基于BSWT-DDTFA方法的地球天然脉冲电磁场震前信号时频分析研究

郝国成, 白雨晓, 吴敏, 王巍, 刘辉. 2018. 基于BSWT-DDTFA方法的地球天然脉冲电磁场震前信号时频分析研究. 地球物理学报, 61(10): 4063-4074, doi: 10.6038/cjg2018L0431
引用本文: 郝国成, 白雨晓, 吴敏, 王巍, 刘辉. 2018. 基于BSWT-DDTFA方法的地球天然脉冲电磁场震前信号时频分析研究. 地球物理学报, 61(10): 4063-4074, doi: 10.6038/cjg2018L0431
HAO GuoCheng, BAI YuXiao, WU Min, WANG Wei, LIU Hui. 2018. Time-frequency analysis of the Earth's natural pulse electromagnetic field before earthquake based on BSWT-DDTFA method. Chinese Journal of Geophysics (in Chinese), 61(10): 4063-4074, doi: 10.6038/cjg2018L0431
Citation: HAO GuoCheng, BAI YuXiao, WU Min, WANG Wei, LIU Hui. 2018. Time-frequency analysis of the Earth's natural pulse electromagnetic field before earthquake based on BSWT-DDTFA method. Chinese Journal of Geophysics (in Chinese), 61(10): 4063-4074, doi: 10.6038/cjg2018L0431

基于BSWT-DDTFA方法的地球天然脉冲电磁场震前信号时频分析研究

  • 基金项目:

    国家自然科学基金(61333002),教育部博士后基金(2015M582293),武汉市科技局攻关计划项目(2016060101010073),111项目(B17040)资助

详细信息
    作者简介:

    郝国成, 男, 1975年生, 副教授, 博士, 研究方向为地球天然脉冲电磁场方法及非平稳信号时频分析.E-mail:haogch@cug.edu.cn

  • 中图分类号: P318

Time-frequency analysis of the Earth's natural pulse electromagnetic field before earthquake based on BSWT-DDTFA method

  • 地球天然脉冲电磁场(ENPEMF)信号,可理解为地球天然变化磁场的瞬间扰动,携带了大量有用的地质构造及其动力学信息.研究ENPEMF信号所蕴含的时间-频率联合分布特点,有利于深入了解目标对象的地球物理现象及其地质动力学原理.本文针对ENPEMF信号的非平稳特点,在数据驱动时频分析方法(DDTFA)的基础上提出了基于二值化同步压缩小波变换的改进算法(BSWT-DDTFA).该算法可以实现数据驱动初始相位自动赋值的功能,具有自适应性.实验仿真和实际数据均证明了该改进算法不仅能够得到较为精确的频率曲线和更加清晰的时频分布,而且具有较强的抗噪声能力.以2013年芦山MS7.0地震为例,利用BSWT-DDTFA方法提取ENPEMF信号的时频特性,结果表明ENPEMF信号的时间-频率-幅度分布在震前有明显的异常特征.

  • 加载中
  • 图 1 

    ENEMF设备的工作原理

    Figure 1. 

    Working principle of the ENPEMF signal receiving device

    图 2 

    2013年4月20日芦山MS7.0地震所处地震带及周边地区活动断层图分布图(王杰等, 2013)

    Figure 2. 

    The seismic zone and distribution of surrounding active faults of Lushan MS7.0 earthquake on April 20th

    图 3 

    (a) ENPEMF原始数据的包络图(通道CN2);(b) 4月20日数据的傅里叶变换(FFT)频谱图

    Figure 3. 

    (a) Envelope of original ENPEMF data (channel 2); (b) Fourier transform (FFT) spectrum of the data on April 20th

    图 4 

    SWT算法流程图

    Figure 4. 

    The flow chart of SWT

    图 5 

    BSWT-DDTFA方法的流程图

    Figure 5. 

    The flow chart of BSWT-DDTFA

    图 6 

    不同方法分解得到的信号x1(t)和x2(t)的分量

    Figure 6. 

    IMFs of x1(t) and x2(t) decomposed by different methods

    图 7 

    仿真信号x1(t)和x2(t)的真实瞬时频率(虚线)和(a)EMD-DDTFA瞬时频率(实线); (b) BSWT-DDTFA瞬时频率(实线)

    Figure 7. 

    The actual instantaneous frequency (dashed) and (a) EMD-DDTFA instantaneous frequency (solid); (b) BSWT-DDTFA instantaneous frequency (solid) of signal x1(t) and x2(t)

    图 8 

    不同方法得到的仿真信号x1(t)和x2(t)的时频分布图

    Figure 8. 

    The time-frequency distribution of signal x1(t) and x2(t)

    图 9 

    不同信噪比下sig(t)由BSWT-DDTFA分解的分量

    Figure 9. 

    The components of sig(t) decomposed by BSWT-DDTFA with different SNR

    图 10 

    EMD-DDTFA和BSWT-DDTFA方法得到的IMF分量的绝对误差平均值

    Figure 10. 

    The average absolute error of the IMFs decomposed by EMD-DDTFA and BSWT-DDTFA

    图 11 

    不同信噪比下sig(t)由SWT和BSWT-DDTFA绘制的时频分布图

    Figure 11. 

    The time-frequency distribution of sig(t) plotted by SWT and BSWT-DDTFA with different SNR

    图 12 

    2013年芦山地震前后ENPEMF信号的时频分布的变化

    Figure 12. 

    The variation in time-frequency distribution of ENPEMF data before and after the Lushan earthquake in 2013

    表 1 

    通过不同方法得到的IMF分量的绝对误差平均值

    Table 1. 

    The absolute error of the IMFs obtained by the BSWT-DDTFA method

    算法 20 dB 15 dB 10 dB 5 dB 0 dB -5 dB -10 dB
    EMD-DDTFA 0.0302 0.0317 0.3676 0.3675 0.3710 0.3823 0.4255
    BSWT-DDTFA 0.0115 0.0134 0.0171 0.0240 0.0368 0.0610 0.1050
    下载: 导出CSV

    表 2 

    通道CN2的观测数据

    Table 2. 

    Observation data of the S-N Channel (CN2)

    17th April(cn2) 18th April(cn2) 19th April(cn2) 20th April(cn2) 21st April(cn2)
    Time AH Time AH Time AH Time AH Time AH
    - - - - - - - - - -
    14:57:50 0 14:57:50 376 07:54:04 0 22:23:43 0 11:10:42 0
    14:57:51 0 14:57:51 179 07:54:05 220 22:23:44 0 11:10:42 244
    14:57:52 256 14:57:52 0 07:54:06 229 22:23:45 234 11:10:42 0
    14:57:53 468 14:57:53 0 07:54:07 217 22:23:46 0 11:10:42 476
    14:57:54 0 14:57:54 167 07:54:08 0 22:23:47 181 11:10:42 200
    14:57:55 0 14:57:55 176 07:54:09 0 22:23:48 0 11:10:42 0
    - - - - - - - - - -
    23:59:59 282 23:59:59 231 23:59:59 212 23:59:59 4 23:59:57 11
    下载: 导出CSV
  •  

    Aleksandrov M S, Baklenova Z M, Gladshtein N D. 1972. Fluktuatsii elektromagnitnogo polya Zemli v diapazone SNCh (ULF Fluctuations of the Earth's Electromagnetic Field). Moscow: Nauka.

     

    Auger F, Flandrin P, Lin Y T, et al. 2013. Time-frequency reassignment and Synchrosqueezing:An overview. IEEE Signal Processing Magazine, 30(6):32-41, doi:10.1109/MSP.2013.2265316.

     

    Boashash B, Black P. 1987. An efficient real-time implementation of the Wigner-Ville distribution. IEEE Transactions on Acoustics, Speech, and Signal Processing, 35(11):1611-1618, doi:10.1109/TASSP.1987.1165070.

     

    Boryssenko A, Polishchuk V I. 1999. Earth near-surface passive probing by natural pulsed electromagnetic field.//Proceedings (ICCEA'99) 1999 International Conference on Computational Electromagnetics and Its Applications. Beijing, China: IEEE, 529-532, doi: 10.1109/ICCEA.1999.825235.

     

    Cohen L. 1989. Time-frequency distribution-a review. Proceedings of the IEEE, 77(7):941-981, doi:10.1109/5.30749.

     

    Coifman R R, Steinerberger S, Wu H T. 2017. Carrier frequencies, holomorphy, and unwinding. SIAM Journal on Mathematical Analysis, 49(6):4838-4864, doi:10.1137/16M1081087.

     

    Daubechies I, Heil C. 1992. Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics.

     

    Daubechies I, Lu J F, Wu H T. 2011. Synchrosqueezed wavelet transforms:An empirical mode decomposition-like tool. Applied and Computational Harmonic Analysis, 30(2):243-261, doi:10.1016/j.acha.2010.08.002.

     

    Deng G, Liang F, Li X T, et al. 2015. S-transform spectrum decomposition technique in the application of the extraction of weak seismic signals. Chinese Journal of Geophysics (in Chinese), 58(12):4594-4604, doi:10.6038/cjg20151221.

     

    Gokhberg M B, Morgounov V A, Yoshino T, et al. 1982. Experimental measurement of electromagnetic emissions possibly related to earthquakes in Japan. Journal of Geophysical Research:Solid Earth, 87(B9):7824-7828, doi:10.1029/JB087iB09p07824.

     

    Han L B, Zeng X F, Jiang C S, et al. 2014. Focal mechanisms of the 2013 MW6.6 Lushan, China earthquake and high-resolution aftershock relocations. Seismological Research Letters, 85(1):8-14, doi:10.1785/0220130083.

     

    Hao G C, Gong T, Dong H B, et al. 2015. Time-frequency characteristics and energy analysis of the Earth's natural pulse electromagnetic fields based on ensemble empirical mode decomposition:The Lushan MS7.0 earthquake as an example. Earth Science Frontiers (in Chinese), 22(5):231-238, doi:10.13745/j.esf.2015.05.019.

     

    Hao G C, Chen Z C, Zhao J, et al. 2016. Time-frequency analysis of the Earth's natural pulse electromagnetic field signal before and after the Lushan MS7.0 earthquake based on NSTFT-WVD transform. Earth Science Frontiers (in Chinese), 23(1):276-286, doi:10.13745/j.esf.2016.01.025.

     

    Herrera R H, Han J J, Van Der Baan M. 2014. Applications of the synchrosqueezing transform in seismic time-frequency analysis. Geophysics, 79(3):V55-V64, doi:10.1190/geo2013-0204.1.

     

    Hou T Y, Shi Z Q. 2012. Data-driven time-frequency analysis. Applied and Computational Harmonic Analysis, 35(2):284-308, doi:10.1016/j.acha.2012.10.001.

     

    Hou T Y, Shi Z Q, Tavallali P. 2013. Convergence of a data-driven time-frequency analysis method. Applied and Computational Harmonic Analysis, 37(2):235-270, doi:10.1016/j.acha.2013.12.004.

     

    Huang N E, Shen Z, Long S R, et al. 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. The Royal Society, 454(1971):903-995, doi:10.1098/rspa.1998.0193.

     

    Kowalski M, Meynard A, Wu H T. 2016. Convex Optimization approach to signals with fast varying instantaneous frequency. Applied and Computational Harmonic Analysis, 44(1):89-122, doi:10.1016/j.acha.2016.03.008.

     

    Kuo C L, Lee L C, Huba J D. 2014. An improved coupling model for the lithosphere-atmosphere-ionosphere system. Journal of Geophysical Research:Space Physics, 119(4):3189-3205, doi:10.1002/2013JA019392.

     

    Lv J, Guo Q, Feng H N, et al. 2012. Anomalous infrasonic waves before an small earthquake in Beijing. Chinese Journal of Geophysics (in Chinese), 55(10):3379-3385, doi:10.6038/j.issn.0001-5733.2012.10.020.

     

    Malyshkov Y P, Malyshkov S Y. 2009. Periodicity of geophysical fields and seismicity:Possible links with core motion. Russian Geology and Geophysics, 50(2):115-130, doi:10.1016/j.rgg.2008.06.019.

     

    Malyshkov Y P, Malyshkov S Y. 2011. Eccentric rotation of the earth's core and lithosphere: Origin of deformation waves and their practical application. The Earth's Core: Structure, Properties and Dynamics, chapter 6, 1-95.

     

    Portnoff M. 1980. Time-frequency representation of digital signals and systems based on short-time fourier analysis. IEEE Transactions on Acoustics, Speech, and Signal Processing, 28(1):55-69, doi:10.1109/TASSP.1980.1163359.

     

    Pulinets S A, Ouzounov D P, Karelin A V, et al. 2015. Physical bases of the generation of short-term earthquake precursors:A complex model of ionization-induced geophysical processes in the lithosphere-atmosphere-ionosphere-magnetosphere system. Geomagnetism and Aeronomy, 55(4):521-538, doi:10.1134/S0016793215040131.

     

    Sibgatulin V G, Peretokin S A, Khlebopros R G. 2007. Fundamental peculiarities of the entropy model of energy processes in seismic areas. Earth Science Frontiers, 14(6):222-225, doi:10.1016/S1872-5791(08)60013-5.

     

    Stockwell R G, Mansinha L, Lowe R P. 1996. Localization of the complex spectrum:The S transform. IEEE Transactions on Signal Processing, 44(4):998-1001, doi:10.1109/78.492555.

     

    Thakur G, Brevdo E, Fučkar N S, et al. 2013. The synchrosqueezing algorithm for time-varying spectral analysis:Robustness properties and new paleoclimate applications. Signal Processing, 93(5):1079-1094, doi:10.1016/j.sigpro.2012.11.029.

     

    Vorobyov A A. 1970. On probability of electrical discharges in the Earth's interior. Geological I Geophysics, (12):3-13.

     

    Wang J, Li J T, Lu H L, et al. 2013. Using STFT-Wigner transform to suppress the cross terms in Wiger-Ville distribution. Journal of Chongqing University (in Chinese), 36(8):15-18, 25, doi:10.11835/j.jssn.1000-582X.2013.08.003.

     

    Wu H T, Chan Y H, Lin Y T, et al. 2013. Using synchrosqueezing transform to discover breathing dynamics from ECG signals. Applied and Computational Harmonic Analysis, 36(2):354-359, doi:10.1016/j.acha.2013.07.003.

     

    Yang J L, Li Z N, Guan Y M, et al. 2017. Study on gravity disturbance before the Yutian MS7.3 earthquakes. Chinese Journal of Geophysics (in Chinese), 60(10):3844-3852, doi:10.6038/cjg20171014.

     

    Zeng X F, Luo Y, Han L B, et al. 2013. The Lushan MS7.0 earthquake on 20 April 2013:A high-angle thrust event. Chinese Journal of Geophysics (in Chinese), 56(4):1418-1424, doi:10.6038/cjg20130437.

     

    Zhan Z J, Gao J T, Zhao C L, et al. 2000. Research on tectonomagnetism and its application to earthquake prediction. Earthquake (in Chinese), 20(S1):127-134, doi:10.3969/j.issn.1000-3274.2000.z1.022.

     

    Zhang X Y. 2012. Improved data-driven time-frequency analysis and its application[Master's thesis] (in Chinese). Changsha: National University of Defense Technology.

     

    邓攻, 梁锋, 李晓婷等. 2015. S变换谱分解技术在深反射地震弱信号提取中的应用.地球物理学报, 58(12):4594-4604, doi:10.6038/cjg20151221. http://www.geophy.cn//CN/abstract/abstract12042.shtml

     

    郝国成, 龚婷, 董浩斌等. 2015.基于聚类经验模态分解的地球天然脉冲电磁场时频与能量谱分析:以芦山MS7.0地震为例.地学前缘, 22(5):231-238, doi:10.13745/j.esf.2015.05.019.

     

    郝国成, 陈忠昌, 赵娟等. 2016.基于NSTFT-WVD变换的芦山MS7.0级地震前后地球天然脉冲电磁场信号时频分析.地学前缘, 23(1):276-286, doi:10.13745/j.esf.2016.01.025.

     

    吕君, 郭泉, 冯浩楠等. 2012.北京地震前的异常次声波.地球物理学报, 55(10):3379-3385, doi:10.6038/j.issn.0001-5733.2012.10.020. http://www.geophy.cn//CN/abstract/abstract8976.shtml

     

    王见, 李金同, 卢华玲等. 2013.采用STFT-Wigner变换抑制Wigner-Ville分布交叉项.重庆大学学报, 36(8):15-18, 25, doi:10.11835/j.jssn.1000-582X.2013.08.003.

     

    王杰, 张雄, 潘黎黎等. 2013.芦山地震(MS7.0)前甲烷释放与大气增温异常.地学前缘, 20(6):29-35. http://d.old.wanfangdata.com.cn/Periodical/dxqy201306004

     

    杨锦玲, 李祖宁, 关玉梅等. 2017.于田MS7.3地震震前重力扰动信号研究.地球物理学报, 60(10):3844-3852, doi:10.6038/cjg20171014. http://www.geophy.cn//CN/abstract/abstract14051.shtml

     

    杨涛, 刘庆生, 付媛媛等. 2004.震磁效应研究及进展.地震地磁观测与研究, 25(6):63-71. doi: 10.3969/j.issn.1003-3246.2004.06.010

     

    曾祥方, 罗艳, 韩立波等. 2013. 2013年4月20日四川芦山MS7.0地震:一个高角度逆冲地震.地球物理学报, 56(4):1418-1424, doi:10.6038/cjg20130437. http://www.geophy.cn//CN/abstract/abstract9457.shtml

     

    詹志佳, 高金田, 赵从利等. 2000.构造磁学及其预测地震研究.地震, 20(S1):126-134, doi:10.3969/j.issn.1000-3274.2000.z1.022.

     

    张学阳. 2012.改进的数据驱动时频分析方法及其应用[硕士论文].长沙: 国防科学技术大学.http://cdmd.cnki.com.cn/Article/CDMD-90002-1014048145.htm

  • 加载中

(12)

(2)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2017-07-13
修回日期:  2017-12-18
上线日期:  2018-10-05

目录