428 596 1332 1009 1625 1358 902 1453
    Be 44324 43534 45442 45708 44936 47159 44077 43386 45360 44714 44045 46007
    B 0.81 0.14 1.76 1.13 0.32 2.86 1.25 0.00 3.40 0.80 0.00 1.72
    Sc 1.02 0.12 1.64 3.83 1.69 5.04 1.74 0.32 4.30 0.99 0.55 1.63
    Zn 374 343 411 200 66.6 234 236 132 311 316 123 362
    Ga 21.0 16.3 24.2 30.2 23.9 32.6 16.9 15.1 18.8 16.8 15.5 18.0
    Rb 84.4 80.8 87.6 26.0 14.2 32.7 29.4 25.7 40.4 32.4 24.7 37.4
    Sn 0.54 0.18 0.83 0.32 0.17 0.47 0.21 0.06 0.36 0.26 0.08 0.41
    Cs 731 538 893 918 596 1634 568 168 1163 1201 746 1414
    下载: 导出CSV
  •  

    Aikman AB, Harrison TM and Lin D. 2008. Evidence for early (>44Ma) Himalayan crustal thickening, Tethyan Himalaya, southeastern Tibet. Earth and Planetary Science Letters, 274(1-2): 14-23 doi: 10.1016/j.epsl.2008.06.038

     

    Alfonso P, Melgarejo JC, Yusta I and Velasco F. 2003. Geochemistry of feldspars and muscovite in granitic pegmatite from the Cap de Creus field, Catalonia, Spain. The Canadian Mineralogist, 41(1): 103-116 doi: 10.2113/gscanmin.41.1.103

     

    Aurisicchio C, Fioravanti G, Grubessi O and Zanazzi PF. 1988. Reappraisal of the crystal chemistry of beryl. American Mineralogist, 73(7-8): 826-837

     

    Borisova AY, Thomas R, Salvi S, Candaudap F, Lanzanova A and Chmeleff J. 2012. Tin and associated metal and metalloid geochemistry by femtosecond LA-ICP-QMS microanalysis of pegmatite-leucogranite melt and fluid inclusions: New evidence for melt-melt-fluid immiscibility. Mineralogical Magazine, 76(1): 91-113 doi: 10.1180/minmag.2012.076.1.91

     

    Černý P, Meintzer RE and Anderson AJ. 1985. Extreme fractionation in rare-element granitic pegmatites: Selected examples of data and mechanisms. The Canadian Mineralogist, 23(3): 381-421

     

    Černý P and Ercit TS. 1989. Mineralogy of niobium and tantalum: Crystal chemical relationships, paragenetic aspects and their economic implications. In: Lanthanides, Tantalum and Niobium. Berlin, Heidelberg: Springer, 27-79

     

    Černý P. 1991a. Rare-element granitic pegmatites. Part Ⅰ: Anatomy and internal evolution pegmatite deposits. Geoscience Canada, 18(2): 49-67

     

    Černý P. 1991b. Rare-element granitic pegmatites. Part Ⅱ: Regional to global environments and petrogenesis. Geoscience Canada, 18(2): 68-81

     

    Černý P, Anderson AJ, Tomascak PB and Chapman R. 2003. Geochemical and morphological features of beryl from the Bikita granitic pegmatite, Zimbabwe. The Canadian Mineralogist, 41(4): 1003-1011 doi: 10.2113/gscanmin.41.4.1003

     

    Černý P and Ercit TS. 2005. The classification of granitic pegmatites revisited. The Canadian Mineralogist, 43(6): 2005-2026 doi: 10.2113/gscanmin.43.6.2005

     

    Černý P, London D and Novák M. 2012. Granitic pegmatites as reflections of their sources. Elements, 8(4): 289-294 doi: 10.2113/gselements.8.4.289

     

    Drivenes K, Larsen RB, Müller A, Sørensen BE, Wiedenbeck M and Raanes MP. 2015. Late-magmatic immiscibility during batholith formation: Assessment of B isotopes and trace elements in tourmaline from the Land's End granite, SW England. Contributions to Mineralogy and Petrology, 169(6): 56 doi: 10.1007/s00410-015-1151-6

     

    Gao LE, Zeng LS, Liu J and Xie KJ. 2009. Early Oligocene Na-rich peraluminous leucogranites in the Yardoigneiss dome, southern Tibet: Formation mechanism and tectonic implications. Acta Petrologica Sinica, 25(9): 2289-2302 (in Chinese with English abstract)

     

    Gao LE, Zeng LS and Xie KJ. 2012. Eocene high grade metamorphism and crustal anatexis in the North Himalaya Gneiss Domes, Southern Tibet. Chinese Science Bulletin, 57(6): 639-650 doi: 10.1007/s11434-011-4805-4

     

    Gao LE, Zeng LS, Hu GY, Gao JH, Zhao LH and Wang YY. 2019. Rare metal enrichment in leucogranite within Nariyongcuo Gneiss Dome, South Tibet. Earth Science, 44(6): 1860-1875 (in Chinese with English abstract)

     

    Gao P, Zheng YF, Mayne MJ and Zhao ZF. 2021. Miocene high-temperature leucogranite magmatism in the Himalayan orogen. Geological Society of America Bulletin, 133(3-4): 679-690 doi: 10.1130/B35691.1

     

    Goad BE and Černý P. 1981. Peraluminous pegmatitic granites and their pegmatite aureoles in the Winnipeg River district, southeastern Manitoba. The Canadian Mineralogist, 19(1): 177-194

     

    Guillot S and Le Fort P. 1995. Geochemical constraints on the bimodal origin of High Himalayan leucogranites. Lithos, 35(3-4): 221-234 doi: 10.1016/0024-4937(94)00052-4

     

    Harrison MT, Grove M, Mckeegan KD, Coath CD, Lovera OM and Le Fort P. 1999. Origin and episodic emplacement of the Manaslu intrusive complex, central Himalaya. Journal of Petrology, 40(1): 3-19 doi: 10.1093/petroj/40.1.3

     

    Harrison TM, Grove M, Lovera OM and Catlos EJ. 1998. A model for the origin of Himalayan anatexis and inverted metamorphism. Journal of Geophysical Research: Solid Earth, 103(B11): 27017-27032 doi: 10.1029/98JB02468

     

    Hawthorne FC and Černý P. 1977. The alkali-metal positions in Cs-Li beryl. The Canadian Mineralogist, 15(3): 414-421

     

    He CT, Qin KZ, Li JX, Zhou QF, Zhao JX and Li GM. 2020. Preliminary study on occurrence status of beryllium and genetic mechanism in Cuonadong tungsten-tin-beryllium deposit, eastern Himalaya. Acta Petrologica Sinica, 36(12): 3593-3606 (in Chinese with English abstract) doi: 10.18654/1000-0569/2020.12.03

     

    He SX, Liu XC, Yang L, Wang JM, Hu FY and Wu FY. 2021. Multistage magmatism recorded in a single gneiss dome: Insights from the Lhagoi Kangri leucogranites, Himalayan orogen. Lithos, 398-399: 106222 doi: 10.1016/j.lithos.2021.106222

     

    Henry DJ and Guidotti CV. 1985. Tourmaline as a petrogenetic indicator mineral: An example from the staurolite-grade metapelites of NW Maine. American Mineralogist, 70(1-2): 1-15

     

    Henry DJ, Novák M, Hawthorne FC, Ertl A, Dutrow BL, Uher P and Pezzotta F. 2011. Nomenclature of the tourmaline-supergroup minerals. American Mineralogist, 96(5-6): 895-913 doi: 10.2138/am.2011.3636

     

    Jahns RH and Burnham CW. 1969. Experimental studies of pegmatite genesis; l, A model for the derivation and crystallization of granitic pegmatites. Economic Geology, 64(8): 843-864 doi: 10.2113/gsecongeo.64.8.843

     

    Jiang SY, Palmer MR, Peng QM and Yang JH. 1997. Chemical and stable isotopic compositions of Proterozoic metamorphosed evaporites and associated tourmalines from the Houxianyu borate deposit, eastern Liaoning, China. Chemical Geology, 135(3-4): 189-211 doi: 10.1016/S0009-2541(96)00115-5

     

    Le Fort P, Cuney M, Deniel C, France-Lanord C, Sheppard SMF, Upreti BN and Vidal P. 1987. Crustal generation of the Himalayan leucogranites. Tectonophysics, 134(1-3): 39-57 doi: 10.1016/0040-1951(87)90248-4

     

    Li GM, Zhang LK, Jiao YJ, Xia XB, Dong SL, Fu JG, Liang W, Zhang Z, Wu JY, Dong L and Huang Y. 2017. First discovery and implications of Cuonadong superlarge Be-W-Sn polymetallic deposit in Himalayan metallogenic belt, southern Tibet. Mineral Deposits, 36(4): 1003-1008 (in Chinese with English abstract)

     

    Li JK. 2014. In situ observation of separation mechanism of ore-forming fluid from granitic magma in granite-related deposit. Journal of Jilin University (Earth Science Edition), 44(2): 518-526 (in Chinese with English abstract)

     

    Li LG, Wang LX, Tian Y, Ma CQ and Zhou FC. 2019. Petrogenesis and rare-metal mineralization of the Mufushan granitic pegmatite, South China: Insights from in situ mineral analysis. Earth Science, 44(7): 2532-2550 (in Chinese with English abstract)

     

    Linnen RL, Van Lichtervelde M and Černý P. 2012. Granitic pegmatites as sources of strategic metals. Elements, 8(4): 275-280 doi: 10.2113/gselements.8.4.275

     

    Liu C, Wang RC, Wu FY, Xie L, Liu XC, Li XK, Yang L and Li XJ. 2020. Spodumene pegmatites from the Pusila pluton in the higher Himalaya, South Tibet: Lithium mineralization in a highly fractionated leucogranite batholith. Lithos, 358-359: 105421 doi: 10.1016/j.lithos.2020.105421

     

    Liu C, Wang RC, Wu FY, Xie L and Liu XC. 2021. Lithium mineralization in Qomolangma: First report of elbaite-lepidolite subtype pegmatite in the Himalaya leucogranite belt. Acta Petrologica Sinica, 37(11): 3287-3294 (in Chinese with English abstract) doi: 10.18654/1000-0569/2021.11.03

     

    Liu XC, Wu FY, Wang RC, Liu ZC, Wang JM, Liu C, Hu FY, Yang L and He SX. 2021. Discovery of spodumene-bearing pegmatites from Ra Chu in the Mount Qomolangma region and its implications for studying rare-metal mineralization in the Himalayan orogen. Acta Petrologica Sinica, 37(11): 3295-3304 (in Chinese with English abstract) doi: 10.18654/1000-0569/2021.11.04

     

    Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG and Chen HH. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43 doi: 10.1016/j.chemgeo.2008.08.004

     

    Liu ZC, Wu FY, Ji WQ, Wang JG and Liu CZ. 2014. Petrogenesis of the Ramba leucogranite in the Tethyan Himalaya and constraints on the channel flow model. Lithos, 208-209: 118-136 doi: 10.1016/j.lithos.2014.08.022

     

    Liu ZC, Wu FY, Ding L, Liu XC, Wang JG and Ji WQ. 2016. Highly fractionated Late Eocene (~35Ma) leucogranite in the Xiaru Dome, Tethyan Himalaya, South Tibet. Lithos, 240-243: 337-354 doi: 10.1016/j.lithos.2015.11.026

     

    Liu ZC, Wu FY, Liu XC and Wang JG. 2020. The mechanisms of fractional crystallization for the Himalayan leucogranites. Acta Petrologica Sinica, 36(12): 3551-3571 (in Chinese with English abstract) doi: 10.18654/1000-0569/2020.12.01

     

    London D. 1987. Internal differentiation of rare-element pegmatites: Effects of boron, phosphorus, and fluorine. Geochimica et Cosmochimica Acta, 51(3): 403-420 doi: 10.1016/0016-7037(87)90058-5

     

    London D. 2005. Granitic pegmatites: An assessment of current concepts and directions for the future. Lithos, 80(1-4): 281-303 doi: 10.1016/j.lithos.2004.02.009

     

    Lü ZH, Zhang H, Tang Y, Zhao JY, Liu YL and Guo L. 2018. The distribution of phosphorous in various types of Pegmatites from Altai, Xinjiang and its implication. Bulletin of Mineralogy, Petrology and Geochemistry, 37(2): 260-270 (in Chinese with English abstract)

     

    Mahood G and Hildreth W. 1983. Large partition coefficients for trace elements in high-silica rhyolites. Geochimica et Cosmochimica Acta, 47(1): 11-30 doi: 10.1016/0016-7037(83)90087-X

     

    Maneta V and Baker DR. 2019. The potential of lithium in alkali feldspars, quartz, and muscovite as a geochemical indicator in the exploration for lithium-rich granitic pegmatites: A case study from the spodumene-rich Moblan pegmatite, Quebec, Canada. Journal of Geochemical Exploration, 205: 106336 doi: 10.1016/j.gexplo.2019.106336

     

    Michael PJ. 1983. Chemical differentiation of the Bishop tuff and other high-silica magmas through crystallization processes. Geology, 11(1): 31-34 doi: 10.1130/0091-7613(1983)11<31:CDOTBT>2.0.CO;2

     

    Miller CF and Mittlefehldt DW. 1984. Extreme fractionation in felsic magma chambers: A product of liquid-state diffusion or fractional crystallization? Earth and Planetary Science Letters, 68(1): 151-158 doi: 10.1016/0012-821X(84)90147-X

     

    Monier G and Robert JL. 1986. Evolution of the miscibility gap between muscovite and biotite solid solutions with increasing lithium content: An experimental study in the system K2O-Li2O-MgO-FeO-Al2O3-SiO2-H2O-HF at 600℃, 2kbar PH2O: Comparison with natural lithium micas. Mineralogical Magazine, 50(358): 641-651 doi: 10.1180/minmag.1986.050.358.09

     

    Novák M and Filip J. 2010. Unusual (Na, Mg)-enriched beryl and its breakdown products (beryl Ⅱ, bazzite, bavenite) from euxenite-type NYF pegmatite related to the orogenic ultrapotassic Trebíc Pluton, Czech Republic. The Canadian Mineralogist, 48(3): 615-628 doi: 10.3749/canmin.48.3.615

     

    Oyarzábal J, Galliski Má and Perino E. 2009. Geochemistry of K-feldspar and muscovite in rare-element pegmatites and granites from the Totoral Pegmatite Field, San Luis, Argentina. Resource Geology, 59(4): 315-329 doi: 10.1111/j.1751-3928.2009.00100.x

     

    Pan GT. 2004. Geological Map of the Qinghai-Xizang (Tibet) Plateau and Adjacent Areas. Chengdu: Chengdu Cartographic Publishing House (in Chinese)

     

    Qin KZ, Zhao JX, He CT and Shi RZ. 2021a. Discovery of the Qongjiagang giant lithium pegmatite deposit in Himalaya, Tibet, China. Acta Petrologica Sinica, 37(11): 3277-3286 (in Chinese with English abstract) doi: 10.18654/1000-0569/2021.11.02

     

    Qin KZ, Zhou QF, Zhao JX, He CT, Liu XC, Shi RZ and Liu YC. 2021b. Be-rich mineralization features of Himalayan leucogranite belt and prospects for lithium-bearing pegmatites in higher altitudes. Acta Geologica Sinica, 95(10): 3146-3162 (in Chinese with English abstract)

     

    Rieder M, Cavazzini G, D'yakonov YS, Frank-Kamenetskii VA, Gottardi G, Guggenheim S, Koval' PW, Müller G, Neiva AMR, Radoslovich EW, Robert JL, Sassi FP, Takeda H, Weiss Z and Wones DR. 1998. Nomenclature of the micas. Clays and Clay Minerals, 46(5): 586-595 doi: 10.1346/CCMN.1998.0460513

     

    Roda E, Keller P, Pesquera A and Fontan F. 2007. Micas of the muscovite-lepidolite series from Karibib pegmatites, Namibia. Mineralogical Magazine, 71(1): 41-62 doi: 10.1180/minmag.2007.071.1.41

     

    Sahama TG, Knorring OV and Törnroos R. 1979. On tourmaline. Lithos, 12(2): 109-114 doi: 10.1016/0024-4937(79)90042-2

     

    Searle MP, Cottle JM, Streule MJ and Waters DJ. 2009. Crustal melt granites and migmatites along the Himalaya: Melt source, segregation, transport and granite emplacement mechanisms. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 100(1-2): 219-233 doi: 10.1017/S175569100901617X

     

    Selway JB, Breaks FW and Tindle AG. 2005. A review of rare-element (Li-Cs-Ta) pegmatite exploration techniques for the Superior Province, Canada, and large worldwide tantalum deposits. Exploration and Mining Geology, 14(1-4): 1-30 doi: 10.2113/gsemg.14.1-4.1

     

    Slivko MN. 1961. Manganese tourmalines. International Geology Review, 3(3): 195-201 doi: 10.1080/00206816109473587

     

    Smeds SA. 1992. Trace elements in potassium-feldspar and muscovite as a guide in the prospecting for lithium-and tin-bearing pegmatites in Sweden. Journal of Geochemical Exploration, 42(2-3): 351-369 doi: 10.1016/0375-6742(92)90032-4

     

    Tang Y, Zhang H and Su GZ. 2013. Phosphorus in alkali feldspars as an indicator for prospecting for pegmatite-type rare-metal ore deposits in Altay, NW China. Geochemistry: Exploration, Environment, Analysis, 13(1): 3-10 doi: 10.1144/geochem2012-139

     

    Tang Y, Wang H, Zhang H and Lü ZH. 2018. K-feldspar composition as an exploration tool for pegmatite-type rare metal deposits in Altay, NW China. Journal of Geochemical Exploration, 185: 130-138 doi: 10.1016/j.gexplo.2017.11.015

     

    Tao XY, Xie L, Wang RC, Zhang RQ, Hu H and Liu C. 2020. Mineralogical characteristics of beryl: A case study of the beryls from Cuona and Qomolangma district in Himalaya. Journal of Nanjing University (Natural Science), 56(6): 815-829 (in Chinese with English abstract)

     

    Thomas R and Veksler I. 2002. Formation of granite pegmatites in the light of melt and fluid inclusion studies and new and old experimental work. In: Slaby E, Ilnicki S, and Kozlowski A (eds.). Mineralogical Sciences. Mineralogical Society of Poland, 20 (Special Papers for 50th Anniversary of Faculty of Geology of the Warsaw University): 44-49

     

    Thomas R, Davidson P and Badanina E. 2009. A melt and fluid inclusion assemblage in beryl from pegmatite in the Orlovka amazonite granite, East Transbaikalia, Russia: Implications for pegmatite-forming melt systems. Mineralogy and Petrology, 96(3): 129-140

     

    Thomas R and Davidson P. 2010. Hambergite-rich melt inclusions in morganite crystals from the Muiane pegmatite, Mozambique and some remarks on the paragenesis of hambergite. Mineralogy and Petrology, 100(3): 227-239

     

    Thomas R and Davidson P. 2012. Water in granite and pegmatite-forming melts. Ore Geology Reviews, 46: 32-46 doi: 10.1016/j.oregeorev.2012.02.006

     

    Thomas R and Davidson P. 2016. Revisiting complete miscibility between silicate melts and hydrous fluids, and the extreme enrichment of some elements in the supercritical state: Consequences for the formation of pegmatites and ore deposits. Ore Geology Reviews, 72: 1088-1101 doi: 10.1016/j.oregeorev.2015.10.004

     

    Tindle AG, Breaks FW and Selway JB. 2002. Tourmaline in petalite-subtype granitic pegmatites: Evidence of fractionation and contamination from the Pakeagama Lake and Separation Lake areas of northwestern Ontario, Canada. The Canadian Mineralogist, 40(3): 753-788 doi: 10.2113/gscanmin.40.3.753

     

    Tischendorf G, Gottesmann B, Förster HJ and Trumbull RB. 1997. On Li-bearing micas: Estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Mineralogical Magazine, 61(409): 809-834 doi: 10.1180/minmag.1997.061.409.05

     

    Uher P, Chudík P, Bačík P, VaculovičT and Galiová M. 2010. Beryl composition and evolution trends: An example from granitic pegmatites of the beryl-columbite subtype, Western Carpathians, Slovakia. Journal of Geosciences, 55(1): 69-80

     

    van Hinsberg VJ, Henry DJ and Dutrow BL. 2011. Tourmaline as a petrologic forensic mineral: A unique recorder of its geologic past. Elements, 7(5): 327-332 doi: 10.2113/gselements.7.5.327

     

    Vieira R, Roda-Robles E, Pesquera A and Lima A. 2011. Chemical variation and significance of micas from the Fregeneda-Almendra pegmatitic field (Central-Iberian Zone, Spain and Portugal). American Mineralogist, 96(4): 637-645 doi: 10.2138/am.2011.3584

     

    Wang JM, Wu FY, Rubatto D, Liu K, Zhang JJ and Liu XC. 2018. Early Miocene rapid exhumation in southern Tibet: Insights from P-T-t-D-magmatism path of Yardoidome. Lithos, 304-307: 38-56 doi: 10.1016/j.lithos.2018.02.003

     

    Wang RC, Che XD, Zhang WL, Zhang AC and Zhang H. 2009. Geochemical evolution and late re-equilibration of Na-Cs-rich beryl from the Koktokay# 3 pegmatite (Altai, NW China). European Journal of Mineralogy, 21(4): 795-809 doi: 10.1127/0935-1221/2009/0021-1936

     

    Wang RC, Wu FY, Xie L, Liu XC, Wang JM, Yang L, Lai W and Liu C. 2017. A preliminary study of rare-metal mineralization in the Himalayan leucogranite belts, South Tibet. Science China (Earth Sciences), 60(9): 1655-1663 doi: 10.1007/s11430-017-9075-8

     

    Webster JD, Thomas R, Rhede D, Förster HJ and Seltmann R. 1997. Melt inclusions in quartz from an evolved peraluminous pegmatite: Geochemical evidence for strong tin enrichment in fluorine-rich and phosphorus-rich residual liquids. Geochimica et Cosmochimica Acta, 61(13): 2589-2604 doi: 10.1016/S0016-7037(97)00123-3

     

    Wu FY, Liu ZC, Liu XC and Ji WQ. 2015. Himalayan leucogranite: Petrogenesis and implications to orogenesis and plateau uplift. Acta Petrologica Sinica, 31(1): 1-36 (in Chinese with English abstract)

     

    Wu FY, Liu XC, Ji WQ, Wang JM and Yang L. 2017. Highly fractionated granites: Recognition and research. Science China (Earth Sciences), 60(7): 1201-1219 doi: 10.1007/s11430-016-5139-1

     

    Wu FY, Liu XC, Liu ZC, Wang RC, Xie L, Wang JM, Ji WQ, Yang L, Liu C, Khanal GP and He SX. 2020. Highly fractionated Himalayan leucogranites and associated rare-metal mineralization. Lithos, 352-353: 105319 doi: 10.1016/j.lithos.2019.105319

     

    Xie L, Tao XY, Wang RC, Wu FY, Liu C, Liu XC, Li XK and Zhang RQ. 2020. Highly fractionated leucogranites in the eastern Himalayan Cuonadong dome and related magmatic Be-Nb-Ta and hydrothermal Be-W-Sn mineralization. Lithos, 354-355: 105286 doi: 10.1016/j.lithos.2019.105286

     

    Xie L, Wang RC, Tian EN, Liu ZC, Wu FY, Liu XC, Cheng FY, Hu H, Che XD and Liu C. 2021. Oligocene Nb-Ta-W-mineralization related to the Xiaru leucogranite in the Himalayan Orogen. Chinese Science Bulletin, 66(35): 4574-4591 (in Chinese) doi: 10.1360/TB-2021-0546

     

    Yavuz F, Karakaya N, Yıldırım DK, Karakaya MÇ and Kumral M. 2014. A Windows program for calculation and classification of tourmaline-supergroup (IMA-2011). Computers & Geosciences, 63: 70-87

     

    Zeng LS, Liu J, Gao LE, Xie KJ and Wen L. 2009. Early Oligocene anatexis in the Yardoigneiss dome, southern Tibet and geological implications. Chinese Science Bulletin, 54(1): 104-112 doi: 10.1007/s11434-008-0362-x

     

    Zeng LS, Gao LE, Xie KJ and Liu-Zeng J. 2011. Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes: Melting thickened lower continental crust. Earth and Planetary Science Letters, 303(3-4): 251-266 doi: 10.1016/j.epsl.2011.01.005

     

    Zeng LS, Zhao LH, Gao LE, Hou KJ and Wang Q. 2019. Magmatic garnet from Mid-Miocene co-genetic high Sr/Y granite and leucogranite from the Himalayan orogenic belt, southern Tibet. Acta Petrologica Sinica, 35(6): 1599-1626 (in Chinese with English abstract) doi: 10.18654/1000-0569/2019.06.01

     

    Zhang DH, Zhang WH and Xu GJ. 2004. The ore fluid geochemistry of F-rich silicate melt-hydrous fluid system and its metallogeny: The current status and problems. Earth Science Frontiers, 11(2): 479-490 (in Chinese with English abstract)

     

    Zhang H, Lü ZH and Tang Y. 2019. Metallogeny and prospecting model as well as prospecting direction of pegmatite-type rare metal ore deposits in Altay orogenic belt, Xinjiang. Mineral Deposits, 38(4): 792-814 (in Chinese with English abstract)

     

    Zhang JJ, Guo L and Zhang B. 2007. Structure and kinematics of the Yalashangbo dome in the northern Himalayan dome belt, China. Chinese Journal of Geology, 42(1): 16-30 (in Chinese with English abstract)

     

    Zhang JJ, Santosh M, Wang XX, Guo L, Yang XY and Zhang B. 2012. Tectonics of the northern Himalaya since the India-Asia collision. Gondwana Research, 21(4): 939-960 doi: 10.1016/j.gr.2011.11.004

     

    Zhao HD, Zhao KD, Palmer MR and Jiang SY. 2019. In-situ elemental and boron isotopic variations of tourmaline from the Sanfang granite, South China: Insights into magmatic-hydrothermal evolution. Chemical Geology, 504: 190-204 doi: 10.1016/j.chemgeo.2018.11.013

     

    Zhao JX, He CT, Qin KZ, Shi RZ, Liu XC, Hu FY, Yu KL and Sun ZH. 2021. Geochronology, source features and the characteristics of fractional crystallization in pegmatite at the Qongjiagang giant pegmatite-type lithium deposit, Himalaya, Tibet. Acta Petrologica Sinica, 37(11): 3325-3347 (in Chinese with English abstract) doi: 10.18654/1000-0569/2021.11.06

     

    Zhou QF, Qin KZ, Tang DM, Ding JG and Guo ZL. 2013. Mineralogy and significance of micas and feldspars from the Koktokay No. 3 pegmatitic rare-element deposit, Altai. Acta Petrologica Sinica, 29(9): 3004-3022 (in Chinese with English abstract)

     

    Zhou QF, Qin KZ, Tang DM, Wang CL, Tian Y and Sakyi PA. 2015. Mineralogy of the Koktokay No. 3 pegmatite, Altai, NW China: Implications for evolution and melt-fluid processes of rare-metal pegmatites. European Journal of Mineralogy, 27(3): 433-457 doi: 10.1127/ejm/2015/0027-2443

     

    Zhou QF. 2018. Mineralization indicators of rare-element granitic pegmatites. Post-Doctor Research Report. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 1-100 (in Chinese with English abstract)

     

    Zhou QF, Qin KZ, Tang DM, Wang CL and Sakyi PA. 2018. LA-ICP-MS U-Pb zircon, columbite-tantalite and 40Ar-39Ar muscovite age constraints for the rare-element pegmatite dykes in the Altai orogenic belt, NW China. Geological Magazine, 155(3): 707-728 doi: 10.1017/S0016756816001096

     

    Zhou QF, Qin KZ, Tang DM, Wang CL and Ma LS. 2019. Mineralogical characteristics and significance of beryl from the rare-element pegmatites in the Lushi County, East Qinling, China. Acta Petrologica Sinica, 35(7): 1999-2012 (in Chinese with English abstract) doi: 10.18654/1000-0569/2019.07.04

     

    Zhou QF, Qin KZ, He CT, Wu HY, Liu YC, Niu XL, Mo LC, Liu XC and Zhao JX. 2021. Li-Be-Nb-Ta mineralogy of the Kuqu leucogranite and pegmatite in the Eastern Himalaya, Tibet, and its implication. Acta Petrologica Sinica, 37(11): 3305-3324 (in Chinese with English abstract) doi: 10.18654/1000-0569/2021.11.05

     

    高利娥, 曾令森, 刘静, 谢克家. 2009. 藏南也拉香波早渐新世富钠过铝质淡色花岗岩的成因机制及其构造动力学意义. 岩石学报, 25(9): 2289-2302 http://www.ysxb.ac.cn/article/id/aps_20090921

     

    高利娥, 曾令森, 胡古月, 高家昊, 赵令浩, 王亚莹. 2019. 藏南拿日雍措片麻岩穹窿淡色花岗岩稀有金属的富集. 地球科学, 44(6): 1860-1875 https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201906009.htm

     

    何畅通, 秦克章, 李金祥, 周起凤, 赵俊兴, 李光明. 2020. 喜马拉雅东段错那洞钨-锡-铍矿床中铍的赋存状态及成因机制初探. 岩石学报, 36(12): 3593-3606 http://www.ysxb.ac.cn/article/doi/10.18654/1000-0569/2020.12.03

     

    李光明, 张林奎, 焦彦杰, 夏祥标, 董随亮, 付建刚, 梁维, 张志, 吴建阳, 董磊, 黄勇. 2017. 西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义. 矿床地质, 36(4): 1003-1008 https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201704014.htm

     

    李建康. 2014. 花岗岩类矿床成矿流体形成过程的原位观测实验. 吉林大学学报(地球科学版), 44(2): 518-526 https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201402010.htm

     

    李乐广, 王连训, 田洋, 马昌前, 周芳春. 2019. 华南幕阜山花岗伟晶岩的矿物化学特征及指示意义. 地球科学, 44(7): 2532-2550 https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201907024.htm

     

    刘晨, 王汝成, 吴福元, 谢磊, 刘小驰. 2021. 珠峰地区锂成矿作用: 喜马拉雅淡色花岗岩带首个锂电气石-锂云母型伟晶岩. 岩石学报, 37(11): 3287-3294 doi: 10.18654/1000-0569/2021.11.03 http://www.ysxb.ac.cn/article/doi/10.18654/1000-0569/2021.11.03

     

    刘小驰, 吴福元, 王汝成, 刘志超, 王佳敏, 刘晨, 胡方泱, 杨雷, 何少雄. 2021. 珠峰地区热曲锂辉石伟晶岩的发现及对喜马拉雅稀有金属成矿作用研究的启示. 岩石学报, 37(11): 3295-3304 doi: 10.18654/1000-0569/2021.11.04 http://www.ysxb.ac.cn/article/doi/10.18654/1000-0569/2021.11.04

     

    刘志超, 吴福元, 刘小驰, 王建刚. 2020. 喜马拉雅淡色花岗岩结晶分异机制概述. 岩石学报, 36(12): 3551-3571 doi: 10.18654/1000-0569/2020.12.01 http://www.ysxb.ac.cn/article/doi/10.18654/1000-0569/2020.12.01

     

    吕正航, 张辉, 唐勇, 赵景宇, 刘云龙, 郭柳. 2018. 新疆阿尔泰不同矿化类型伟晶岩中磷的分布特征及其找矿指示. 矿物岩石地球化学通报, 37(2): 260-270 https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201802011.htm

     

    潘桂棠. 2004. 青藏高原及邻区地质图(1: 1500000). 成都: 成都地图出版社

     

    秦克章, 赵俊兴, 和畅通, 施睿哲. 2021a. 喜马拉雅琼嘉岗超大型伟晶岩型锂矿的发现及意义. 岩石学报, 37(11): 3277-3286 http://www.ysxb.ac.cn/article/doi/10.18654/1000-0569/2021.11.02

     

    秦克章, 周起凤, 赵俊兴, 何畅通, 刘小驰, 施睿哲, 刘宇超. 2021b. 喜马拉雅淡色花岗岩带伟晶岩的富铍成矿特点及向更高处找锂. 地质学报, 95(10): 3146-3162 https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202110014.htm

     

    陶湘媛, 谢磊, 王汝成, 章荣清, 胡欢, 刘晨. 2020. 绿柱石的矿物学特征: 以喜马拉雅错那和珠峰地区绿柱石为例. 南京大学学报(自然科学), 56(6): 815-829 https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ202006005.htm

     

    王汝成, 吴福元, 谢磊, 刘小驰, 王佳敏, 杨雷, 赖文, 刘晨. 2017. 藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究. 中国科学(地球科学), 47(8): 871-880 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201708001.htm

     

    吴福元, 刘志超, 刘小驰, 纪伟强. 2015. 喜马拉雅淡色花岗岩. 岩石学报, 31(1): 1-36 http://www.ysxb.ac.cn/article/id/aps_20150101

     

    吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷. 2017. 高分异花岗岩的识别与研究. 中国科学(地球科学), 47(7): 745-765 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201707001.htm

     

    谢磊, 王汝成, 田恩农, 刘志超, 吴福元, 刘小驰, 程飞越, 胡欢, 车旭东, 刘晨. 2021. 喜马拉雅夏如渐新世淡色花岗岩铌钽钨成矿作用. 科学通报, 66(35): 4574-4591 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202135010.htm

     

    曾令森, 刘静, 高利娥, 谢克家, 文力. 2009. 藏南也拉香波穹隆早渐新世地壳深熔作用及其地质意义. 科学通报, 54(3): 373-381 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200903019.htm

     

    曾令森, 赵令浩, 高利娥, 侯可军, 王倩. 2019. 喜马拉雅造山带中新世岩浆型石榴子石的矿物化学特征: 从高Sr/Y花岗岩到淡色花岗岩. 岩石学报, 35(6): 1599-1626 http://www.ysxb.ac.cn/article/doi/10.18654/1000-0569/2019.06.01

     

    张德会, 张文淮, 许国建. 2004. 富F熔体-溶液体系流体地球化学及其成矿效应——研究现状及存在问题. 地学前缘, 11(2): 479-490 doi: 10.3321/j.issn:1005-2321.2004.02.018

     

    张辉, 吕正航, 唐勇. 2019. 新疆阿尔泰造山带中伟晶岩型稀有金属矿床成矿规律、找矿模型及其找矿方向. 矿床地质, 38(4): 792-814 https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201904008.htm

     

    张进江, 郭磊, 张波. 2007. 北喜马拉雅穹隆带雅拉香波穹隆的构造组成和运动学特征. 地质科学, 42(1): 16-30 doi: 10.3321/j.issn:0563-5020.2007.01.003

     

    赵俊兴, 何畅通, 秦克章, 施睿哲, 刘小驰, 胡方泱, 余可龙, 孙政浩. 2021. 喜马拉雅琼嘉岗超大型伟晶岩锂矿的形成时代、源区特征及分异特征. 岩石学报, 37(11): 3325-3347 doi: 10.18654/1000-0569/2021.11.06 http://www.ysxb.ac.cn/article/doi/10.18654/1000-0569/2021.11.06

     

    周起凤, 秦克章, 唐冬梅, 丁建刚, 郭正林. 2013. 阿尔泰可可托海3号脉伟晶岩型稀有金属矿床云母和长石的矿物学研究及意义. 岩石学报, 29(9): 3004-3022 http://www.ysxb.ac.cn/article/id/aps_20130904

     

    周起凤. 2018. 花岗伟晶岩型稀有金属矿床的矿化指示标志. 博士后研究工作报告. 北京: 中国科学院地质与地球物理研究所, 1-100

     

    周起凤, 秦克章, 唐冬梅, 王春龙, 马留锁. 2019. 东秦岭卢氏稀有金属伟晶岩的绿柱石矿物学特征及其指示意义. 岩石学报, 35(7): 1999-2012 http://www.ysxb.ac.cn/article/doi/10.18654/1000-0569/2019.07.04

     

    周起凤, 秦克章, 何畅通, 吴华英, 刘宇超, 牛向龙, 莫凌超, 刘小驰, 赵俊兴. 2021. 喜马拉雅东段库曲岩体锂、铍和铌钽稀有金属矿物研究及指示意义. 岩石学报, 37(11): 3305-3324 doi: 10.18654/1000-0569/2021.11.05 http://www.ysxb.ac.cn/article/doi/10.18654/1000-0569/2021.11.05

  • 加载中

(14)

(5)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2022-03-01
修回日期:  2022-04-30
刊出日期:  2022-07-01

目录