风积砂质高浓度胶凝充填材料性能与粉煤灰掺量关系分析

王晓东

王晓东. 2016: 风积砂质高浓度胶凝充填材料性能与粉煤灰掺量关系分析. 工程地质学报, 24(1): 78-86. DOI: 10.13544/j.cnki.jeg.2016.01.010
引用本文: 王晓东. 2016: 风积砂质高浓度胶凝充填材料性能与粉煤灰掺量关系分析. 工程地质学报, 24(1): 78-86. DOI: 10.13544/j.cnki.jeg.2016.01.010
WANG Xiaodong. 2016: RELATIONSHIP BETWEEN ENGINEERING PERFORMANCE AND MIX PROPORTION OF FLY ASH FOR CEMENTED AND HIGH CONCENTRATION BACKFILL MATERIAL WITH WIND-BLOWN SAND AS AGGREGATE. JOURNAL OF ENGINEERING GEOLOGY, 24(1): 78-86. DOI: 10.13544/j.cnki.jeg.2016.01.010
Citation: WANG Xiaodong. 2016: RELATIONSHIP BETWEEN ENGINEERING PERFORMANCE AND MIX PROPORTION OF FLY ASH FOR CEMENTED AND HIGH CONCENTRATION BACKFILL MATERIAL WITH WIND-BLOWN SAND AS AGGREGATE. JOURNAL OF ENGINEERING GEOLOGY, 24(1): 78-86. DOI: 10.13544/j.cnki.jeg.2016.01.010

风积砂质高浓度胶凝充填材料性能与粉煤灰掺量关系分析

基金项目: 

国家自然科学基金(51404295),陕西省自然科学基础研究计划(2015JQ5185)和中煤科工集团西安研究院有限公司科技创新基金(2012XAYFX006)资助

详细信息
    作者简介:

    王晓东(1981-),男,博士,助理研究员,主要从事煤田地质与煤炭开采技术研究工作.Email:wangxiaodong@cctegxian.com

  • 中图分类号: TD12

RELATIONSHIP BETWEEN ENGINEERING PERFORMANCE AND MIX PROPORTION OF FLY ASH FOR CEMENTED AND HIGH CONCENTRATION BACKFILL MATERIAL WITH WIND-BLOWN SAND AS AGGREGATE

  • 摘要: 充填材料是决定煤炭充填开采效益、效率、效果的最主要因素。为了掌握风积砂质高浓度胶凝充填材料的性能变化规律,本文以粉煤灰的质量掺入比作为变量,试验研究和理论分析了粉煤灰对该充填材料性能的影响规律。结果表明,粉煤灰的适量添加可以提高充填材料的强度,大掺量导致强度相对降低; 泌水率随着粉煤灰掺量的增大总体上呈减小趋势,较大掺量试样泌水速率相对较低; 分层度随着粉煤灰掺量的增大线性降低; 凝结时间随着粉煤灰掺量增大呈现指数增大; 坍落度总体上随粉煤灰掺量的升高而增大,但大掺量会使其出现相对降低。分析认为,适量粉煤灰的掺入,使风积砂质高浓度胶凝充填材料的颗粒粒度、水分分布和水泥分散均匀,而使材料的强度和输送性能适度改变,但掺量过大会稀释胶结料和改变颗粒相对级配而导致性能下降。
    Abstract: In coal mining with backfill, backfill material dominates the benefit, efficiency and effect. In order to get the characteristics varying pattern of cemented and high concentration backfill material with wind-blown sand as aggregate, fly ash is selected as variables to test and analyze the characteristics varying pattern of backfill material with the mix proportion of fly ash. The results show that, as the mix proportion of fly ash increases in a proper range in backfill material, the compressive strength increases, the bleeding rate decreases in general, the layered degree declines by linear pattern, the coagulation time grows up by exponential pattern, and the slump is growing consecutively. But, with the higher mix proportion of fly ash, the compressive strength and slump will drop comparatively. When the mix proportion of fly ash is in proper range, the fly ash optimizes the particle size gradient of backfill material, and makes water and cement distribution uniform in backfill material. As a result, the strength characteristic and rheological performance can be improved. However, some characteristics will degenerate with higher mix proportion of fly ash.
  • Ba H J, Pan Y, Yang Y Z. 2002. Effect of fine particles on rheological properties of high-performance concrete[J]. Journal of Harbin University of C.E.& Architecture, 35 (6): 50~54.

    Chen S J, Guo W J, Zhou H, et al. 2011. Structure model and movement law of overburden during strip pillar mining backfill with cream-body[J]. Journal of China Coal Society, 36 (7): 1081~1086.

    Cui Z D, Sun H H. 2010. The preparation and properties of coal gangue based sialite paste-like backfill material[J]. Journal of China Coal Society, 35 (6): 896~899.

    Feng G R, Ren Y F, Zhang X Y, et al. 2011. The activating experimental research of fly ash for mining filling material in Tashan mine[J]. Journal of China Coal Society, 36 (5): 732~737.

    Guo G L, Wang Y H, Ma Z G. 2004. A new method for ground subsidence control in coal mining[J]. Journal of China University of Mining & Technology, 33 (2): 150~153.

    Guo J, Ma F S, Xu J M. 2014. A case study of ground movement due to backfill mining of steep orebody[J]. Journal of Engineering Geology, 22 (5): 958~964.

    Han B, Wu A X, Wang Y M, et al. 2012. Optimization and application of cemented hydraulic fill(CHF)with low strength aggregate and extra fine grain full tailings[J]. Journal of Central South University(Science and Technology), 43 (6): 2357~2362.

    Hao W X, Zhang X. 2005. Study on the relationship between characteristics of particle group of fly ash and the properties of cement paste[J]. Journal of Building Materials, 8 (3): 244~249.

    Huang Q X, Li L. 2011. Research on stowing material and its strength [J]. Coal mining Technology, 16 (3): 38~42.

    Huang Y C, Dong Y, Duan Z J, et al. 2013. Practice of the technology of coal mining with paste-like filling under water[J]. China Mining Magazine, 22 (7): 80~82.

    Li X S,Cao Z,Liu C M,et al. 2012. Ground subsidence with backfilling mining technology for strip coal pillar with gangue paste material in Daizhuang coal mine[J]. Coal Engineering,(4): 85~87.

    Lin D C, Luan H J. 2013. Underground pumping gangue backfill mining technology in thin coal seam[J]. Journal of Shandong University of Science and Technology(Natural Science), 32 (5): 8~12.

    Liu B J, Xie Y J, Zhang Y Q. 2003. Influence of fly ash on properties of cement-based materials[J]. Journal of Building Materials, 6 (4): 426~430.

    Liu J G. 2011. Study and practice of low-carbon ecological mining construction of Jizhong energy group[J]. Journal of China Coal Society, 36 (2): 317~321.

    Ma F S, Zhao H J, Guo J, et al. 2014. Influence of the multi-level mining on the ground movement in the Jinchuan No.2mine [J]. Journal of Engineering Geology, 22 (4): 757~764.

    Ma L Q, Li Y S. 2010. The clean production technology of replacement of coal gangue in coal mine[J]. Journal of China Coal Society, 35 (5): 816~819.

    Miao X X, Wang A, Sun Y J, et al. 2009. Research on basic theory of mining with water resources protection and its application to arid and semi-arid mining areas[J]. Chinese Journal of Rock Mechanics and Engineering, 28 (2): 217~227.

    Miao X X. 2010. Review of research on mechanical behaviors of mining rock mass and its related engineering technological innovation progress[J]. Chinese Journal of Rock Mechanics and Engineering, 29 (10): 1988~1998.

    Mo Ji. 2010. Research and practice on backfilling mining with paste-like and gravity-transport gangue material[J]. Coal Engineering,(5): 47~49.

    Qian M G, Xu J L, Miao X X. 2003. Green technique in coal mining[J]. Journal of China University of Mining & Technology, 32 (4): 343~348.

    Shaanxi Academy of Building Research. 2009. Standard for test method of performance on building mortar(JGJ/T70-2009)[S].Beijing: China Architecture and Building Press.

    Shi J W, Wei Z J, Liu Q L, et al. 2011. Research on proportion optimizing of paste filling material based on orthogonal experiment in coal mine[J]. China Safety Science Journal, 21 (6): 111~115.

    Sun K H. 2014. Experimental research on aeolian sand paste-like stowing material for mine[J]. Coal Technology, 33 (5): 262~265.

    Tian Z Q,Zhai H L,Yuan S J. 2013. Design on gob-side entry retaining with paste backfilling material in WU8-22180working face in 1st coal mine of Pingdingshan coal company[J]. Shandong Coal Science and Technology,(5): 106~111.

    Wang J, LLü X J, Hu S G, et al. 2010. Study on the cementing properties of the backfilling materials with high fly ash content[J]. China Mining Magazine, 19 (3): 95~98.

    Wang X M, Cao G, Gong Z G. 2008. Experimental research on flow performance of past-like slurry with gangue as filling aggregate[J]. Express Information of Mining Industry,(1): 20~23.

    Wang X M, Shi L G, Xiao Z Z, et al. 2004. Study on mechanism and application of water reducer in filling pulp[J]. Metal Mine,(4): 11-13, 37.

    Xie D Y. 2011. Application of mining technology with coal rejects backfilling under surface buildings[J]. Coal Engineering,(9): 31~33.

    Zhao C Z, Zhou H Q, Qu Q D, et al. 2004. Preliminary test on mechanical properties of paste filling material[J]. Journal of China University of Mining & Technology, 33 (2): 159~161.

    Zhou H Q, Hou C J, Sun X K,et al. 2004. Solid waste paste filling for none-village-relocation coal mining[J]. Journal of China University of Mining & Technology, 33 (2): 154~158.

    Zhu Z B,Liu C P. 2008. Analysis on strength and stability of solidified backfilling material[J]. Mining Technology, 8 (3): 15~17, 25.

    巴恒静,潘雨,杨英姿. 2002. 矿物细掺料对高性能混凝土流变性能的影响[J]. 哈尔滨建筑大学学报, 35 (6): 50~54.

    陈绍杰,郭惟嘉,周辉,等. 2011. 条带煤柱膏体充填开采覆岩结构模型及运动规律[J]. 煤炭学报, 36 (7): 1081~1086.

    崔增娣,孙恒虎. 2010. 煤矸石凝石似膏体充填材料的制备及其性能[J]. 煤炭学报, 35 (6): 896~899.

    冯国瑞,任亚峰,张绪言,等. 2011. 塔山矿充填开采的粉煤灰活性激发实验研究[J]. 煤炭学报, 36 (5): 732~737.

    郭广礼,王悦汉,马占国. 2004. 煤矿开采沉陷有效控制的新途径[J]. 中国矿业大学学报, 33 (2): 150~153.

    郭捷,马凤山,徐嘉谟. 2014. 陡倾矿体充填法开采引起地表移动的实例分析[J]. 工程地质学报, 22 (5): 958~964.

    韩斌,吴爱祥,王贻明,等. 2012. 低强度粗骨料超细全尾砂自流胶结充填配合比优化及应用[J]. 中南大学学报(自然科学版), 43 (6): 2357~2362.

    郝文霞,张雄. 2005. 粉煤灰颗粒群特征及其与水泥胶砂性能的关系[J]. 建筑材料学报, 8 (3): 244~249.

    黄庆享,李亮. 2011. 充填材料及其强度研究[J]. 煤矿开采, 16 (3): 38~42.

    黄玉诚,董羽,段仲捷,等. 2013. 似膏体充填水体下采煤技术实践[J]. 中国矿业, 22 (7): 80~82.

    李秀山,曹忠,柳成懋,等. 2012. 岱庄煤矿条带煤柱矸石膏体充填开采地表沉陷研究[J]. 煤炭工程,(4):85~87.

    林东才,栾恒杰. 2013. 薄煤层井下泵送矸石充填开采技术研究[J]. 山东科技大学学报(自然科学版), 32 (5): 8~12.

    刘宝举,谢友均,张艳芹. 2003. 粉煤灰细度和掺量对水泥基材料性能的影响[J]. 建筑材料学报, 6 (4): 426~430.

    刘建功. 2011. 冀中能源低碳生态矿山建设的研究与实践[J]. 煤炭学报, 36 (2): 317~321.

    马凤山,赵海军,郭捷,等. 2014. 金川二矿区多中段开采对地表岩移的影响研究[J]. 工程地质学报, 22 (4): 757~764.

    马立强,李永升. 2010. 煤矿井下矸石置换煤炭清洁生产技术[J]. 煤炭学报, 35 (5): 816~819.

    缪协兴,王安,孙亚军,等. 2009. 干旱半干旱矿区水资源保护性采煤基础与应用研究[J]. 岩石力学与工程学报, 28 (2): 217~227.

    缪协兴. 2010. 采动岩体的力学行为研究与相关工程技术创新进展综述[J]. 岩石力学与工程学报, 29 (10): 1988~1998.

    莫技. 2010. 煤矸石似膏体自流充填绿色开采技术研究与实施[J]. 煤炭工程,(5): 47~49.

    钱鸣高,许家林,缪协兴. 2003. 煤矿绿色开采技术[J]. 中国矿业大学学报, 32 (4): 343~348.

    陕西省建筑科学研究院. 2009. 建筑砂浆基本性能试验方法标准(JGJ/T70-2009)[S].北京:中国建筑工业出版社.

    史俊伟,魏中举,刘庆龙,等. 2011. 基于正交试验的煤矿安全开采充填材料配比优化研究[J]. 中国安全科学学报, 21 (6): 111~115.

    孙凯华. 2014. 风积砂似膏体煤矿充填材料特性试验研究[J]. 煤炭技术, 33 (5): 262~265.

    田振清,翟海龙,袁书军. 2013. 平煤股份一矿戊8-22180工作面膏体材料充填沿空留巷的设计研究[J]. 山东煤炭科技,(5): 106~111.

    王健,吕宪俊,胡术刚,等. 2010. 大掺量粉煤灰胶结充填料浆的胶结性能研究[J]. 中国矿业, 19 (3): 95~98.

    王新民,曹刚,龚正国. 2008. 煤矸石作充填骨料的似膏体料浆流动性能试验研究[J]. 矿业快报,(1): 20~23.

    王新民,史良贵,肖智政,等. 2004. 减水剂在充填料浆中的作用机理及应用研究[J]. 金属矿山,(4): 11-13, 37.

    谢德瑜. 2011. 建筑物下矸石充填巷式开采技术应用[J]. 煤炭工程,(9): 31~33.

    赵才智,周华强,瞿群迪,等. 2004. 膏体充填材料力学性能的初步实验[J]. 中国矿业大学学报, 33 (2): 159~161.

    周华强,侯朝炯,孙希奎,等. 2004. 固体废物膏体充填不迁村采煤[J]. 中国矿业大学学报, 33 (2): 154~158.

    朱志彬,刘成平. 2008. 充填体强度计算及稳定性分析[J]. 采矿技术, 8 (3): 15~17, 25.
  • 期刊类型引用(12)

    1. 王树帅,杨仁树,李永亮,岳中文. 风积沙胶结充填体力学特性与破坏特征研究. 采矿与安全工程学报. 2025(02): 418-429 . 百度学术
    2. 王树帅,岳中文,康一强,罗磊. 风积沙充填开采应用现状及材料性能研究. 矿业科学学报. 2024(02): 217-232 . 百度学术
    3. 王树帅,徐斌,李杨,杨震. 基于RSM-BBD法胶结充填材料配比优化及工程应用. 煤田地质与勘探. 2023(03): 73-84 . 百度学术
    4. 许晨,王晓东,武博强,韩乐. 风积砂质胶凝材料充填性能及其在采空区治理中的应用. 煤炭技术. 2023(12): 191-195 . 百度学术
    5. 王树帅,李永亮,李清,王梓旭,王宇轩. 基于泰波理论的矸石级配系数对充填材料性能的影响. 采矿与安全工程学报. 2022(04): 683-692 . 百度学术
    6. 余伟健,万幸,刘芳芳,王直. 红土膏体充填材料及其物理特性试验研究. 煤炭科学技术. 2021(02): 61-68 . 百度学术
    7. 曹晓凡,唐亦川,邓念东,周阳,尚慧,王毅. 基于风积砂的膏体充填材料研制. 矿业研究与开发. 2020(01): 43-48 . 百度学术
    8. 白仲荣. 浆液-风积沙双相介质充填材料堆积角度实验研究. 煤田地质与勘探. 2020(03): 24-28+34 . 百度学术
    9. 曹晓凡,唐亦川,邓念东,尚慧,王毅. 基于重复正交试验的风积砂膏体充填材料配比. 煤矿安全. 2020(09): 65-70 . 百度学术
    10. 苏占东,孙进忠,周富彪,郑跃. 风积沙改性土热物理性质的测试与分析. 水利水电技术. 2019(07): 153-159 . 百度学术
    11. 许刚刚,王晓东,朱世彬,武博强,王海. 黄土对风积砂质高浓度胶结充填材料性能的影响. 煤矿安全. 2018(08): 27-30+34 . 百度学术
    12. 刘鹏亮,张华兴,崔锋,孙凯华,孙万明. 风积砂似膏体机械化充填保水采煤技术与实践. 煤炭学报. 2017(01): 118-126 . 百度学术

    其他类型引用(9)

计量
  • 文章访问数:  2400
  • HTML全文浏览量:  217
  • PDF下载量:  582
  • 被引次数: 21
出版历程
  • 收稿日期:  2015-01-06
  • 修回日期:  2015-03-10
  • 刊出日期:  2016-02-24

目录

    /

    返回文章
    返回