STRENGTH PROPERTIES OF DREDGED SILT AT HIGH WATER CONTENT TREATED WITH SODIUM SILICATE, SODA RESIDUE AND GROUND GRANULATED BLASTFURNACE SLAG
-
摘要: 利用工业固体废弃物碱渣和矿渣作为固化剂,水玻璃作为激发剂,对高含水率疏浚淤泥的强度性质进行试验研究,并通过X射线衍射测试探讨固化机理。研究表明,在对含水率为110%疏浚淤泥固化的正交试验中,碱渣、矿渣和水玻璃掺量越多固化土的无侧限抗压强度越大,影响3 d强度的因素主次关系为碱渣>水玻璃>矿渣,而7 d和28 d时变为水玻璃>碱渣>矿渣,水玻璃对28 d强度的影响显著。当水玻璃掺量一定而碱渣与矿渣总掺量相同时,碱渣对固化淤泥的作用强于矿渣。固化土中的水化产物包括钙矾石、水化氯铝酸钙、水钙沸石和水化硅酸钙等,其填充和胶结作用使淤泥强度得到提高。研究确定了满足一般填土工程要求的固化方案,为碱渣和矿渣作为高含水率淤泥固化剂的资源化利用提供理论依据和参数支持。Abstract: Two industry by-products, soda residue(SR) and ground granulated blastfurnace slag(GGBS), and sodium silicate(SS)were utilized to stabilize dredged silt at high water content. The unconfined compressive tests and X-ray diffraction were conducted to analyze the strength characteristics and the mechanism. The results indicate that the increase in dosage of SS, SR and GGBS can increase the unconfined compressive strength for the samples with the initial water content of 110%. The order of factors for strength of 3 days curing is SS > SR > GGBS. The order changes to SS > SR > GGBS for samples cured for 7 and 28 days. SS has a significant impact on the strength of 28 days curing. When the dosage of SS is fixed and the total dosage of SR and GGBS is the same, the effect of SR is stronger than that of GGBS. The hydration reaction among SS, SR, GGBS and soil minerals produces hydration products including ettringite, calcium chloro-aluminate hydrates, gismondine, and calcium silicate hydrates. They play the filling-in and cementation effects. The solidification scheme to meet the requirement of fill construction was determined. The results can provide a theoretical basis and data support for the resource utilization of SR and GGBS as stabilizer for dredged silt at high water content.
-
Keywords:
- High water content /
- Dredged silt /
- Solidification /
- Unconfined compressive strength /
- Soda residue
-
-
表 1 疏浚淤泥、碱渣和矿渣的主要化学组成(%)
Table 1 Bulk chemistry of dredged silt, SR and GGBS(%)
CaO Fe2O3 SiO2 MgO Na2O P2O5 Al2O3 TiO2 SO3 Cl 淤泥 3.2 6.5 62.6 2.0 0.9 0.5 19.5 0.8 1.3 - 碱渣 31.9 0.3 6.0 0.2 2.0 0.1 3.4 0.1 17.4 10.5 矿渣 38.6 0.3 33.9 7.5 0.1 1.3 15.3 0.7 2.1 — 表 2 正交试验方案及结果
Table 2 Orthogonal test scheme and results
序号 A(碱渣) B(矿渣) C(水玻璃) D(空白) 强度(3d)/kPa 强度(7d)/kPa 强度(28d)/kPa (1) 1(30%) 1(20%) 1(15%) 1 230.6 333.46 546.17 (2) 1 2(15%) 2(10%) 2 108.46 121.26 224.45 (3) 1 3(10%) 3(5%) 3 44.41 58.84 92.98 (4) 2(25%) 1 2 3 67.96 104.38 199.90 (5) 2 2 3 1 37.23 43.20 59.12 (6) 2 3 1 2 96.48 169.08 351.12 (7) 3(20%) 1 3 2 30.84 38.33 61.59 (8) 3 2 1 3 27.07 48.50 165.46 (9) 3 3 2 1 19.92 27.48 32.32 表 3 正交试验极差分析表
Table 3 Orthogonal extreme difference analysis
强度(3d)/kPa 强度(7d)/kPa 强度(28d)/kPa A B C D A B C D A B C D k1 127.82 109.80 118.05 95.92 171.19 158.72 183.68 134.72 287.87 269.22 354.25 212.54 k2 67.22 57.59 65.45 78.59 105.55 70.99 84.37 109.56 203.38 149.67 152.22 212.39 k3 25.94 53.60 37.49 46.48 38.10 85.13 46.79 70.57 86.46 158.81 71.23 152.78 R 101.88 56.20 80.56 49.44 133.08 73.59 136.88 64.14 201.41 110.41 283.02 59.76 k为各水平的平均值,R为极差 表 4 正交试验方差分析表
Table 4 Orthogonal variance analysis
方差来源 强度(3d)/kPa 强度(7d)/kPa 强度(28d)/kPa 列差平方和 自由度 F值 显著水平 列差平方和 自由度 F值 显著水平 列差平方和 自由度 F值 显著水平 A(碱渣) 15755.93 2 4.17 不显著 26568.57 2 4.24 不显著 61376.04 2 8.62 不显著 B(矿渣) 5900.16 2 1.56 不显著 13313.69 2 2.12 不显著 26565.61 2 3.73 不显著 C(水玻璃) 10037.88 2 2.66 不显著 30011.36 2 4.79 不显著 127473.84 2 17.89 显著 D(误差) 3775.35 2 6267.38 2 7124.32 2 F0.10(2,2)=9.00,F0.05(2,2)=19.0 -
Ahmed A. 2015. Compressive strength and microstructure of soft clay soil stabilized with recycled bassanite[J]. Applied Clay Science, 104:27-35. DOI: 10.1016/j.clay.2014.11.031
Bian X, Wang Z F, Ding G Q, et al. 2016. Compressibility of cemented dredged clay at high water content with super-absorbent polymer[J]. Engineering Geology, 208:198-205. DOI: 10.1016/j.enggeo.2016.04.036
Ding J W, Wu X C, Li H, et al. 2012. Compression properties and structure yield stress for solidified soil composing of dredged clays[J]. Journal of Engineering Geology, 20(4):627-632.
Duan X M, Xia J W, Yang J P. 2014. Influence of coal gangue fine aggregate on microstructure of cement mortar and its action mechanism[J]. Journal of Building Materials, 17(4):700-705.
Gui Y, Yu Z H, Zhang Q, et al. 2014. Study on the engineering properties of stabilized phosphogypsum-dredged material blend[J]. Journal of Sichuan University(Engineering Science Edition), 46(3):147-153.
Huang X, Hu T A. 1998. On stabilization of soft soil with waste gypsum and cement[J]. Chinese Journal of Geotechnical Engineering, 20(5):72-76.
Ji G D, Yang C H, Liu W, et al. 2015. An experimental study on the engineering properties of backfilled alkali wastes reinforced by fly ash[J]. Rock and Soil Mechanics, 36(8):2169-2176.
Jongpradist P, Jumlongrach N, Youwai S, et al. 2010. Influence of fly ash on unconfined compressive strength of cement-admixed clay at high water content[J]. Journal of Materials in Civil Engineering, 22(1):59-58.
Lü Q F, Shen B, Wang S X, et al. 2016. Strength characteristics and sodilification mechanism of sulphate salty soil sodified with sodium silicate[J]. Rock and Soil Mechanics, 37(3):687-693.
Sun J Y, Gu X. 2014. Engineering properties of the new non-clinker incorporating soda residue solidified soil[J]. Journal of Building Materials, 17(6):1031-1035.
Sun X L, Tong Q, Liu W H, et al. 2017. Study of microstructure and mechanical properties of dredged silt solidified using fly ash and slag stimulated by alkali[J]. Journal of Dalian University of Technology, 57(6):622-628.
Talero R, Trusilewicz L, Delgado A, et al. 2011. Comparative and semi-quantitative XRD analysis of Friedel's salt originating from pozzolan and Portland cement[J]. Construction and Building Materials, 25(5):2370-2380.
Tang Y X, Liu H L, Zhu W. 2000. Study on engineering properties of cement-stabilized soil[J]. Chinese Journal of Geotechnical Engineering, 22(5):549-554.
Wang P, Tang C S, Sun K Q, et al. 2015. Experimental investigation on consolidation properties of fiber reinforced municipal sludge[J]. Journal of Engineering Geology, 23(4):687-694.
Yan C, Song X K, Zhu P, et al. 2007. Experimental study on strength characteristics of soda residue with high water content[J]. Chinese Journal of Geotechnical Engineering, 29(11):1683-1688.
Yang Y B, Pu Y Q, Yan W J, et al. 2017. Experimental study on the performance of concrete using soda residue as mineral admixture[J]. Concrete, 316(9):80-83.
Yang Z X, Xie J G. 2010. A new embankment filling technic applied on muddy soil by using alkali slug and waste cement concrete as modification[J]. Highway Engineering, 35(1):72-75.
Zhang C L, Zhu W, Li L, et al. 2007. Field test of dike construction with solidified lake dredged material[J]. China Harbour Engineering, 147(1):27-29.
Zhu W, Zhang C L, Gao Y F, et al. 2005. Fundamental mechanical properties of solidified dredged marine sediment[J]. Journal of Zhejiang University(Engineering Science), 39(10):1561-1565.
丁建文, 吴学春, 李辉, 等. 2012.疏浚淤泥固化土的压缩特性与结构屈服应力[J].工程地质学报, 20(4):627-632. DOI: 10.3969/j.issn.1004-9665.2012.04.021 段晓牧, 夏军武, 杨建平. 2014.煤矸石细集料对水泥浆体微观结构的影响及其作用机理[J].建筑材料学报, 17(4):700-705. DOI: 10.3969/j.issn.1007-9629.2014.04.025 桂跃, 余志华, 张庆, 等. 2014.固化磷石膏-疏浚淤泥混合土的工程性质研究[J].四川大学学报(工程科学版), 46(3):147-153. 黄新, 胡同安. 1998.水泥-废石膏加固软土的试验研究[J].岩土工程学报, 20(5):72-76. DOI: 10.3321/j.issn:1000-4548.1998.05.017 冀国栋, 杨春和, 刘伟, 等. 2015.粉煤灰增强回填碱渣工程特性的试验研究[J].岩土力学, 36(8):2169-2176. 吕擎峰, 申贝, 王生新, 等. 2016.水玻璃固化硫酸盐渍土强度特性及固化机制研究[J].岩土力学, 37(3):687-693. 孙家瑛, 顾昕. 2014.新型无熟料碱渣固化土的工程特性[J].建筑材料学报, 17(6):1031-1035. DOI: 10.3969/j.issn.1007-9629.2014.06.016 孙秀丽, 童琦, 刘文化, 等. 2017.碱激发粉煤灰和矿粉改性疏浚淤泥力学特性及显微结构研究[J].大连理工大学学报, 57(6):622-628. 汤怡新, 刘汉龙, 朱伟. 2000.水泥固化土工程特性试验研究[J].岩土工程学报, 22(5):549-554. DOI: 10.3321/j.issn:1000-4548.2000.05.008 王鹏, 唐朝生, 孙凯强, 等. 2015.纤维加筋市政污泥固结特性试验研究[J].工程地质学报, 23(4):687-694. 严驰, 宋旭坤, 朱平, 等. 2007.高含水率碱渣的强度特性试验研究[J].岩土工程学报, 29(11):1683-1688. DOI: 10.3321/j.issn:1000-4548.2007.11.015 杨朝旭, 解建光. 2010.碱渣、废混凝土改性淤泥质土作为路基填土的可行性研究[J].公路工程, 35(1):72-75. DOI: 10.3969/j.issn.1674-0610.2010.01.017 杨医博, 普永强, 严卫军, 等. 2017.碱渣用作矿物掺合料对混凝土性能影响的试验研究[J].混凝土, 316(9):80-83. 张春雷, 朱伟, 李磊, 等. 2007.湖泊疏浚泥固化筑堤现场试验研究[J].中国港湾建设, 147(1):27-29. DOI: 10.3969/j.issn.1003-3688.2007.01.008 朱伟, 张春雷, 高玉峰, 等. 2005.海洋疏浚泥固化处理土基本力学性质研究[J].浙江大学学报(工学版), 39 (10):1561-1565. DOI: 10.3785/j.issn.1008-973X.2005.10.023