郯庐断裂带南段早白垩世镁铁质岩墙成因及其地质意义

钱涛, 牛漫兰, 李晨, 吴齐, 苑潇宇, 李秀财, 王磊. 2023. 郯庐断裂带南段早白垩世镁铁质岩墙成因及其地质意义. 地质科学, 58(3): 837-863. doi: 10.12017/dzkx.2023.047
引用本文: 钱涛, 牛漫兰, 李晨, 吴齐, 苑潇宇, 李秀财, 王磊. 2023. 郯庐断裂带南段早白垩世镁铁质岩墙成因及其地质意义. 地质科学, 58(3): 837-863. doi: 10.12017/dzkx.2023.047
Qian Tao, Niu Manlan, Li Chen, Wu Qi, Yuan Xiaoyu, Li Xiucai, Wang Lei. 2023. Petrogenesis and geological significance of Early Cretaceous mafic dyke in the southern segment of Tan‑Lu fault zone. Chinese Journal of Geology, 58(3): 837-863. doi: 10.12017/dzkx.2023.047
Citation: Qian Tao, Niu Manlan, Li Chen, Wu Qi, Yuan Xiaoyu, Li Xiucai, Wang Lei. 2023. Petrogenesis and geological significance of Early Cretaceous mafic dyke in the southern segment of Tan‑Lu fault zone. Chinese Journal of Geology, 58(3): 837-863. doi: 10.12017/dzkx.2023.047

郯庐断裂带南段早白垩世镁铁质岩墙成因及其地质意义

  • 基金项目:

    国家自然科学基金项目(编号:41772228,41172201)资助

详细信息
    作者简介:

    钱涛,男,1998年生,硕士研究生,矿物学、岩石学、矿床学专业。E‑mail:1797470091@qq.com

    通讯作者: 牛漫兰,女,1972年生,博士,教授,矿物学、岩石学、矿床学专业。本文通讯作者。E‑mail:hfnml@hfut.edu.cn
  • 中图分类号: P534.53, P588.1, P59

Petrogenesis and geological significance of Early Cretaceous mafic dyke in the southern segment of Tan‑Lu fault zone

More Information
  • 地壳再循环物质交代岩石圈地幔形成不均质的地幔源区,其衍生的镁铁质岩浆岩为揭示地幔演化及壳—幔相互作用提供了重要信息。本文对郯庐断裂带内张八岭隆起南段肥东地区镁铁质岩中的锆石进行LA‑ICP‑MS定年,获得年龄集中在127~122 Ma。镁铁质岩样品中SiO2含量为51.33%~54.01%,Mg#值为52.6~70.0,并具有富钠、富碱(σ = 2.46~4.22)的特征,属于亚碱性和高钾钙碱性系列。镁铁质岩样品均富集大离子亲石元素(LILEs,如Ba、Pb、K),相对亏损高场强元素(HFSEs,包括Nb、Ta、Ti等),表现为弧型地球化学特征。锆石Hf‑O同位素研究获得极负的εHf(t)值(-23.4~-21.2)和略高的δ18O值(5.49‰~6.01‰),与新元古代斜长角闪岩同位素组成显示出一致的演化趋势和相似的分布特征。因此,早白垩世镁铁质岩墙富集的同位素特征主要继承于新元古代(~800 Ma)岩石圈地幔;在郯庐断裂带伸展背景下,由古老岩石圈地幔发生减压熔融形成。

  • 加载中
  • 图 1 

    张八岭隆起南段地质图及采样位置(据牛漫兰等,2010修改)

    Figure 1. 

    Geological map of the Zhangbaling uplift belt, showing sample locations (modified from Niu et al., 2010)

    图 2 

    肥东早白垩世镁铁质岩墙野外(a~d)及镜下照片(e、f)

    Figure 2. 

    Field photograph and microphotographs of the Early Cretaceous mafic dyke intruded in Feidong

    图 3 

    肥东早白垩世镁铁质岩墙代表性锆石CL图像(a)、锆石U‑Pb谐和图及206Pb/238U加权平均年龄图像(b~e)

    Figure 3. 

    Typical zircons cathode luminescence (CL) (a) and images LA‑ICP‑MS zircon U‑Pb concordia diagrams and weighted mean of 206Pb/238U ages (b~e) of the Early Cretaceous mafic dyke intruded in Feidong

    图 4 

    肥东早白垩世镁铁质岩墙锆石稀土元素球粒陨石标准化配分图

    Figure 4. 

    Chondrite‑normalized rare earth element patterns for zircons of the Early Cretaceous mafic dyke intruded in Feidong

    图 5 

    肥东镁铁质岩墙主微量元素地球化学特征

    Figure 5. 

    Characteristics of major and trace elements of the mafic dyke intruded in Feidong

    图 6 

    肥东镁铁质岩墙(17FD127)锆石δ18O、εHf(t)和两阶段模式年龄频谱图(a~c),176Hf/177Hf‑锆石U‑Pb年龄(d)和εHf(t)‑锆石U‑Pb年龄图解(e)

    Figure 6. 

    Diagram of zircon δ18O and εHf(t) values as well as TDM2 ages (a~c), zircon 176Hf/177Hf‑zircon U‑Pb age (d) and εHf(t)‑zircon U‑Pb age (e) of the mafic dyke (17FD127) in Feidong

    图 7 

    肥东镁铁质岩墙Nb/U与SiO2含量相关图解(a)和Ce/Pb与SiO2相关图解(b)

    Figure 7. 

    diagram of Nb/U‑SiO2 (a) and Ce/Pb‑SiO2 (b) for the mafic dyke intruded in Feidong

    图 8 

    肥东镁铁质岩墙中TiO2、Fe2O3、Ni、Cr、Co、CaO/Al2O3与MgO含量协变图解

    Figure 8. 

    TiO2、Fe2O3、Ni、Cr、Co、CaO/Al2O3 with MgO diagram of the mafic dyke intruded in Feidong

    图 9 

    肥东镁铁质岩墙Rb/Y‑Nb/Y(a,Kepezhinskas et al., 1997)、Ba‑Nb/Y((b,Kepezhinskas et al., 1997)、Th/Ce‑Th/Sm (c,Guo et al., 2015Zhang et al., 2019)、Th/Yb‑Ba/La (d,Hanyu et al., 2006)相关图解

    Figure 9. 

    Diagram of Rb/Y‑Nb/Y (a, Kepezhinskas et al., 1997), Ba‑Nb/Y (b, Kepezhinskas et al., 1997), Th/Ce‑Th/Sm (c, Guo et al., 2015; Zhang et al., 2019), Th/Yb‑Ba/La (d, Hanyu et al., 2006) the mafic dyke intruded in Feidong

    图 10 

    肥东镁铁质岩墙与各种超镁铁质岩高压实验熔体对比图解(a~d) (据刘建强等,2013),MnO含量‑Fe/Mn比值图解(e)和Ba/Rb‑Rb/Sr图解(f) (据Furman and Graham, 1999)

    Figure 10. 

    Comparison diagram of the mafic dykes in Feidong with high‑pressure experimental melts of various ultramafic rocks (a~d) (after Liu and Ren, 2013), diagram of MnO content‑Fe/Mn ratio (e) and diagram of Ba/Rb‑Rb/Sr ratios (f) (after Furman and Graham, 1999)

    图 11 

    肥东镁铁质岩墙与大别造山带碰撞后镁铁质—超镁铁质岩锆石Hf‑O同位素

    Figure 11. 

    Comparison of zircon Hf‑O isotopic compositions for the mafic dyke in Feidong with post‑collisional mafic‑ultramafic rocks in Dabie orogen

    表 1 

    郯庐断裂带南段肥东早白垩世镁铁质岩LA‑ICP‑MS锆石U‑Pb定年结果

    Table 1. 

    LA‑ICP MS zircon U‑Pb dating results for the Early Cretaceous mafic rocks along the South Tan‑Lu fault zone

    测点编号 元素含量/×10-6 Th/U 同位素比值 年龄/Ma 谐和度/%
    Pb Th U 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ
    21FD01:镁铁质岩墙
    21FD01‑01 12.8 366 444 0.82 0.0557 0.0027 0.1458 0.0071 0.01903 0.00056 439 109 138 6 122 4 87
    21FD01‑02 0.94 0.08 8.80 0.01 0.4376 0.0711 1.6008 0.2019 0.03311 0.00256 4044 278 971 79 210 16 -29
    21FD01‑03 18.6 518 607 0.85 0.0532 0.0034 0.1501 0.0105 0.01995 0.00061 339 144 142 9 127 4 89
    21FD01‑04 5.27 9.26 242 0.04 0.0538 0.0031 0.1518 0.0084 0.02066 0.00062 365 130 143 7 132 4 91
    21FD01‑05 2.90 4.19 151 0.03 0.0605 0.0044 0.1543 0.0105 0.01867 0.00064 633 156 146 9 119 4 80
    21FD01‑06 17.6 319 758 0.42 0.0534 0.0032 0.1340 0.0068 0.01852 0.00055 343 131 128 6 118 3 92
    21FD01‑07 17.2 588 582 1.01 0.0502 0.0030 0.1283 0.0072 0.01862 0.00054 206 141 123 7 119 3 97
    21FD01‑08 3.56 12.5 177 0.07 0.0528 0.0037 0.1355 0.0089 0.01885 0.00060 317 161 129 8 120 4 93
    21FD01‑09 6.10 17.8 327 0.05 0.0474 0.0034 0.1253 0.0085 0.01922 0.00061 78 154 120 8 123 4 97
    21FD01‑10 0.27 0.19 5.13 0.04 0.2140 0.0526 0.6469 0.1113 0.02326 0.00241 2936 408 507 69 148 15 -10
    21FD01‑11 11.9 128 545 0.24 0.0502 0.0024 0.1379 0.0066 0.01992 0.00058 206 105 131 6 127 4 96
    21FD01‑12 5.67 5.98 293 0.02 0.0505 0.0039 0.1320 0.0091 0.01932 0.00067 217 177 126 8 123 4 97
    21FD01‑13 16.9 64.0 862 0.07 0.0522 0.0023 0.1417 0.0060 0.01963 0.00055 295 98 135 5 125 3 92
    21FD01‑14 4.25 9.75 212 0.05 0.0518 0.0035 0.1365 0.0088 0.01946 0.00060 276 162 130 8 124 4 95
    21FD01‑15 0.71 0.39 25.5 0.02 0.0882 0.0125 0.2302 0.0285 0.02310 0.00128 1387 276 210 24 147 8 64
    21FD01‑16 5.13 14.3 260 0.05 0.0494 0.0033 0.1371 0.0094 0.02019 0.00061 165 -42 130 8 129 4 98
    21FD01‑17 4.60 1.70 249 0.01 0.0554 0.0048 0.1382 0.0094 0.01896 0.00063 428 194 131 8 121 4 91
    21FD01‑18 0.38 0.67 16.7 0.04 0.1462 0.0310 0.2713 0.0324 0.01959 0.00126 2302 372 244 26 125 8 35
    21FD01‑19 5.73 41.2 257 0.16 0.0595 0.0041 0.1558 0.0106 0.01927 0.00062 587 151 147 9 123 4 82
    21FD01‑20 5.71 2.96 281 0.01 0.0567 0.0037 0.1487 0.0092 0.01945 0.00065 476 143 141 8 124 4 87
    21FD01‑21 6.33 14.9 341 0.04 0.0484 0.0031 0.1251 0.0078 0.01884 0.00055 120 144 120 7 120 3 99
    21FD01‑22 9.67 86.7 452 0.19 0.0498 0.0032 0.1349 0.0075 0.02007 0.00068 183 147 128 7 128 4 99
    21FD01‑23 7.75 68.6 363 0.19 0.0594 0.0031 0.1549 0.0080 0.01893 0.00056 589 118 146 7 121 4 81
    21FD01‑24 5.61 18.8 243 0.08 0.0988 0.0173 0.2540 0.0392 0.01982 0.00088 2000 333 230 32 126 6 42
    21FD01‑25 3.37 3.74 154 0.02 0.0586 0.0056 0.1528 0.0139 0.01878 0.00062 550 211 144 12 120 4 81
    21FD01‑26 4.54 3.47 234 0.01 0.0564 0.0038 0.1452 0.0093 0.01902 0.00060 478 144 138 8 121 4 87
    21FD01‑27 2.59 6.02 133 0.05 0.0555 0.0048 0.1419 0.0114 0.01881 0.00062 432 193 135 10 120 4 88
    21FD01‑28 187 315 333 0.95 0.1232 0.0036 5.8847 0.1730 0.34537 0.00921 2003 52 1959 26 1912 44 97
    21FD01‑29 0.97 1.51 30.3 0.05 0.1228 0.0196 0.2660 0.0287 0.02028 0.00107 1998 287 240 23 129 7 40
    21FD01‑30 14.0 388 516 0.75 0.0522 0.0025 0.1289 0.0062 0.01797 0.00052 295 139 123 6 115 3 93
    21FD01‑31 0.36 1.10 12.1 0.09 0.1557 0.0404 0.2690 0.0551 0.02133 0.00147 2409 455 242 44 136 9 44
    21FD01‑32 9.03 32.3 466 0.07 0.0522 0.0026 0.1335 0.0065 0.01864 0.00055 295 115 127 6 119 3 93
    17FD127:镁铁质岩墙
    17FD127‑01 16.7 258 799 0.32 0.0535 0.0034 0.1385 0.0086 0.01872 0.00056 350 127 132 8 120 4 90
    17FD127‑02 18.5 106 865 0.12 0.0508 0.0028 0.1414 0.0071 0.02031 0.00058 230 97 134 6 130 4 97
    17FD127‑03 4.79 3.43 228 0.02 0.0429 0.0041 0.1166 0.0104 0.02050 0.00071 -131 161 112 9 131 4 84
    17FD127‑04 61.2 2781 2140 1.30 0.0438 0.0018 0.1203 0.0046 0.01957 0.00053 -82 58 115 4 125 3 92
    17FD127‑05 21.3 205 65.4 3.13 0.0722 0.0044 1.5410 0.0899 0.15595 0.00491 990 102 947 36 934 27 99
    17FD127‑06 26.5 64.1 1261 0.05 0.0452 0.0022 0.1249 0.0057 0.02024 0.00058 -11 74 120 5 129 4 93
    17FD127‑07 30.5 668 1253 0.53 0.0467 0.0023 0.1331 0.0061 0.02014 0.00056 32 77 127 5 129 4 98
    17FD127‑08 35.0 392 1571 0.25 0.0465 0.0031 0.1279 0.0077 0.01994 0.00058 25 148 122 7 127 4 96
    17FD127‑09 60.7 762 228 3.34 0.0693 0.0032 1.2548 0.0523 0.12738 0.00355 909 65 826 24 773 20 93
    17FD127‑10 41.5 303 1917 0.16 0.0508 0.0029 0.1370 0.0069 0.01955 0.00054 233 134 130 6 125 3 96
    17FD127‑11 36.5 527 1688 0.31 0.0501 0.0021 0.1364 0.0056 0.01974 0.00054 198 73 130 5 126 3 97
    17FD127‑12 114 4525 4032 1.12 0.0489 0.0018 0.1391 0.0047 0.02058 0.00055 142 51 132 4 131 3 99
    17FD127‑13 43.5 145 2099 0.07 0.0505 0.0024 0.1365 0.0053 0.01962 0.00053 216 111 130 5 125 3 96
    17FD127‑14 15.2 63.2 690 0.09 0.0525 0.0029 0.1506 0.0081 0.02091 0.00059 307 107 142 7 133 4 93
    17FD127‑15 14.6 14.8 651 0.02 0.0522 0.0032 0.1612 0.0090 0.02242 0.00074 293 105 152 8 143 5 94
    17FD127‑16 42.7 453 1969 0.23 0.0549 0.0031 0.1476 0.0072 0.01949 0.00054 410 129 140 6 124 3 88
    17FD127‑17 28.6 521 1240 0.42 0.0518 0.0024 0.1425 0.0062 0.02023 0.00058 277 77 135 6 129 4 95
    17FD127‑18 16.8 76.5 846 0.09 0.0543 0.0027 0.1391 0.0066 0.01878 0.00053 384 87 132 6 120 3 90
    17FD127‑19 33.6 698 1439 0.49 0.0465 0.0021 0.1278 0.0052 0.02012 0.00055 24 64 122 5 128 3 95
    17FD127‑20 33.1 91.9 1602 0.06 0.0498 0.0020 0.1356 0.0048 0.01985 0.00054 185 55 129 4 127 3 98
    17FD127‑21 56.6 637 2626 0.24 0.0516 0.0031 0.1389 0.0075 0.01951 0.00055 270 141 132 7 125 3 95
    17FD127‑22 50.2 461 2338 0.20 0.0475 0.0021 0.1293 0.0051 0.01975 0.00054 72 64 123 5 126 3 98
    17FD127‑23 13.5 197 592 0.33 0.0498 0.0028 0.1357 0.0075 0.01995 0.00059 187 108 129 7 127 4 98
    17FD127‑24 39.8 300 1812 0.17 0.0504 0.0020 0.1415 0.0054 0.02041 0.00057 213 63 134 5 130 4 97
    17FD127‑25 124 1253 5606 0.22 0.0520 0.0019 0.1447 0.0050 0.02017 0.00055 286 49 137 4 129 3 94
    17FD127‑26 68.9 2186 2681 0.82 0.0528 0.0022 0.1440 0.0055 0.01987 0.00055 321 61 137 5 127 3 92
    17FD127‑27 96.8 3619 3903 0.93 0.0508 0.0018 0.1328 0.0047 0.01896 0.00052 232 53 127 4 121 3 95
    17FD127‑28 100 1500 362 4.14 0.0654 0.0023 1.0753 0.0370 0.11993 0.00325 787 45 741 18 730 19 99
    17FD127‑29 45.0 160 2103 0.08 0.0432 0.0018 0.1218 0.0045 0.02051 0.00056 -114 56 117 4 131 4 89
    17FD127‑30 47.8 1451 1881 0.77 0.0517 0.0022 0.1435 0.0061 0.02037 0.00057 270 75 136 5 130 4 95
    17FD127‑31 13.7 21.5 623 0.03 0.0535 0.0042 0.1584 0.0115 0.02146 0.00066 351 181 149 10 137 4 92
    17FD127‑32 59.8 2803 1900 1.48 0.0693 0.0030 0.1997 0.0091 0.02094 0.00059 908 75 185 8 134 4 68
    下载: 导出CSV

    表 2 

    郯庐断裂带南段早白垩世镁铁质岩全岩主量/%和微量元素/×10-6测试结果

    Table 2. 

    Whole‑rock major/% and trace element/×10-6 contents of the Early Cretaceous mafic rocks along the South Tan‑Lu fault zone

    样品号 17FD125 17FD126 17FD127 21FD01 21FD02 21FD03 21FD51 21FD52 21FD53
    岩石类型 镁铁质岩墙
    SiO2 52.91 51.55 51.33 52.75 53.1 52.17 50.29 51.25 51.32
    TiO2 0.80 0.97 0.97 0.90 0.93 0.84 1.10 0.79 0.98
    Al2O3 13.76 13.98 13.94 14.76 16.4 13.48 16.12 13.04 17.22
    Fe2O3T 8.14 8.98 8.89 8.23 8.13 8.65 9.11 8.80 8.77
    MnO 0.16 0.17 0.17 0.14 0.14 0.16 0.14 0.17 0.12
    MgO 8.45 8.68 9.02 8.12 5.92 9.63 6.51 10.35 4.92
    CaO 7.48 7.91 8.07 7.05 6.83 8.02 8.03 8.74 8.65
    Na2O 2.59 2.72 2.84 3.40 3.83 2.69 3.32 2.36 4.12
    K2O 2.63 2.17 2.02 2.42 2.56 2.20 2.52 2.39 1.77
    P2O5 0.51 0.62 0.60 0.39 0.48 0.55 0.60 0.32 0.70
    LOI 2.04 2.02 1.78 1.53 1.43 1.90 1.95 1.90 1.59
    Total 99.47 99.77 99.63 99.30 99.27 99.74 99.09 99.79 99.46
    ALK 5.22 4.89 4.86 5.93 6.50 4.97 5.98 4.84 5.98
    A/CNK 5.36 5.00 4.97 0.70 0.76 0.63 0.71 0.58 0.71
    A/NK 0.66 0.66 0.65 1.80 1.81 1.98 1.97 2.02 1.98
    Mg# 67.3 65.7 66.8 66.0 59.0 69.0 59.0 70.0 53.0
    K2O/Na2O 1.02 0.80 0.71 0.71 0.67 0.82 0.76 1.01 0.43
    Fe/Mn 45.9 47.7 47.2 53.1 52.5 48.9 58.8 46.8 66.0
    La 23.3 37.3 44.4 20.8 44.8 35.4 46.6 20.9 49.1
    Ce 53.3 78.9 88.9 44.0 84.8 71.3 91.1 41.0 91.2
    Pr 6.67 9.24 10.0 5.63 10.1 8.69 10.9 5.12 11.4
    Nd 29.0 37.8 40.4 25.4 38.8 38.5 42.2 22.5 44.4
    Sm 5.59 7.04 7.48 4.76 6.35 6.68 7.94 4.29 8.22
    Eu 1.69 2.16 2.17 1.44 1.78 1.94 2.26 1.35 2.53
    Gd 4.49 5.31 5.38 3.85 4.75 5.07 6.25 3.87 6.72
    Tb 0.55 0.67 0.68 0.50 0.65 0.64 0.84 0.52 0.90
    Dy 2.93 3.62 3.75 2.70 3.33 3.32 4.59 2.75 4.79
    Ho 0.55 0.71 0.72 0.51 0.66 0.65 0.90 0.55 0.93
    Er 1.43 1.91 1.86 1.40 1.78 1.70 2.46 1.52 2.57
    Tm 0.21 0.25 0.27 0.19 0.26 0.25 0.35 0.21 0.36
    Yb 1.24 1.63 1.67 1.16 1.56 1.46 2.04 1.26 2.26
    Lu 0.21 0.30 0.29 0.17 0.26 0.24 0.32 0.21 0.37
    Y 14.8 18.7 19.3 14.6 18.8 17.6 24.9 15.2 27.5
    Zr 108 188 129 106 198 138 192 116 217
    Hf 2.90 4.50 3.50 2.80 4.50 3.40 4.30 2.70 4.50
    Li 20.8 27.7 24.3 29.0 17.4 24.3 20.6 19.4 13.1
    V 213 239 254 217 208 235 257 243 224
    Sc 24.1 22.2 29.2 21.6 18.1 22.8 23.8 28.3 18.1
    Cr 558 398 441 400 170 570 90.0 590 90.0
    Co 36.3 39.1 40.1 36.3 30.0 36.9 32.9 41.9 28.0
    Ni 151 106 130 142 69.8 169 31.8 155 22.9
    Cu 20.4 85.9 70.3 0.30 49.4 2.10 259 0.60 427
    Zn 120 125 131 90.0 97.0 101 81.0 92.0 62.0
    Ga 17.5 18.5 17.9 19.5 22.2 17.5 20.8 16.3 20.4
    Rb 81.7 65.8 64.8 68.8 68.1 61.5 73.1 65.8 35.7
    Sr 961 974 984 754 1135 848 1160 674 1350
    Nb 4.40 8.40 7.70 5.40 11.8 5.00 8.90 4.70 8.00
    Cs 2.12 1.96 1.98 1.58 1.13 0.63
    Ba 1330 1058 932 1010 1200 1070 712 839 639
    Ta 0.20 0.66 0.73 0.29 0.76 0.33 0.50 0.22 0.40
    Pb 10.9 12.0 10.5 12.3 17.5 9.60 13.0 8.50 11.2
    Th 2.73 4.53 5.68 2.60 6.37 4.35 6.68 2.62 6.36
    U 0.67 0.88 1.01 0.76 1.48 1.10 1.52 0.72 1.80
    REE 131 187 208 113 200 176 219 106 226
    Eu/Eu* 1.03 1.08 1.05 1.03 0.99 1.02 0.98 1.01 1.04
    (La/Yb)N 12.7 15.4 17.9 12.1 19.4 16.3 15.4 11.2 14.6
    Sr/Y 64.9 52.1 51.0 51.6 60.4 48.2 46.6 44.3 49.1
    Nb/Ta 22.0 12.7 10.5 18.6 15.5 15.2 17.8 21.4 20.0
    下载: 导出CSV

    表 3 

    郯庐断裂带早白垩世镁铁质岩原位锆石Hf‑O同位素分析结果

    Table 3. 

    In‑situ zircon Hf‑O isotopic results for the Early Cretaceous mafic rocks from the South Tan‑Lu fault zone

    测点编号 t/Ma 176Lu/177Hf 176Hf/177Hf 2σ εHf(0) 176Hf/177Hf 2σ εHf(t) TDMC/Ma fLu/Hf δ18OZrc/‰ δ18OWR /‰
    17FD127:肥东镁铁质岩
    1 127 0.000818 0.282101 0.000017 -23.7 0.6 0.282099 0.000016 -21 0.6 2514 47 -0.98 6.01 0.19 6.72 0.19
    2 127 0.002208 0.282037 0.000013 -26 0.5 0.282032 0.000013 -23.4 0.5 2661 33 -0.93 5.64 0.23 6.35 0.23
    3 127 0.002136 0.282029 0.000024 -26.3 0.9 0.282024 0.000023 -23.7 0.9 2678 98 -0.94 5.8 0.24 6.51 0.24
    4 127 0.001286 0.282062 0.000026 -25.1 0.9 0.282059 0.000026 -22.4 0.9 2602 59 -0.96 5.55 0.29 6.26 0.29
    5 127 0.002177 0.282089 0.000017 -24.1 0.6 0.282084 0.000016 -21.5 0.6 2546 53 -0.93 5.49 0.24 6.2 0.24
    6 127 0.004179 0.282082 0.00002 -24.4 0.7 0.282072 0.00002 -22 0.7 2570 50 -0.87 5.57 0.17 6.28 0.17
    7 127 0.002195 0.821 0.000021 -23.8 0.7 0.282094 0.00002 -21.2 0.7 2523 87 -0.93 5.56 0.33 6.27 0.33
    8 127 0.00503 0.282102 0.000024 -23.7 0.9 0.28209 0.000022 -21.3 0.9 2529 171 -0.85 15 0.16 15.7 0.16
    9 127 0.002753 0.28206 0.000019 -25.2 0.7 0.282053 0.000017 -22.6 0.7 2614 121 -0.92 5.65 0.28 6.36 0.28
    10 127 0.003835 0.282045 0.000024 -25.7 0.9 0.282036 0.000023 -23.2 0.9 2650 71 -0.88 5.79 0.24 6.5 0.24
    11 127 0.005778 0.281994 0.000025 -27.5 0.9 0.28198 0.000023 -25.2 0.9 2772 170 -0.83 5.94 0.26 6.65 0.26
    12 127 0.001717 0.282074 0.000023 -24.7 0.8 0.28207 0.000023 -22.1 0.8 2578 53 -0.95 3.99 0.7 4.7 0.7
    13 127 0.001149 0.28209 0.000026 -24.1 0.9 0.282087 0.000026 -21.4 0.9 2540 58 -0.97 5.73 0.27 6.44 0.27
    14 127 0.004832 0.282007 0.000026 -27.1 0.9 0.281995 0.000024 -24.7 0.9 2739 150 -0.85
    15 127 0.002578 0.282038 0.000018 -26 0.6 0.282032 0.000017 -23.4 0.6 2661 86 -0.92
    16 127 0.00294 0.282082 0.000016 -24.4 0.6 0.282075 0.000015 -21.9 0.6 2565 50 -0.91
    下载: 导出CSV
  •  

    蔡倩茹, 牛漫兰, 吴齐等. 2019. 郯庐断裂带南段张八岭群地层时代的重新厘定. 地质科学, 54(3): 781‑795. http://www.dzkx.org/article/doi/10.12017/dzkx.2019.045

    Cai Qianru, Niu Manlan, Wu Qi et al. 2019. Revisiting the formation age of the Zhangbaling Group in the southern segment of the Tan‑Lu fault zone. Chinese Journal of Geology, 54(3): 781‑795. http://www.dzkx.org/article/doi/10.12017/dzkx.2019.045

     

    刘建强, 任钟元. 2013. 玄武岩源区母岩的多样性和识别特征: 以海南岛玄武岩为例. 大地构造与成矿学, 37(3): 471‑488. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201303013.htm

    Liu Jianqiang and Ren Zhongyuan. 2013. Diversity of source lithology and its identification for basalts: A case study of the Hainan basalts. Geotectonica et Metallogenia, 37(3): 471‑488. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201303013.htm

     

    牛漫兰, 朱光, 谢成龙等. 2008. 郯庐断裂带张八岭隆起南段花岗岩LA‑ICP MS锆石U‑Pb年龄及其构造意义. 岩石学报, 24(8): 1839‑1847. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200808015.htm

    Niu Manlan, Zhu Guang, Xie Chenglong et al. 2008. LA‑ICP MS zircon U‑Pb ages of the granites from the southern segment of the Zhangbaling uplift along the Tan‑Lu fault zone and their tectonic significances. Acta Petrologica Sinica, 24(8): 1839‑1847. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200808015.htm

     

    牛漫兰, 朱光, 谢成龙等. 2010. 郯庐断裂带张八岭隆起南段晚中生代侵入岩地球化学特征及其对岩石圈减薄的指示. 岩石学报, 26(9): 2783‑2804. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201009022.htm

    Niu Manlan, Zhu Guang, Xie Chenglong et al. 2010. Geochemistry of Late Mesozoic intrusions from the southern segment of Zhangbaling uplift along the Tan‑Lu fault zone and its implications for the lithospheric thinning. Acta Petrologica Sinica, 26(9): 2783‑2804. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201009022.htm

     

    吴福元, 李献华, 郑永飞等. 2007. Lu‑Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185‑220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm

    Wu Fuyuan, Li Xianhua, Zheng Yongfei et al. 2007. Lu‑Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185‑220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm

     

    夏林圻, 夏祖春, 李向民等. 2008. 南秦岭东段耀岭河群、陨西群、武当山群火山岩和基性岩墙群岩石成因. 西北地质, 41(3): 1‑29.

    Xia Linqi, Xia Zuchun, Li Xiangmin et al. 2008. Petrogenesis of the Yaolinghe Group, Yunxi Group, Wudangshan Group volcanic rocks and basic dyke swarms from eastern part of the South Qinling Mountains. Northwestern Geology, 41(3): 1‑29.

     

    谢成龙, 朱光, 牛漫兰等. 2008a. 郯庐断裂带巢湖—庐江段晚中生代火山岩的锆石U‑Pb年代学. 地质科学, 43(2): 294‑308. http://www.dzkx.org/article/id/geology_9271

    Xie Chenglong, Zhu Guang, Niu Manlan et al. 2008a. Zircon U‑Pb geochronology of Late Mesozoic volcanic rocks from the Chaohu‑Lujiang segment of the Tan‑Lu fault zone. Chinese Journal of Geology, 43(2): 294‑308. http://www.dzkx.org/article/id/geology_9271

     

    谢成龙, 朱光, 牛漫兰等. 2008b. 郯庐断裂带巢湖—庐江段晚中生代火山岩地球化学特征与岩石圈减薄过程. 岩石学报, 24(8): 1823‑1838. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200808014.htm

    Xie Chenglong, Zhu Guang, Niu Manlan et al. 2008b. Geochemistry of Late Mesozoic volcanic rocks from the Chaohu‑Lujiang segment of the Tan‑Lu fault zone and lithospheric thinning processes. Acta Petrologica Sinica, 24(8): 1823‑1838. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200808014.htm

     

    谢清陆, 李双庆, 贺剑锋等. 2016. 大别造山带宿松地体早白垩世中—基性脉岩地球化学特征. 地球科学与环境学报, 38(6): 835‑848.

    Xie Qinglu, Li Shuangqing, He Jianfeng et al. 2016. Geochemical characteristics of Early Cretaceous intermediate‑mafic dykes in Susong terrane of Dabie orogenic belt. Journal of Earth Sciences and Environment, 38(6): 835‑848.

     

    袁芳, 宋传中, 林寿发等. 2020. 郯庐断裂带肥东段烟头山及桃源地区构造变形特征研究. 地质科学, 55(1): 109‑121. http://www.dzkx.org/article/doi/10.12017/dzkx.2020.010

    Yuan Fang, Song Chuanzhong, Lin Shoufa et al. 2020. Study on the structural deformation characteristics of Yantou Mountain and Taoyuan area in Feidong section of Tanlu fault zone. Chinese Journal of Geology, 55(1): 109‑121. http://www.dzkx.org/article/doi/10.12017/dzkx.2020.010

     

    曾雯, 钟增球, 周汉文等. 2004. 黄陵地区基性岩墙群的地球化学特征及其地质意义. 地球科学, 29(1): 31‑38.

    Zeng Wen, Zhong Zengqiu, Zhou Hanwen et al. 2004. Geochemistry of mafic dykes in Huangling area and its tectonic implications. Earth Science, 29(1): 31‑38.

     

    周鼎武, 张成立, 刘良等. 2000. 秦岭造山带及相邻地块元古代基性岩墙群综述及相关问题探讨. 岩石学报, 16(1): 22‑28. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200001002.htm

    Zhou Dingwu, Zhang Chengli, Liu liang et al. 2000. Synthetic study on Proterozoic basic dyke swarms in the Qinling orogenic belt and its adjacent block as well as a discussion about some questions related to them. Acta Petrologica Sinica, 16(1): 22‑28. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200001002.htm

     

    朱光, 王勇生, 王道轩等. 2006. 前陆沉积与变形对郯庐断裂带同造山运动的制约. 地质科学, 41(1): 102‑121. http://www.dzkx.org/article/id/geology_9421

    Zhu Guang, Wang Yongsheng, Wang Daoxuan et al. 2006. Constraints of foreland sedimentation and deformation on synorogenic motion of the Tan‑Lu fault zone. Chinese Journal of Geology, 41(1): 102‑121. http://www.dzkx.org/article/id/geology_9421

     

    朱光, 张力, 谢成龙等. 2009. 郯庐断裂带构造演化的同位素年代学制约. 地质科学, 44(4): 1327‑1342. http://www.dzkx.org/article/id/geology_8386

    Zhu Guang, Zhang Li, Xie Chenglong et al. 2009. Geochronological constraints on tectonic evolution of the Tan‑Lu fault zone. Chinese Journal of Geology, 44(4): 1327‑1342. http://www.dzkx.org/article/id/geology_8386

     

    Andersen T. 2002. Correction of common lead in U‑Pb analyses that do not report 204Pb. Chemical Geology, 192(1‑2): 59‑79. DOI: 10.1016/S0009‑2541(02)00195‑X.

     

    Baker M B, Grove T L and Price R. 1994. Primitive basalts and andesites from the Mt. Shasta region, N. California: Products of varying melt fraction and water content. Contributions to Mineralogy and Petrology, 118: 111‑129. DOI: 10.1007/BF01052863.

     

    Boynton W V. 1984. Cosmochemistry of the rare earth elements: Meteorite studies. //Henderson P. Rare Earth Element Geochemistry. Amsterdam: Elsevier. 63‑114.10.1016/978‑0‑444‑42148‑7.50008‑3.

     

    Cai Q R, Niu M L, Yuan X Y et al. 2021. Evidence for continental rifting from two episodes of Mid‑Neoproterozoic silicic magmatism in the northeastern Yangtze Block, China. Precambrian Research, 363: 106336. DOI: 10.1016/j.precamres.2021.106336.

     

    Chen L, Zheng Y F and Zhao Z F. 2018. A common crustal component in the sources of bimodal magmatism: Geochemical evidence from Mesozoic volcanics in the Middle‑Lower Yangtze Valley, South China. Geological Society of America Bulletin, 130(11‑12): 1959‑1980. DOI: 10.1130/B31856.1.

     

    Chen L, Zheng Y F and Zhao Z F. 2020. Origin of arc‑like magmatism at fossil convergent plate boundaries: Geochemical insights from Mesozoic igneous rocks in the Middle to Lower Yangtze Valley, South China. Earth‑Science Reviews, 211: 103416. DOI: 10.1016/j.earscirev.2020.103416.

     

    Chen L, Zheng Y F, Xu Z et al. 2021. Generation of andesite through partial melting of basaltic metasomatites in the mantle wedge: Insight from quantitative study of Andean andesites. Geoscience Frontiers, 12(3): 101124. DOI: 10.1016/j.gsf.2020.12.005.

     

    Chen M, Li L M, Kan T X et al. 2022. Geochemistry and Sr‑Nd isotopes of the Late Mesozoic lamprophyres in the Chaohu area, eastern China: Petrogenesis and tectonic implications. Island Arc, 31(1): e12438. DOI: 10.1111/iar.12438.

     

    Dai L Q, Zhao Z F, Zheng Y F et al. 2012. The nature of orogenic lithospheric mantle: Geochemical constraints from postcollisional mafic‑ultramafic rocks in the Dabie orogen. Chemical Geology, 334: 99‑121. DOI: 10.1016/j.chemgeo.2012.10.009.

     

    Defant M J and Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347: 662‑665. DOI: 10.1038/347662a0.

     

    Furman T and Graham D. 1999. Erosion of lithospheric mantle beneath the East African Rift System: Geochemical evidence from the Kivu volcanic province. Developments in Geotectonics, 24: 237‑262. DOI: 10.1016/S0419‑0254(99)80014‑7.

     

    Gaetani G A and Grove T L. 1998. The influence of water on melting of mantle peridotite. Contributions to Mineralogy and Petrology, 131(4): 323‑346. DOI: 10.1007/s004100050396.

     

    Gallagher K and Hawkesworth C. 1992. Dehydration melting and the generation of continental flood basalts. Nature, 358(6381): 57‑59. DOI: 10.1038/358057a0.

     

    Gao S, Ling W L, Qiu Y M et al. 1999. Contrasting geochemical and Sm‑Nd isotopic compositions of Archean metasediments from the Kongling high‑grade terrain of the Yangtze Craton: Evidence for cratonic evolution and redistribution of REE during crustal anatexis. Geochimica et Cosmochimica Acta, 63(13‑14): 2071‑2088. DOI: 10.1016/S0016‑7037(99)00153‑2.

     

    Griffin W L, Wang X, Jackson S E et al. 2002. Zircon chemistry and magma mixing, SE China: In‑situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61(3‑4): 237‑269. DOI: 10.1016/S0024‑4937(02)00082‑8.

     

    Guo F, Fan W M, Wang Y J et al. 2004. Origin of Early Cretaceous calc‑alkaline lamprophyres from the Sulu orogen in eastern China: Implications for enrichment processes beneath continental collisional belt. Lithos, 78(3): 291‑305. DOI: 10.1016/j.lithos.2004.05.001.

     

    Guo F, Li H X, Fan W M et al. 2015. Early Jurassic subduction of the paleo‑Pacific Ocean in NE China: Petrologic and geochemical evidence from the Tumen mafic intrusive complex. Lithos, 224‑225: 46‑60. DOI: 10.1016/j.lithos.2015.02.014.

     

    Hall H C and Fahrig W F. 1987. Mafic Dyke Swarms. Geological Association of Canada Special Paper. St. John􀆳s, Newfoundland and Labrador: Geological Association of Canada. 34: 1‑503.

     

    Hanyu T, Tatsumi Y, Nakai S et al. 2006. Contribution of slab melting and slab dehydration to magmatism in the NE Japan arc for the last 25 Myr: Constraints from geochemistry. Geochemistry, Geophysics, Geosystems, 7(8): Q08002. DOI: 10.1029/2005GC001220.

     

    Hawkesworth C J, Hergt J M, Ellam R M et al. 1991. Element fluxes associated with subduction related magmatism. Philosophical Transactions: Physical Sciences and Engineering, 335(1638): 393‑405. DOI: 10.1098/rsta.1991.0054.

     

    Hawkesworth C J, Turner S, Peate D et al. 1997. Elemental U and Th variations in island arc rocks: Implications for U‑series isotopes. Chemical Geology, 139(1‑4): 207‑221. DOI: 10.1016/S0009‑ 2541(97)00036‑3.

     

    Hibbard M J. 1981. The magma mixing origin of mantled feldspars. Contributions to Mineralogy and Petrology, 76(2): 158‑170. DOI: 10.1007/BF00371956.

     

    Hirose K and Kushiro I. 1993. Partial melting of dry peridotites at high pressures: Determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth and Planetary Science Letters, 114(4): 477‑489. DOI: 10.1016/0012‑821X(93)90077‑M.

     

    Hirose K. 1997. Melting experiments on lherzolite KLB‑1 under hydrous conditions and generation of high‑magnesian andesitic melts. Geology, 25(1): 42‑44. DOI: 10.1130/0091‑7613(1997)025<0042: MEOLKU>2.3.CO;2.

     

    Irvine T N and Baragar W R A. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523‑548. DOI: 10.1139/e71‑055.

     

    Kelemen P B, Hanghøj K and Greene A R. 2007.3.18 ‑ One view of the geochemistry of subduction‑related magmatic arcs, with an emphasis on primitive andesite and lower crust. //Holland H D and Turekian K K. Treatise on Geochemistry. Cambridge: Elsevier. 3: 1‑70. DOI: 10.1016/B0‑08‑043751‑6/03035‑8.

     

    Kemp A I S, Hawkesworth C J, Foster G L et al. 2007. Magmatic and crustal differentiation history of granitic rocks from Hf‑O isotopes in zircon. Science, 315(5814): 980‑983. DOI: 10.1126/science.1136154.

     

    Kepezhinskas P, McDermott F, Defant M J et al. 1997. Trace element and Sr‑Nd‑Pb isotopic constraints on a three‑component model of Kamchatka Arc petrogenesis. Geochimica et Cosmochimica Acta, 61(3): 577‑600. DOI: 10.1016/S0016‑7037(96)00349‑3.

     

    Kessel R, Schmidt M W, Ulmer P et al. 2005. Trace element signature of subduction‑zone fluids, melts and supercritical liquids at 120‑180 km depth. Nature, 437 (7059): 724‑727. DOI: 10.1038/nature03971.

     

    LaTourrette T, Hervig R L and Holloway J R. 1995. Trace element partitioning between amphibole, phlogopite, and basanite melt. Earth and Planetary Science Letters, 135(1‑4): 13‑30. DOI: 10.1016/0012‑821X(95)00146‑4.

     

    Li S Q, Schmitt A K and Chen F K. 2021. Early Cretaceous mafic‑intermediate dykes in the Dabie orogen as indicators for post‑collisional lithosphere removal. Lithos, 388‑389: 106065. DOI: 10.1016/j.lithos. 2021.106065.

     

    Li X H, Li W X, Li Q L et al. 2010. Petrogenesis and tectonic significance of the~850 Ma Gangbian alkaline complex in South China: Evidence from in situ zircon U‑Pb and Hf‑O isotopes and whole‑rock geochemistry. Lithos, 114(1‑2): 1‑15. DOI: 10.1016/j.lithos.2009.07.011.

     

    Liu L, Yang X Y, Santosh M et al. 2015a. Neoproterozoic intraplate crustal accretion on the northern margin of the Yangtze Block: Evidence from geochemistry, zircon SHRIMP U‑Pb dating and Hf isotopes from the Fuchashan complex. Precambrian Research, 268: 97‑114. DOI: 10.1016/j.precamres.2015.07.004.

     

    Liu L, Liu L J and Xu Y G. 2021. Mesozoic intraplate tectonism of East Asia due to flat subduction of a composite terrane slab. Earth‑Science Reviews, 214: 103505. DOI: 10.1016/j.earscirev.2021.103505.

     

    Liu S, Feng C X, Hu R Z et al. 2015b. Zircon U‑Pb geochronological, geochemical, and Sr‑Nd isotope data for Early Cretaceous mafic dykes in the Tancheng‑Lujiang fault area of the Shandong Province, China: Constraints on the timing of magmatism and magma genesis. Journal of Asian Earth Sciences, 98: 247‑260. DOI: 10.1016/j.jseaes.2014.11.001.

     

    Liu S, Feng C X, Feng G Y et al. 2017. Zircon U‑Pb age, geochemical and Sr‑Nd‑Pb isotopic data: Constraints on the genetic model of the mafic dykes from the North China Craton. Acta Petrologica Sinica, 33(6): 1667‑1685.

     

    Liu S A, Li S G, He Y S et al. 2010a. Geochemical contrasts between Early Cretaceous ore‑bearing and ore‑barren high‑Mg adakites in central‑eastern China: Implications for petrogenesis and Cu‑Au mineralization. Geochimica et Cosmochimica Acta, 74(24): 7160‑7178. DOI: 10.1016/j.gca.2010.09.003.

     

    Liu Y S, Gao S, Hu Z C et al. 2010b. Continental and oceanic crust recycling‑induced melt‑peridotite interactions in the Trans‑North China orogen: U‑Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1‑2): 537‑571. DOI: 10.1093/petrology/egp082.

     

    Long Q, Hu R, Yang Y Z et al. 2017. Geochemistry of Early Cretaceous intermediate to mafic dikes in the Jiaodong Peninsula: Constraints on mantle source composition beneath eastern China. The Journal of Geology, 125(6): 713‑732. DOI: 10.1086/693860.

     

    Ludwig K R. 2003. Isoplot/Ex, version 3.0. A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center Special Publication No 4.1‑70.

     

    Middlemost E A K. 1994. Naming materials in the magma/igneous rock system. Earth‑Science Reviews, 37(3‑4): 215‑224. DOI: 10.1016/0012‑8252(94)90029‑9.

     

    Mohr P A. 1987. Crustal contamination in mafic sheets: A summary. //Hall H C and Fahrig W F. Mafic Dyke Swarms. Geological Association of Canada Special Paper. St. John􀆳s, Newfoundland and Labrador: Geological Association of Canada. 34: 75‑80.

     

    Niu M L, Cai Q R, Wu Q et al. 2020. Neoproterozoic crustal reworking and growth in the Zhangbaling uplift, Tan‑Lu fault zone: Evidence from the Feidong complex and Zhangbaling Group. Acta Geologica Sinica, 94(6): 1921‑1939. DOI: 10.1111/1755‑6724.14604.

     

    Niu Y L, Liu Y, Xue Q Q et al. 2015. Exotic origin of the Chinese continental shelf: New insights into the tectonic evolution of the western Pacific and eastern China since the Mesozoic. Science Bulletin, 60(18): 1598‑1616. DOI: 10.1007/s11434‑015‑0891‑z.

     

    Pearce J A. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100(1‑4): 14‑48. DOI: 10.1016/j.lithos.2007.06.016.

     

    Pilet S, Baker M B, Stolper E M. 2008. Metasomatized lithosphere and the origin of alkaline lavas. Science, 320(5878): 916‑919. DOI: 10.1126/science.1156563.

     

    Prouteau G, Scaillet B, Pichavant M et al. 2001. Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature, 410: 197‑200. DOI: 10.1038/35065583.

     

    Rapp R P and Watson E B. 1995. Dehydration melting of metabasalt at 8‑32 kbar: Implications for continental growth and crust‑mantle recycling. Journal of Petrology, 36(4): 891‑931. DOI: 10.1093/petrology/36.4.891.

     

    Rapp R P, Shimizu N, Norman M D et al. 1999. Reaction between slab‑derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa. Chemical Geology, 160(4): 335‑356. DOI: 10.1016/S0009‑2541(99)00106‑0.

     

    Rudnick R L and Gao S. 2003.3.01 ‑ Composition of the continental crust. //Holland H D and Turekian K K. Treatise on Geochemistry. Cambridge: Elsevier. 3: 1‑64. DOI: 10.1016/B0‑08‑043751‑6/03016‑4.

     

    Salters V J M and Stracke A. 2004. Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems, 5(5): Q050B07. DOI: 10.1029/2003GC000597.

     

    Shao J A, Zhai M G, Zhang L Q et al. 2004. Identification of five stages of dike swarms in the Shanxi‑Hebei‑Inner Mongolia border area and its tectonic implications. Acta Geologica Sinica, 78(1): 320‑330. DOI: 10.1111/j.1755‑6724.2004.tb00706.x.

     

    Shi Y H. 2017. Petrology and zircon U‑Pb geochronology of metamorphic massifs around the middle segment of the Tan‑Lu fault to define the boundary between the North and South China Blocks. Journal of Asian Earth Sciences, 141(Part A): 140‑160. DOI: 10.1016/j.jseaes.2016.07.001.

     

    Słaby E, Götze J, Wörner G et al. 2008. K‑feldspar phenocrysts in microgranular magmatic enclaves: A cathodoluminescence and geochemical study of crystal growth as a marker of magma mingling dynamics. Lithos, 105(1‑2): 85‑97. DOI: 10.1016/j.lithos.2008.02.006.

     

    Sobolev A V, Hofmann A W, Kuzmin D V et al. 2007. The amount of recycled crust in sources of mantle‑derived melts. Science, 316(5823): 412‑417. DOI: 10.1126/science.+1138113.

     

    Sparks R S J and Marshall L A. 1986. Thermal and mechanical constraints on mixing between mafic and silicic magmas. Journal of Volcanology and Geothermal Research, 29(1‑4): 99‑124. DOI: 10.1016/0377‑0273(86)90041‑7.

     

    Stracke A and Bourdon B. 2009. The importance of melt extraction for tracing mantle heterogeneity. Geochimica et Cosmochimica Acta, 73(1): 218‑238. DOI: 10.1016/j.gca.2008.10.015.

     

    Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313‑345. DOI: 10.1144/GSL.SP.1989.042.01.19.

     

    Tiepolo M, Oberti R, Zanetti A et al. 2007. Trace‑element partitioning between amphibole and silicate melt. Reviews in Mineralogy and Geochemistry, 67(1): 417‑452. DOI: 10.2138/rmg.2007.67.11.

     

    Valley J W, Kinny P D, Schulze D J et al. 1998. Zircon megacrysts from kimberlite: Oxygen isotope variability among mantle melts. Contributions to Mineralogy and Petrology, 133: 1‑11. DOI: 10.1007/s004100050432.

     

    Wang S N and Yan J. 2021. Coexisting Early Cretaceous arc‑type and OIB‑type mafic magmatic rocks in the eastern Jiangnan orogen, South China Block: Implications for paleo‑Pacific plate subduction. Lithos, 400‑401: 106421. DOI: 10.1016/j.lithos.2021.106421.

     

    Wang T, Niu M L, Wu Q et al. 2019. Episodic bimodal magmatism at an active continental margin due to paleo‑Pacific plate subduction: A case study from the southern segment of the Tan‑Lu fault zone, eastern China. Lithos, 328‑329: 159‑181. DOI: 10.1016/j.lithos.2019.01.025.

     

    Williams H, Turner S, Kelley S et al. 2001. Age and composition of dikes in southern Tibet: New constraints on the timing of east‑west extension and its relationship to postcollisional volcanism. Geology, 29(4): 339‑342. DOI: 10.1130/0091‑7613(2001)029<0339: AACODI>2.0.CO;2.

     

    Wu F Y, Yang Y H, Xie L W et al. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U‑Pb geochronology. Chemical Geology, 234(1‑2): 105‑126. DOI: 10.1016/j.chemgeo. 2006.05.003.

     

    Wu F Y, Ji W Q, Sun D H et al. 2012. Zircon U‑Pb geochronology and Hf isotopic compositions of the Mesozoic granites in southern Anhui Province, China. Lithos, 150: 6‑25. DOI: 10.1016/j.lithos.2012.03.020.

     

    Xu Z, Zheng Y F, Zhao Z F. 2017. The origin of Cenozoic continental basalts in east‑central China: Constrained by linking Pb isotopes to other geochemical variables. Lithos, 268‑271: 302‑319. DOI: 10.1016/j.lithos.2016.11.006.

     

    Yan J, Liu J M, Li Q Z et al. 2015. In situ zircon Hf‑O isotopic analyses of Late Mesozoic magmatic rocks in the Lower Yangtze River belt, central eastern China: Implications for petrogenesis and geodynamic evolution. Lithos, 227: 57‑76. DOI: 10.1016/j.lithos.2015.03.013.

     

    Yang C, Yan J, Wang S N et al. 2020. Geochronology and geochemistry of the Late Mesozoic magmatic rocks in the Chizhou area, Lower Yangtze River metallogenic belt: Constraints on petrogenesis and tectonic setting. Journal of Geochemical Exploration, 213: 106515. DOI: 10.1016/j.gexplo.2020.106515.

     

    Yaxley G M and Green D H. 1998. Reactions between eclogite and peridotite: Mantle refertilisation by subduction of oceanic crust. Schweizerische Mineralogische und Petrographische Mitteilungen, 78(2): 243‑255.

     

    Yuan X Y, Niu M L, Cai Q R et al. 2021. Bimodal volcanic rocks in the northeastern margin of the Yangtze Block: Response to breakup of Rodinia supercontinent. Lithos, 390‑391: 106108. DOI: 10.1016/j.lithos.2021.106108.

     

    Yuan X Y, Niu M L, Cai Q R et al. 2022. The implication of two episodic Precambrian supercontinents convergence events from enriched mantle beneath the Yangtze Block: Constraints from the Zhangbaling mafic rocks. Precambrian Research, 371: 106561. DOI: 10.1016/j.precamres. 2022.106561.

     

    Zhang Q, Teyssier C, Dunlap J et al. 2007. Oblique collision between North and South China recorded in Zhangbaling and Fucha Shan (Dabie‑Sulu transfer zone). //Roeske S M, Till A B, Foster D A et al. Exhumation Associated with Continental Strike‑Slip Fault Systems. Boulder, Colorado: Geological Society of America. 434: 167‑206. DOI: 10.1130/2007.2434(09).

     

    Zhang S B, Zheng Y F, Zhao Z F et al. 2016. The extremely enriched mantle beneath the Yangtze Craton in the Neoproterozoic: Constraints from the Qichun pyroxenite. Precambrian Research, 276: 194‑210. DOI: 10.1016/j.precamres.2016.02.002.

     

    Zhang Y, Gao T, Kang S et al. 2019. Importance of atmospheric transport for microplastics deposited in remote areas. Environmental Pollution, 254: 112953. DOI: 10.1016/j.envpol.2019.07.121.

     

    Zhao J H and Asimow P D. 2014. Neoproterozoic boninite‑series rocks in South China: A depleted mantle source modified by sediment‑derived melt. Chemical Geology, 388: 98‑111. DOI: 10.1016/j.chemgeo. 2014.09.004.

     

    Zhao J X and McCulloch M T. 1993. Melting of a subduction‑modified continental lithospheric, mantle: Evidence from Late Proterozoic mafic dike swarms, in central Australia. Geology, 21(5): 463‑466. DOI: 10.1130/0091‑7613(1993)021<0463: MOASMC>2.3.CO;2.

     

    Zhao Z X, Liang S N, Santosh M et al. 2020. Lithospheric extension associated with slab rollback: Insights from Early Cretaceous magmatism in the southern segment of Tan‑Lu fault zone, central‑eastern China. Lithos, 362‑363: 105487. DOI: 10.1016/j.lithos.2020.105487.

     

    Zheng Y F, Xu Z, Zhao Z F et al. 2018. Mesozoic mafic magmatism in North China: Implications for thinning and destruction of cratonic lithosphere. Science China Earth Sciences, 61: 353‑385. DOI: 10.1007/s11430‑017‑9160‑3.

     

    Zheng Y F. 2019. Subduction zone geochemistry. Geoscience Frontiers, 10(4): 1223‑1254. DOI: 10.1016/j.gsf.2019.02.003.

     

    Zhu G, Liu C, Gu C C et al. 2018. Oceanic plate subduction history in the western Pacific Ocean: Constraint from Late Mesozoic evolution of the Tan‑Lu fault zone. Science China Earth Sciences, 61: 386‑405. DOI: 10.1007/s11430‑017‑9136‑4.

     

    Zhu R X, Yang J H and Wu F Y. 2012. Timing of destruction of the North China Craton. Lithos, 149: 51‑60. DOI: 10.1016/j.lithos.2012.05.013.

  • 加载中

(11)

(3)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2022-12-14
修回日期:  2023-02-28
刊出日期:  2023-07-01

目录