ISSN 1004-4140
CN 11-3017/P

基于卷积神经网络的断层预测方法

刘江, 涂齐催, 李炳颖, 黄鑫, 张广智, 张佳佳, 吴尧, 朱圣伟

刘江, 涂齐催, 李炳颖, 黄鑫, 张广智, 张佳佳, 吴尧, 朱圣伟. 基于卷积神经网络的断层预测方法[J]. CT理论与应用研究, 2020, 29(5): 522-533. DOI: 10.15953/j.1004-4140.2020.29.05.02
引用本文: 刘江, 涂齐催, 李炳颖, 黄鑫, 张广智, 张佳佳, 吴尧, 朱圣伟. 基于卷积神经网络的断层预测方法[J]. CT理论与应用研究, 2020, 29(5): 522-533. DOI: 10.15953/j.1004-4140.2020.29.05.02
LIU Jiang, TU Qicui, LI Bingying, HUANG Xin, ZHANG Guangzhi, ZHANG Jiajia, WU Yao, ZHU Shengwei. Fault Prediction Method Based on Convolutional Neural Network[J]. CT Theory and Applications, 2020, 29(5): 522-533. DOI: 10.15953/j.1004-4140.2020.29.05.02
Citation: LIU Jiang, TU Qicui, LI Bingying, HUANG Xin, ZHANG Guangzhi, ZHANG Jiajia, WU Yao, ZHU Shengwei. Fault Prediction Method Based on Convolutional Neural Network[J]. CT Theory and Applications, 2020, 29(5): 522-533. DOI: 10.15953/j.1004-4140.2020.29.05.02

基于卷积神经网络的断层预测方法

基金项目: 

国家科技重大专项(2016ZX05027004-001);国家自然科学基金(41674130);中央高校基础研究业务费专项基金(18CX02061A)。

详细信息
    作者简介:

    刘江(1975-),男,中海石油(中国)有限公司上海分公司研究院开发地震高级工程师,主要从事开发地震研究工作,Tel:13641905882,E-mail:liujiang@cnooc.com.cn;张佳佳*(1986-),男,中国石油大学(华东)副教授,主要从事地震岩石物理及储层预测方面工作,Tel:15205326882,E-mail:zhangjj@upc.edu.cn。

  • 中图分类号: P631;O242

Fault Prediction Method Based on Convolutional Neural Network

  • 摘要: 针对传统相干体属性在预测断层时存在断层假象以及易受噪声影响等缺点,本文提出一种利用卷积神经网络进行断层预测的方法。首先构建适合实际工区断层特征的卷积神经网络模型,然后利用部分分频地震数据和人工解释出的断层标签进行网络模型训练,最后把训练好的模型应用到整个三维地震数据中进行断层预测。实际地震数据预测结果表明基于卷积神经网络断层预测结果与地震数据吻合较好,并且在断层细节刻画上要优于传统地震相干体属性方法。
    Abstract: Aiming at the disadvantages of traditional coherent volume attribute in fault prediction,such as false fault and poor noise resistance,this paper proposes a method for fault prediction using convolutional neural networks.First,construct a convolutional neural network model suitable for the fault characteristics of the actual work area,then train the network model using the partial frequency division seismic data and manually interpreted fault labels,and finally apply the trained model to the entire 3D seismic data for fault prediction.The actual seismic data prediction results show that the fault prediction results based on the convolutional neural network are in good agreement with the seismic data,and the fault detail description is better than the traditional seismic coherent volume attribute method.
  • 期刊类型引用(2)

    1. 王宝江,吴振锋,吉娃阿英,杨桂林,孙洪,钟昆,于强,任战利. 高角度走滑断缝体断裂识别及解释——以鄂尔多斯盆地镇泾区块为例. 天然气地球科学. 2025(01): 142-154 . 百度学术
    2. 梁雁,刘广峰. 基于卷积神经网络的人脸识别研究. 数字通信世界. 2021(01): 101-102 . 百度学术

    其他类型引用(10)

计量
  • 文章访问数:  456
  • HTML全文浏览量:  14
  • PDF下载量:  30
  • 被引次数: 12
出版历程
  • 收稿日期:  2020-03-04
  • 网络出版日期:  2021-11-10

目录

    /

    返回文章
    返回
    x 关闭 永久关闭