首页 | 本学科首页   官方微博 | 高级检索  
     

基于BSWT-DDTFA方法的地球天然脉冲电磁场震前信号时频分析研究
引用本文:郝国成, 白雨晓, 吴敏, 王巍, 刘辉. 2018. 基于BSWT-DDTFA方法的地球天然脉冲电磁场震前信号时频分析研究. 地球物理学报, 61(10): 4063-4074, doi: 10.6038/cjg2018L0431
作者姓名:郝国成  白雨晓  吴敏  王巍  刘辉
作者单位:1. 中国地质大学(武汉)机械与电子信息学院, 武汉 430074; 2. Department of Mathematics, Duke University, Durham, NC, 27708, USA; 3. 中国地质大学(武汉)自动化学院, 武汉 430074; 4. 复杂系统先进控制与智能自动化湖北省重点实验室, 武汉 430074
基金项目:国家自然科学基金(61333002),教育部博士后基金(2015M582293),武汉市科技局攻关计划项目(2016060101010073),111项目(B17040)资助.
摘    要:

地球天然脉冲电磁场(ENPEMF)信号,可理解为地球天然变化磁场的瞬间扰动,携带了大量有用的地质构造及其动力学信息.研究ENPEMF信号所蕴含的时间-频率联合分布特点,有利于深入了解目标对象的地球物理现象及其地质动力学原理.本文针对ENPEMF信号的非平稳特点,在数据驱动时频分析方法(DDTFA)的基础上提出了基于二值化同步压缩小波变换的改进算法(BSWT-DDTFA).该算法可以实现数据驱动初始相位自动赋值的功能,具有自适应性.实验仿真和实际数据均证明了该改进算法不仅能够得到较为精确的频率曲线和更加清晰的时频分布,而且具有较强的抗噪声能力.以2013年芦山MS7.0地震为例,利用BSWT-DDTFA方法提取ENPEMF信号的时频特性,结果表明ENPEMF信号的时间-频率-幅度分布在震前有明显的异常特征.



关 键 词:地球天然脉冲电磁场   时频分析   数据驱动   同步压缩变换   震前异常
收稿时间:2017-07-13
修稿时间:2017-12-18

Time-frequency analysis of the Earth's natural pulse electromagnetic field before earthquake based on BSWT-DDTFA method
HAO GuoCheng, BAI YuXiao, WU Min, WANG Wei, LIU Hui. 2018. Time-frequency analysis of the Earth's natural pulse electromagnetic field before earthquake based on BSWT-DDTFA method. Chinese Journal of Geophysics (in Chinese), 61(10): 4063-4074, doi: 10.6038/cjg2018L0431
Authors:HAO GuoCheng  BAI YuXiao  WU Min  WANG Wei  LIU Hui
Affiliation:1. Faculty of Mechanical & Electronic Information, China University of Geosciences, Wuhan 430074, China; 2. Department of Mathematics, Duke University, Durham, NC, 27708, USA; 3. School of Automation, China University of Geosciences, Wuhan 430074, China; 4. Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, Wuhan 430074, China
Abstract:
The Earth's natural pulse electromagnetic field (ENPEMF) signal can be interpreted as the instantaneous perturbation caused by the Earth's natural varying magnetic field, carrying a great deal of useful information about geological structure and dynamics. It is beneficial for understanding the geophysical phenomena of the target object and its geodynamic principles to study the time-frequency joint distribution of the ENPEMF signal. In this paper, for the "non-stationary" characteristics of ENPEMF signals, an improved data-driven time-frequency analysis method based on binarized synchrosqueezed wavelet transform (BSWT-DDTFA) is proposed. This improved algorithm is able to assign initial values automatically with adaptability. Both experimental simulation and real data demonstrate that the improved algorithm not only can provide more accurate frequency curve and clearer time-frequency distribution, but also has stronger anti-noise ability. For the case of the MS7.0 Lushan earthquake in 2013, the time-frequency characteristics of the ENPEMF signal are extracted by using the BSWT-DDTFA method. The results show that there exists obvious anomalous characteristics in time-frequency-amplitude distribution of ENPEMF signal before the earthquake.
Keywords:The Earth's natural pulsed electromagnetic field  Time-frequency analysis  Data-driven  Synchrosqueezed transform  Abnormal characteristics before the earthquake
本文献已被 CNKI 等数据库收录!
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号