Structural Patterns of Thrust-Related Folds of Deepwater Fold and Thrust Belts in NW Borneo
-
摘要: 深水褶皱冲断带的构造形态和特征会随着时间而变化进而影响深水油气勘探开发,而针对这个方面的研究在西北婆罗洲褶皱冲断带内相对薄弱.利用地震和地质相结合的方法,确定了逆冲相关褶皱的构造样式,探讨了其形成演化过程和主控因素,建立了研究区逆冲相关褶皱成藏模式.结果表明:研究区深水褶皱冲断带内发育隐伏型、顶部断裂型、滑塌型以及埋藏型4种逆冲相关褶皱构造样式,且平面上这4种逆冲相关褶皱自海向陆依次发育,其中隐伏型背斜褶皱幅度较低,海底无突出地形显示,主要发育于褶皱冲断带最前端;顶部断裂型背斜在海底有清晰的地形显示,以背斜顶部断裂发育为特征;滑塌型背斜顶部受正断层效应影响,翼部发育块体滑塌沉积;埋藏型背斜主要发育于现今陆架边缘附近,上覆厚层沉积层,在海底无突出地形表现.研究区所发育的4种逆冲相关褶皱构造是成因上有密切联系的统一整体,一个典型逆冲相关褶皱的形成大致经历滑脱、初始逆冲、强烈逆冲和埋藏4个阶段,依次发育隐伏型、顶部断裂型、滑塌型以及埋藏型4种背斜构造样式.同时,沿逆冲褶皱冲断带走向,受地形、沉积物供给、天然气水合物发育等因素控制,在同一挤压应力作用下,不同部位发育的逆冲相关褶皱样式存在差异性.在这种特殊的构造背景下,研究区发育独特的断裂控藏模式,极具勘探潜力.Abstract: The structure and characteristics of deepwater fold and thrust belts (DFTBs) can change with time and thus affect the exploration and development of deepwater oil and gas, while the research on this aspect is relatively weak in the DFTBs of NW Borneo. Based on the combination method of seismic and geology, this paper determines the structural patterns of thrust-related folds, discusses the formation process and controlling factors, establishes the accumulation model of thrust-related folds in the study area. The results show that four types of structural patterns of thrust-related folds develop in the DFTBs of NW Borneo, namely, hidden type, crest faulted type, slump type and buried type, and on the planar the above four type thrust-related folds successively distribute from sea to land. The amplitude of anticline fold of hidden type is relatively low, with no obvious seafloor expression, mainly forming in the foremost of DFTBs. The crest faulted type is characterized by the development of faults in the crest of anticline, with apparent seafloor relief. The crest of slump type anticline is influenced by the normal faults, with flanks associated with slides and slumps. The buried type anticlines mainly develop close to the shelf margin, buried by a thick sedimentary overburden, with no prominent seafloor expression. Four type thrust-related folds structures stage, with hidden type, crest faulted type, slump type and buried type anticline, successively developed. At the same time, if viewed along the strike of the DFTBs, there are significant variations in the geometry of laterally corresponding thrust-related folds under the same compression, controlled by the topography, differential sediment input and the development of subsurface gas hydrates. Under this special tectonic background, a unique fault-controlled accumulation model forms in the study area, with favorable exploration potential.
-
Key words:
- deepwater fold and thrust belt /
- thrust structure /
- anticline /
- structural style /
- NW Borneo /
- South China Sea /
- petroleum geology
-
0. 引言
深水褶皱冲断带既可以发育于挤压背景下的活动陆缘也可以形成于伸展背景下的被动陆缘,在世界范围内该褶皱冲断带内所发育的一系列挤压背斜型圈闭一直都是深水油气勘探的重点领域之一(Ingram et al., 2004; Hesse et al., 2009; Morley et al., 2011).大量研究表明,深水褶皱冲断带的构造形态和特征会随着时间而变化(Rowan et al., 2004;Hesse et al., 2010a, 2010b; Morley et al., 2011),比如在褶皱冲断带发育的晚期,海底滑塌或块体流更易频发,这对于带内陆坡上安装的海洋钻井设备而言是一个潜在的威胁(Hovland and Gudmestad, 2013).因此,深刻理解深水褶皱冲断带逆冲相关褶皱构造样式及形成过程对于深水油气勘探开发意义重大.
西北婆罗洲深水褶皱冲断带呈NE-SW向展布(图 1),由一系列逆冲相关褶皱组成,为现今仍活跃的褶皱冲断带.前人对该褶皱冲断带的构造特征如变形时期、变形样式和构造分段性等开展了大量研究,揭示了其成因机制,认为基底驱动的地壳缩短作用和重力滑动两大因素主控其挤压变形过程(Ingram et al., 2004; Morley, 2007a; Franke et al., 2008; Hall et al., 2008; Morley and Back, 2008; Hesse et al., 2009),这些成果对于建立其构造变形地质模型起了重要作用.然而,需要注意的是持续存在的挤压作用会导致逆冲相关褶皱构造样式发生变化(Morley, 2007b, 2009; Hesse et al., 2009),针对这个方面的研究在西北婆罗洲褶皱冲断带内相对薄弱,存在的主要问题包括:(1)该构造带内发育哪些逆冲相关褶皱构造样式,特征如何?(2)这些逆冲相关褶皱之间是否存在内在联系?其形成过程是否相关?受何种因素控制?(3)该带逆冲相关构造的成藏模式是什么?深入探讨上述问题对开展活动陆缘挤压背景下深水褶皱冲断带的构造地质建模、揭示逆冲相关褶皱形成机理和动力学过程、进而分析该构造带内油气聚集规律,都十分重要.鉴于此,本文利用地震和地质相结合的方法,对西北婆罗洲深水褶皱冲断带逆冲相关褶皱构造样式及其形成过程进行了探讨.
1. 区域地质概况
婆罗洲是南海南缘的一个重要地质构造单元,其北邻南海洋盆,东靠苏禄海和西里伯斯海,西接巽他陆架,南部和西南部为爪哇和苏门答腊岛(Hesse et al., 2009),周缘被洋盆、岛弧和板块边缘所包围,构造活动极为复杂.前人对婆罗洲北部主要地质单元的构造演化进行了系统总结(Hinz et al., 1989; Hutchison, 1996a, 1996b; Milsom et al., 1997; Petronas, 1999; Hall and Wilson, 2000; Hutchison et al., 2000; Morley et al., 2003; Hall et al., 2008; Morley and Back, 2008),认为婆罗洲西北部和中部形成于中生代—第四纪,记录了包括洋壳和陆壳在内的复杂板块构造运动历史.现今西北婆罗洲是一个多山地区,出露白垩系—始新世逆冲褶皱及局部变质的深水碎屑沉积(拉让—克罗克群出露于克罗克山脉上,详见Hutchison(1996a, 1996b))以及始新统—下中新统富砂型浊积体(van Hattum et al., 2006),这些沉积物代表着增生楔内或邻近增生楔的深水沉积单元,为古南海沿东南向俯冲至西北婆罗洲之下作用而成.许多学者还指出西北婆罗洲下伏中生代蛇绿岩(Hutchison, 1996a; Hall and Wilson, 2000),特别是在沙巴中部出现Telupid蛇绿岩(Hutchison, 1996a; Morley and Back, 2008).
古新世期间,古南海开始关闭,沿SE向俯冲至西北婆罗洲之下(雷超等,2015).晚渐新世—早中新世,随着南海扩张,南沙地块陆壳减薄,与华南陆缘裂离,向南漂移(Taylor and Hayes, 1983; Briais et al., 1993),位于南沙地块东南缘的古南海继续俯冲.在古南海洋壳完全俯冲殆尽之后,早中新世晚期南沙地块的陆壳部分俯冲至西北婆罗洲盆地克罗克组之下(James, 1984; Levell, 1987; Hazebroek and Tan, 1993; Hall, 1996; Hutchison, 1996a, 1996b; Sandal, 1996; Milsom et al., 1997).随后,婆罗洲北部经历了多期挤压变形过程,造山带隆升遭受剥蚀,三角洲携带大量碎屑物质向盆地内推进,盆地深水区发育褶皱冲断带(Sandal, 1996; Morley et al., 2003; Ingram et al., 2004)(图 2).
2. 逆冲相关褶皱构造样式
西北婆罗洲发育的深水褶皱冲断带从文莱海域一直延伸到沙巴地区,延伸距离约为250 km,具有“南宽北窄”的特点,南部宽约110 km,北部宽约80 km,逆冲方向为NW向、倾向SE(图 1).整个褶皱冲断带以发育多个特征显著、呈NE-SW向展布的构造脊为特征,这些构造脊为逆冲断层上盘背斜顶盖的响应(图 3).研究区发育的背斜常具有一个较陡的前翼,形成于伴生逆冲断层的上盘,背斜以不对称为主.大多数的背斜在海底有清晰的地形表现,背斜之间发育微盆地,形成局部沉积中心.在上陆坡临近西北婆罗洲陆架区域,许多褶皱上覆厚层沉积盖层,局部受生长断层影响.
图 3 西北婆罗洲深水褶皱冲断带典型深度域地震剖面及解释结果剖面位置见图 1Fig. 3. Typical depth-migrated seismic sections and interpreted results of deepwater fold and thrust belt of NW Borneo笔者通过对研究区多条深度域地震剖面的解释发现西北婆罗洲深水褶皱冲断带逆冲断层上盘的背斜构造样式差异显著,在研究区北部逆冲断层倾角较陡、以发育窄翼角紧闭背斜为主,褶皱之间距离短,为2~5 km;南部逆冲断层倾角相对较小,以发育宽翼角缓背斜为主,褶皱之间距离相对较大,为4~15 km.整个褶皱冲断带内发育4种典型的背斜构造样式,分别是隐伏型背斜、顶部断裂型背斜、滑塌型背斜以及埋藏型背斜,不同背斜类型构造特征及分布规律差异明显(图 4,5).
图 4 西北婆罗洲深水褶皱冲断带逆冲相关褶皱构造样式剖面位置见图 3Fig. 4. Thrust-related fold styles of deepwater fold and thrust belt in NW Borneo图 5 西北婆罗洲深水褶皱冲断带逆冲相关褶皱分布规律剖面位置见图 1Fig. 5. The distribution of thrust-related fold of deepwater fold and thrust belt in NW Borneo2.1 隐伏型背斜
隐伏型背斜幅度较低、海底无突出地形显示,主要发育于褶皱冲断带最远端(图 3,5).背斜呈平滑浑圆状,具对称形态,两翼倾角为1°~5°,翼间角为170°~175°,形成该类背斜的逆冲断层位移很小、超出了地震分辨率(图 4a).隐伏型背斜常在海平面之下2 800~2 900 m的深度范围开始发育,其背斜周围沉积地层厚度不变,仅在最顶部、最年轻地层出现地层厚度向背斜顶部稍微减少的趋势.在局部范围内,背斜核部出现近海底模拟反射(BSRs),地震反射振幅明显反转,Hesse et al.(2009)认为其可能为天然气水合物底部游离气藏.
2.2 顶部断裂型背斜
顶部断裂型背斜在海底有清晰的背斜地形显示,主要发育于褶皱冲断带靠近陆地方向的位置(图 3,5).该类背斜以顶部发育断裂为特征(图 4b),且背斜多向盆地方向收敛.顶部断裂型背斜翼间角通常在140°~170°之间,发育于水深2 100~2 700 m处.该类背斜下伏逆冲断层分叉现象常见,多以盲冲断层的样式终止.顶部断裂型背斜前翼相对陡窄,倾角为10°~20°,地震上呈弱反射或空白反射,可能是流体造成或由大量超过地震分辨率的微小正断层所致.后翼相对较宽,倾向陆地,倾角平均为13°.
顶部断裂型背斜以背斜顶部发育大量板状或略微弯曲的小规模正断层为标志,且倾向陆地方向的断层明显少于倾向深水方向的断层(图 4b).背斜顶部断层错段的深度通常向背斜翼部减小,表明这些断层越远离背斜顶部越年轻.该类背斜顶部断层主要是重力作用的响应,虽然弯曲应力也起了重要作用(Strayer et al., 2004).在水深2 600 m以下,BSRs在顶部断裂型背斜上广泛分布,最明显的近海底反射(BSR)均出现在单个背斜的核部(图 4b),而天然气水合物的标志向背斜翼部逐渐减弱,其成因可能与游离气运移到天然气水合物层之上的背斜构造顶点有关.
2.3 滑塌型背斜
滑塌型背斜为研究区深水褶皱冲断带最为发育的背斜构造样式,这些背斜在海底有清晰突出的地形显示(除顶部被侵蚀殆尽外),背斜顶部受正断层效应影响,翼部发育块体滑塌沉积(图 4c).滑塌型背斜翼角平均为135°,发育于水深2 100~1 000 m处,背斜下伏的逆冲断层常伴随一定程度的弯曲,断层倾角为40°~50°(图 3a),除少数出露海底外,大部分断层上盘以盲冲断层的样式终止.
滑塌型背斜的前翼通常较陡,倾角平均为25°,向陆方向倾角逐渐变大.由于受偏移地震信号的影响,陡倾的前翼在地震上通常呈透明状反射.滑塌型背斜后翼倾角较前翼小,平均为20°.与顶部断裂型背斜类似,滑塌型背斜也受顶部正断层作用影响,不同的是该类背斜受重力驱动斜坡滑塌作用的控制,背斜翼部滑塌沉积发育,剖面以杂乱地震反射特征为主(图 3,4c).滑塌沉积物多从较陡的前翼滑塌而来,堆积在各自靠近盆地方向逆冲顶部发育的微盆地中.在极少数情况下,当背斜顶部堆积的沉积物达到临界滑塌点时,滑塌型背斜顶部遭受削截作用侵蚀殆尽,此时滑塌沉积物可来源于背斜后翼,而这一作用过程最有可能发生在那些由顶部断层和古BSR所形成的岩性薄弱带处.
2.4 埋藏型背斜
埋藏型背斜主要发育于现今陆架边缘附近,由于上覆地层沉积厚度大,其在海底并无明显突出的地形表现,所有背斜均处于埋藏阶段(图 3,5).局部地区埋藏型背斜附近呈杂乱反射,指示泥底辟或气烟囱的存在.许多疑似埋藏型背斜仅有很弱的地震信号响应,这可能与褶皱陡峭面的地震反射成像受限制有关(Lynn and Deregowskit, 1981).由于埋藏型背斜的地震信息受限,仅能在研究区南部的少数区域开展该类背斜的构造测量和地层解释.在这些区域,翼间角平均为90°~140°,而下伏逆冲断层倾角为60°~70°(图 3,4d).在某些地方,埋藏型背斜顶部出现异常高的振幅反射,指示可能存在气体或流体聚集成藏.
3. 讨论
3.1 逆冲相关褶皱构造样式形成演化过程
在西北婆罗洲沙巴海域深水褶皱冲断带内所形成的4种类型逆冲相关褶皱构造,从剖面上看具有一种向陆逐渐变窄的趋势(图 3),这与向陆方向各背斜顶部构造分块性逐渐增强、微盆地特征更清楚相一致.从平面上看自海向陆依次发育隐伏型背斜、顶部断裂型背斜、滑塌型背斜和埋藏型背斜(图 5),背斜幅度逐渐增大、紧闭性逐渐增强.因此,西北婆罗洲沙巴海域所发育的4种类型逆冲相关褶皱构造紧密相连,是一个连续的有机统一整体,按照时间顺序研究区内一个典型逆冲相关褶皱的形成大致经历4个阶段(图 6).
(1) 滑脱阶段:该阶段为逆冲相关褶皱形成的最初阶段,主要受重力作用影响,上覆地层由陆向海沿底界面滑脱形成背斜.由于该阶段逆冲活动较弱,所形成的宽缓隐伏型背斜幅度低,在海底并无明显突出的地形表现(图 6a).
(2) 初始逆冲阶段:随着逆冲挤压活动的增强,早期发育的宽缓隐伏型背斜挤压变窄和生长,背斜隆起幅度明显增大,且顶部地层变形程度超过最大塑性强度,发生破裂错断,形成顶部断裂型背斜,在海底有清晰的地形显示(图 6b).
(3) 强烈逆冲阶段:该阶段对应于逆冲活动的最强时期,受强烈挤压应力作用,背斜幅度进一步变窄,且背斜顶部断层效应增强,促进了背斜翼部的滑塌以及背斜地形的退积,导致滑塌型背斜构造样式发育(图 6c).
(4) 埋藏阶段:该阶段为逆冲相关褶皱发育的最终阶段,此时逆冲断层停止活动,研究区进入沉降期,陆架区搬运而来的大量沉积物迅速堆积于背斜构造之上,将其埋藏,使得该类背斜构造在海底也无明显突出地形(图 6d).
3.2 控制因素
研究表明逆冲推覆构造的形成与挤压作用、重力作用、差异负荷、浮力、地形等因素密切相关(李世琴等,2013;欧成华等,2016).而区域分析揭示晚中新世以来西北婆罗洲深水褶皱冲断带的形成是陆架区三角洲持续推进引起的重力滑脱作用与区域挤压应力所导致的地壳缩短作用共同作用的结果(Ingram et al., 2004; Morley, 2007a; Franke et al., 2008; Hall et al., 2008; Morley and Back, 2008; Hesse et al., 2009;韩冰等,2015),在这两种因素形成的统一应力场作用下,研究区发育类型多样、形态迥异、成因上有密切联系的逆冲相关褶皱构造样式.然而值得注意的是,沿着逆冲构造带走向,侧向上相对应的背斜形态仍有较大变化,因此对于同时期活动的逆冲构造,不能将不同逆冲相关褶皱类型的形成仅归因于褶皱发育的时间长短,一些其他因素可能也会影响逆冲相关褶皱样式分布的差异,如地形、沉积物供给、天然气水合物的发育等.
(1) 地形:研究区深水褶皱冲断带内其逆冲相关褶皱之间距离变化明显,具有自南向北逐渐减小的趋势(图 1).在研究区北段存在高速岩体,其可能是碳酸盐岩台地(Franke et al., 2008)或基底逆冲岩席(Hinz et al., 1989),晚上新世以来逆冲活动时期正是这一大型岩体起到固定屏障的作用,导致北部形成的高频逆冲背斜之间距离短且沿走向不均匀分布.这种南北褶皱间距的差异被翼间角的变化所记录:最北段滑塌型背斜仅40 km间距翼间角下降55°,而在中南部翼间角平均下降65°的距离在70~100 km之间.
(2) 沉积物供给:沉积物供给是影响深水褶皱冲断带构造样式的主要因素之一.研究区南部褶皱冲断带上陆坡区发育巨厚的上新世—第四纪地层,而北部相应的沉积却较少(图 7).巧合的是,南部普遍发育规模较大的逆冲顶部微盆,对应较大的背斜间距和较小的海底倾角.此外,南部较高的沉积物供给速率使得逆冲背斜在上陆坡即被埋藏,这也是埋藏型背斜易于在南部发育的原因.
图 7 西北婆罗洲深水褶皱冲断带逆冲相关褶皱形成主控因素a.海底地形;b.文莱近海和沙巴深水区上新世—全新世地层等厚图,据Morley and Back(2008)修改;c.研究区天然气水合物分布Fig. 7. Controlling factors of thrust-related fold of deepwater fold and thrust belt in NW Borneo(3) 天然气水合物:海底天然气水合物的存在与否影响上覆沉积层的稳定性,进而影响逆冲褶皱冲断带的发育.BSR被认为是天然气水合物的识别标志,该反射与各类型背斜构造样式叠合结果显示埋藏型背斜位于热动力稳定区域之外(图 7).基于西北婆罗洲水温(Gong et al., 1992;Sarnthein et al., 1994)和天然气水合物稳定图版(Slogan and Koh, 1990)计算的天然气水合物形成的最浅深度是600 m,这一深度与热带—亚热带其他地区公开的数据匹配良好(Mcleod, 1982).基于天然气水合物可能扮演陆坡稳定剂的假设(Bugge, 1983;Field, 1990; Kayen and Lee, 1990),笔者认为在许多顶部断裂型背斜缺乏陆坡退积可能与褶皱顶部天然气水合物的固结作用有关.然而,在天然气水合物不发育部位,背斜在较大翼间角的情况下容易发生陆坡退积.由于天然气水合物的存在,研究区陆坡退积的临界翼间角可能比天然气水合物不发育地区要小.
3.3 逆冲相关褶皱成藏模式
大量勘探实践表明,深水褶皱冲断带内逆冲构造的活动不仅有利于形成构造圈闭,而且有助于改善油气运聚条件,易形成大中型油气田(何登发和贾承造,2005),尼日尔三角洲和墨西哥湾等地区深水褶皱冲断带内众多的油气发现即是实证(Rowan et al., 2004; 邓荣敬等,2008).钻井证实西北婆罗洲地区发育中中新统、上中新统和上新统三套烃源岩,且中中新世—上新世时期,三角洲携带大量沉积物推进到陆架边缘并通过峡谷水道向深水区搬运,在深水褶皱冲断带内堆积大量富砂型浊积扇(Cullen,2010;Lambiase and Cullen, 2013),而上覆厚层的海相泥岩可作为良好的区域性盖层,垂向上形成良好的生储盖组合.此外,中中新世—上新世时期陆架区三角洲砂体的持续进积导致深水区重力滑脱形成褶皱冲断带,发育一系列逆冲相关褶皱构造,并在背斜顶部发育断裂体系(图 3,4).整个逆冲构造体系中,逆冲断层根部插入下伏泥岩,沿滑脱面收敛消失,而持续的逆冲活动导致逆冲相关褶皱顶部衍生出许多正断层,造成构造高部位形成低势区.在这种特殊的构造背景下,除褶皱带前端隐伏型背斜发育区外,下部烃源岩层生成的油气沿逆冲断裂垂向运移至背斜圈闭聚集成藏后,继续沿着背斜顶部断层向上运移至有效圈闭内,形成独特的断裂控藏模式(图 8);且背斜顶部断裂越发育,其浅层越易成藏,因此研究区所发育的逆冲相关褶皱中,顶部断裂型背斜和滑塌型背斜成藏潜力更大.西北婆罗洲深水褶皱冲断带内该类逆冲相关褶皱构造及其顶部已发现多个油气田(Ingram et al., 2004),显示了巨大的油气勘探潜力.
4. 结论
(1) 西北婆罗洲深水褶皱冲断带内发育4种典型的逆冲相关褶皱构造样式,分别是隐伏型背斜、顶部断裂型背斜、滑塌型背斜以及埋藏型背斜,其中隐伏型背斜褶皱幅度较低,海底无突出地形显示;顶部断裂型背斜在海底有清晰的地形显示,以背斜顶部发育断裂为特征;滑塌型背斜顶部受正断层效应影响,翼部发育块体滑塌沉积;埋藏型背斜主要发育于现今陆架边缘附近,上覆厚层沉积层,在海底无突出地形表现.
(2) 研究区所发育的4种逆冲相关褶皱构造是成因上有密切联系的统一整体,从平面上看自海向陆依次发育隐伏型背斜、顶部断裂型背斜、滑塌型背斜和埋藏型背斜,背斜幅度逐渐增大、紧闭性逐渐增强;逆冲相关褶皱的形成按照时间顺序大致经历滑脱、逆冲增强、强烈逆冲和埋藏4个阶段,依次形成上述4种背斜构造样式.
(3) 研究区深水褶皱冲断带的形成是重力滑脱作用与区域挤压应力导致的地壳缩短作用共同作用的结果,在两者统一挤压应力场作用下,地形、沉积物供给、天然气水合物的发育等因素主控逆冲相关褶皱构造样式的特征.
致谢: 论文在完成过程中得到德国亚琛大学地质研究所Susanne Hesse教授提供的宝贵地震资料的支持,中国地质大学(武汉)沈传波教授、外审专家及编辑部提出了许多建设性的修改意见,在此一并表示衷心感谢! -
图 1 西北婆罗洲构造纲要图
Fig. 1. Schematic structural map showing key tectonic elements in NW Borneo
图 3 西北婆罗洲深水褶皱冲断带典型深度域地震剖面及解释结果
剖面位置见图 1
Fig. 3. Typical depth-migrated seismic sections and interpreted results of deepwater fold and thrust belt of NW Borneo
图 4 西北婆罗洲深水褶皱冲断带逆冲相关褶皱构造样式
剖面位置见图 3
Fig. 4. Thrust-related fold styles of deepwater fold and thrust belt in NW Borneo
图 5 西北婆罗洲深水褶皱冲断带逆冲相关褶皱分布规律
剖面位置见图 1
Fig. 5. The distribution of thrust-related fold of deepwater fold and thrust belt in NW Borneo
图 7 西北婆罗洲深水褶皱冲断带逆冲相关褶皱形成主控因素
a.海底地形;b.文莱近海和沙巴深水区上新世—全新世地层等厚图,据Morley and Back(2008)修改;c.研究区天然气水合物分布
Fig. 7. Controlling factors of thrust-related fold of deepwater fold and thrust belt in NW Borneo
-
Briais, A., Patriat, P., Tapponnier, P., 1993.Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea:Implications for the Tertiary Tectonics of Southeast Asia.Journal of Geophysical Research:Solid Earth, 98(B4):6299-6328. https://doi.org/10.1029/92jb02280 Bugge, T., 1983.Submarine Slides on the Norwegian Continental Margin, with Special Emphasis on the Storegga Area (Dissertation).Continental Shelf Institute, Trondheim, 110-152. Cullen, A.B., 2010.Transverse Segmentation of the Baram-Balabac Basin, NW Borneo:Refining the Model of Borneo's Tectonic Evolution.Petroleum Geoscience, 16(1):3-29. https://doi.org/10.1144/1354-079309-828 Deng, R.J., Deng, Y.H., Yu, S., et al., 2008.Hydrocarbon Geology and Reservoir Formation Characteristics of Niger Delta Basin.Petroleum Exploration and Development, 35(6):755-762(in Chinese with English abstract). Field, M.E., 1990.Submarine Landslides Associated with Shallow Seafloor Gas and Gas Hydrates off Northern California.AAPG Bulletin, 74:971-972. https://doi.org/10.1306/44b4c3e6-170a-11d7-8645000102c1865d Franke, D., Barckhausen, U., Heyde, I., et al., 2008.Seismic Images of a Collision Zone Offshore NW Sabah/Borneo.Marine and Petroleum Geology, 25(7):606-624. https://doi.org/10.1016/j.marpetgeo.2007.11.004 Gong, G.C., Liu, K.K., Liu, C.T., et al., 1992.The Chemical Hydrography of the South China Sea West of Luzon and a Comparison with the West Philippine Sea.Terrestrial, Atmospheric and Oceanic Sciences, 3(4):587-602. https://doi.org/10.3319/tao.1992.3.4.587(o) Hall, R., 1996.Reconstructing Cenozoic SE Asia.Geological Society, London, Special Publication, 106:153-184. https://doi.org/10.1144/gsl.sp.1996.106.01.11 Hall, R., Wilson, M.E.J., 2000.Neogene Sutures in Eastern Indonesia.Journal of Asian Earth Sciences, 18(6):781-808. https://doi.org/10.1016/s1367-9120(00)00040-7 Hall, R., van Hattum, M.W.A., Spakman, W., 2008.Impact of India-Asia Collision on SE Asia:The Record in Borneo.Tectonophysics, 451:366-389. https://doi.org/10.1016/j.tecto.2007.11.058 Han, B., Zhu, B.D., Wan, L., et al., 2015.Deep-Water Fold and Thrust Tectonics in Southeastern Nansha Trough.Geological Review, 61(5):1061-1067(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201505009.htm Hazebroek, H.P., Tan, D.N.K., 1993.Tertiary Tectonic Evolution of the NW Sabah Continental Margin.Bulletin of the Geological Society of Malaysia, 33:195-210. https://doi.org/10.1306/f4c8fb24-1712-11d7-8645000102c1865d He, D.F., Jia, C.Z., 2005.Thrust Tectonics and Hydrocarbon Accumulation.Petroleum Exploration and Development, 32(2):55-62(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-skyk20050200d.htm Hesse, S., Back, S., Franke, D., 2009.The Deep-Water Fold-and-Thrust Belt Offshore NW Borneo:Gravity-Driven versus Basement-Driven Shortening.Geological Society of America Bulletin, 121(5-6):939-953. https://doi.org/10.1130/b26411.1 Hesse, S., Back, S., Franke, D., 2010a.The Structural Evolution of Folds in a Deepwater Fold and Thrust Belt-A Case Study from the Sabah Continental Margin Offshore NW Borneo, SE Asia.Marine and Petroleum Geology, 27(2):442-454. https://doi.org/10.1016/j.marpetgeo.2009.09.004 Hesse, S., Back, S., Franke, D., 2010b.Deepwater Folding and Thrusting Offshore NW Borneo, SE Asia.Geological Society, London, Special Publications, 348(1):169-185. https://doi.org/10.1144/sp348.9 Hinz, K., Fritsch, J., Kempter, E.H.K., et al., 1989.Thrust Tectonics along the North-Western Continental Margin of Sabah/Borneo.Geologische Rundschau, 78(3):705-730. https://doi.org/10.1007/bf01829317 Hovland, M., Gudmestad, O.T., 2013.Potential Influence of Gas Hydrates on Seabed Installations.Geophysical Monograph Series, 124:307-315. https://doi.org/10.1029/gm124p0307 Hutchison, C.S., 1996a.The "Rajang Accretionary Prism" and "Lupar Line" Problem of Borneo.Geological Society, London, Special Publication, 106(1):247-261. https://doi.org/10.1144/gsl.sp.106.01.16 Hutchison, C.S., 1996b.South-East Asian Oil, Gas, Coal and Mineral Deposits.In:Menzies, M.A., ed., Oxford Monographs on Geology and Geophysics.Clarendon Press, Oxford. Hutchison, C.S., Bergman, S.C., Swauger, D.A., et al., 2000.A Miocene Collisional Belt in North Borneo:Uplift Mechanism and Isostatic Adjustment Quantifıed by Thermochronology.Journal of the Geological Society, 157:783-793. https://doi.org/10.1144/jgs.157.4.783 Ingram, G.M., Chisholm, T.J., Grant, C.J., et al., 2004.Deepwater North West Borneo:Hydrocarbon Accumulation in an Active Fold and Thrust Belt.Marine and Petroleum Geology, 21(7):879-887. https://doi.org/10.1016/j.marpetgeo.2003.12.007 James, D.M.D., 1984.The Geology and Hydrocarbon Resources of Negara Brunei Darussalam.Brunei Museum and Brunei Shell Petroleum Company, Syabas Bandar Seri Begawan. Kayen, R.E., Lee, H.J., 1990.Seafloor Landslides in Regions of Gas Hydrate, a Global Change Perspective.AAPG Bulletin, 74:982-983. https://doi.org/10.1306/20b22125-170d-11d7-8645000102c1865d Lambiase, J.J., Cullen, A.B., 2013.Sediment Supply Systems of the Champion "Delta" of NW Borneo:Implications for Deepwater Reservoir Sandstones.Journal of Asian Earth Sciences, 76:356-371. https://doi.org/10.1016/j.jseaes.2012.12.004 Lei, C., Ren, J.Y., Zhang, J., 2015.Tectonic Province Divisions in the South China Sea:Implication for Basin Geodynamics.Earth Science, 40(4):744-762(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2015.062 Levell, B.K., 1987.The Nature and Signifıcance of Regional Unconformities in the Hydrocarbon-Bearing Neogene Sequence Offshore West Sabah.Geological Society of Malaysia Bulletin, 21:55-90. http://www.gsm.org.my/content.php?id=54&pid=702001-101135 Li, S.Q., Tang, P.C., Rao, G., 2013.Cenozoic Deformation Characteristics and Controlling Factors of Kalayuergun Structural Belt, Kuqa Fold and Thrust Belt, Southern Tianshan.Earth Science, 38(4):859-869(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2013.084 Lynn, H.B., Deregowski, S., 1981.Dip Limitations on Migrated Sections as a Function of Line Length and Recording Time.Geophysics, 46(10):1392-1397. https://doi.org/10.1190/1.1441146 MacLeod, M.K., 1982.Gas Hydrates in Ocean Bottom Sediments.AAPG Bulletin, 66(12):2649-2662. https://doi.org/10.1306/03b5ac8c-16d1-11d7-8645000102c1865d Milsom, J., Holt, R., Ayub, D.B., et al., 1997.Gravity Anomalies and Deep Structural Controls at the Sabah-Palawan Margin, South China Sea.In:Frazer, A.J., Matthews, S.J., Murphy, R.W., eds., Petroleum Geology of Southeast Asia.Geological Society, London, Special Publication, 126:417-427.https://doi.org/10.1144/gsl.sp.1997.126.01.25 Morley, C.K., 2007a.Interaction between Critical Wedge Geometry and Sediment Supply in a Deep-Water Fold Belt.Geology, 35(2):139. https://doi.org/10.1130/g22921a.1 Morley, C.K., 2007b.Development of Crestal Normal Faults Associated with Deepwater Fold Growth.Journal of Structural Geology, 29(7):1148-1163. https://doi.org/10.1016/j.jsg.2007.03.016 Morley, C.K., 2009.Growth of Folds in a Deep-Water Setting.Geosphere, 5(2):59-89. https://doi.org/10.1130/ges00186.1 Morley, C.K., Back, S., 2008.Estimating Hinterland Exhumation from Late Orogenic Basin Volume, NW Borneo.Journal of the Geological Society, 165(1):353-366. https://doi.org/10.1144/0016-76492007-067 Morley, C.K., Back, S., van Rensbergen, P., et al., 2003.Characteristics of Repeated, Detached, Miocene-Pliocene Tectonic Inversion Events, in a Large Delta Province on an Active Margin, Brunei Darussalam, Borneo.Journal of Structural Geology, 25(7):1147-1169. https://doi.org/10.1016/s0191-8141(02)00130-x Morley, C.K., King, R., Hillis, R., et al., 2011.Deepwater Fold and Thrust Belt Classification, Tectonics, Structure and Hydrocarbon Prospectivity:A Review.Earth-Science Reviews, 104(1-3):41-91. https://doi.org/10.1016/j.earscirev.2010.09.010 Ou, C.H., Chen, W., Han, Y.Z., et al., 2016.Geometric Analysis and Kinematic Simulation of Oblique-Thrust Fault-Related-Fold of Buzurgan Anticline in Zagros Basin.Earth Science, 41(3):385-393(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.030 Petronas, 1999.The Petroleum Geology and Resources of Malaysia.Petoliam Nasional Berhad, Kuala Lumpur. Rowan, M.G., Peel, F.J., Vendeville, B.C., 2004.Gravity-Driven Fold Belts on Passive Margins.In:McClay, K.R., ed., Thrust Tectonics and Hydrocarbon Systems.American Association of Petroleum Geologists, Tulsa. Sandal, S.T., 1996.The Geology and Hydrocarbon Resources of Negara Brunei Darussalam.Brunei Shell Petroleum Company/Brunei Museum, Syabas Bandar Seri Begawan. Sarnthein, M., Pflaumann, U., Wang, P.X., et al., 1994.Preliminary Report on Sonne-95 Cruise "Monitor Monson" to the South China Sea.Geologisch-Palaontologisches Institut und Museum, Christian-Albrechts-Universitat, Kiel. Sloan, E.D., Koh, C.A., 1990.Clatherate Hydrates of Natural Gases.CRC Press, Boca Raton. Strayer, L.M., Erickson, S.G., Suppe, J., 2004.Influence of Growth Strata on The Evolution of Fault-Related Folds-Distinct-Element-Models.In:McClay, K.R.ed., Thrust Tectonics and Hydrocarbon Systems.American Association of Petroleum Geologists, Tulsa. Taylor, B., Hayes, D.E., 1983.Origin and History of the South China Sea Basin.In:Hayes, D.E., ed., The Tectonic and Geologic Evolution of Southeastern Asian Seas and Islands:Part 2.American Geophysical Union, Washington D.C.. van Hattum, M.W.A., Hall, R., Pickard, A.L., et al., 2006.Southeast Asian Sediments not from Asia:Provenance and Geochronology of North Borneo Sandstones.Geology, 34(7):589-592. https://doi.org/10.1130/g21939.1 邓荣敬, 邓运华, 于水, 等, 2008.尼日尔三角洲盆地油气地质与成藏特征.石油勘探与开发, 35(6):755-762. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=skyk200806022&dbname=CJFD&dbcode=CJFQ 韩冰, 朱本铎, 万玲, 等, 2015.南沙海槽东南缘深水逆冲推覆构造.地质论评, 61(5):1061-1067. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzlp201505009&dbname=CJFD&dbcode=CJFQ 何登发, 贾承造, 2005.冲断构造与油气聚集.石油勘探与开发, 32(2):55-62. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=skyk20050200d&dbname=CJFD&dbcode=CJFQ 雷超, 任建业, 张静, 2015.南海构造变形分区及成盆过程.地球科学, 40(4):744-762. https://doi.org/10.3799/dqkx.2015.062 李世琴, 唐鹏程, 饶刚, 2013.南天山库车褶皱-冲断带喀拉玉尔滚构造带新生代变形特征及其控制因素.地球科学, 38(4):859-869. https://doi.org/10.3799/dqkx.2013.084 欧成华, 陈伟, 韩耀祖, 等, 2016.扎格罗斯盆地Buzurgan背斜斜向逆冲断裂褶皱的几何解析及运动学模拟.地球科学, 41(3):385-393. https://doi.org/10.3799/dqkx.2016.030 期刊类型引用(3)
1. 任自强,施小斌,王晓芳,赵鹏,谌永强. 南海南沙海槽深部热状态及其构造意义. 热带海洋学报. 2021(04): 98-109 . 百度学术
2. 赵丹. 伏龙泉断陷F井区构造样式与断裂特征分析. 石油知识. 2019(01): 60-62 . 百度学术
3. 李凯,沈传波,谢晓军,赵志刚,彭希,周延冰. 南沙西南部下地壳高速层成因. 地球科学. 2019(03): 810-821 . 本站查看
其他类型引用(1)
-